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Homework 2 Graduate Artificial Intelligence 15-780

Problem 1: MDPs [Felipe, 20pts]

Figure 1: MDP for Problem 1. States are represented by circles and actions by hexagons. The numbers on the arrows
from actions to states represent the transition probability, for instance, P (s3|s2, a0) = q . Each of the parameters p
and q are in the interval [0,1]. The reward is 10 for state s3, 1 for state s2 and 0 otherwise.

For this question, consider the infinite-horizon MDP M represented by Figure 1 with discount factor γ ∈ [0,1).

a) List all the possible policies for M . [2 pts]

Answer: There are two possible policies:

s0 s1 s2 s3

π1 a1 a0 a0 a0

π2 a2 a0 a0 a0

b) Show the equation representing the optimal value function for each state of M , i.e. V ∗(s0),V ∗(s1),V ∗(s2)

and V ∗(s3). [4 pts]

Answer:

V ∗(s0) = max
a∈{a1,a2}

0+γ
∑
s′

P (s′|s, a)V ∗(s′) = γmax{V ∗(s1),V ∗(s2)}

V ∗(s1) = max
a∈{a0}

0+γ
∑
s′

P (s′|s, a)V ∗(s′) = γ[(1−p)V ∗(s1)+pV ∗(s3)]

V ∗(s2) = max
a∈{a0}

1+γ
∑
s′

P (s′|s, a)V ∗(s′) = 1+γ[(1−q)V ∗(s0)+qV ∗(s3)]

V ∗(s3) = max
a∈{a0}

10+γ
∑
s′

P (s′|s, a)V ∗(s′) = 10+γV ∗(s0)

c) Is there a value for p such that for all γ ∈ [0,1) and q ∈ [0,1], π∗(s0) = a2? Explain. [5 pts]

Answer: Notice that π∗(s0) = argmaxa∈{a1,a2}γ
∑

s′ P (s′|s, a)V ∗(s′), therefore if γ = 0 then a1 and a2 are tied

and π∗ is not unique, so we can’t guarantee that π∗(s0) = a2. For γ> 0, π∗(s0) = a2 iff V ∗(s2) > V ∗(s1) for all

q ∈ [0,1]. If p = 0, then V ∗(s1) = γV ∗(s1) = 0 and since V ∗(s2) = 1+γ[(1− q)V ∗(s0)+ qV ∗(s3)] ≥ 1, we have

that V ∗(s2) >V ∗(s1) and π∗(s0) = a2 for all γ ∈ (0,1) and q ∈ [0,1].

d) Is there a value for q such that for all γ ∈ [0,1) and p > 0, π∗(s0) = a1? Explain. [5 pts]

Answer: No. Since V ∗(s2) = 1+γ[(1−q)V ∗(s0)+qV ∗(s3)] ≥ 1, then π∗(s0) = a1 iff V ∗(s1) >V ∗(s2) ≥ 1 for all

γ ∈ [0,1) and p > 0. We have that V ∗(s1) = γ[(1− p)V ∗(s1)+ pV ∗(s3)] = γpV ∗(s3)
1−γ(1−p) . Therefore we can always

find a value for γ sufficiently small such that V ∗(s1) < 1. Notice that if γ equals 0, then π∗ is not unique (as

in the previous item).

e) Using p = q = 0.25 and γ = 0.9, compute π∗ and V ∗ for all states of M . You can either solve the recursion

of item (b) or implement value iteration. In the latter case, the error between V t and V ∗ allowed is ε= 10−3,
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therefore the stop criterion should be maxs |V t−1(s)−V t (s)| ≤ ε(1−γ)/γ. [4 pts]

Answer:

s0 s1 s2 s3

V ∗ 14.1846 15.7608 15.6969 22.7661

π∗ a1 a0 a0 a0

Problem 2: Another interpretation for the discount factor [Felipe, 40pts]

In this problem you will explore the difference between MDPs and the Stochastic Shortest Path Problems (SSPs)

and find another possible interpretation for the discount factor for infinite-horizon MDPs. In order to simplify the

math, MDPs are parametrized using a cost function as opposed to a reward function, that is, an MDP is the tuple

M = 〈S, s0, A,C ,P〉 where:

• S is the finite state space;
• s0 ∈ S is the initial state;
• A is the finite action space;
• P (s′|s, a) represents the probability of s′ ∈ S be the resulting state of applying action a ∈ A in state s ∈ S; and
• C (s, a) ∈ (0,∞) is the cost of applying action a ∈ A in state s.

Using this parametrization, the optimal value function for infinite-horizon MDPs with discount factor γ ∈ [0,1) is

given by equation (1). Notice that the min operator is used instead of max because the parametrization uses cost

instead of reward.

V ∗(s) = min
a∈A

{
C (s, a)+γ

∑
s′∈S

P (s′|s, a)V ∗(s′)

}
(1)

Stochastic Shortest Path Problems

Stochastic Shortest Path Problems (SSPs) are represented as the tuple S = 〈S, s0,G , A,C ,P〉, where S, s0, A,C and P

are defined as in the MDP case and G ⊂ S is the set of goal states. Both infinite-horizon MDPs and SSPs have as

solution a policy, however this policy:

• minimizes the expected long-term cost for infinite-horizon MDPs; and
• minimizes the expected cost to reach a goal state for SSPs.

Questions

For all the questions bellow, we assume that for all state s ∈ S, there exists a path from s to sG ∈G for the SSPs.

a) Explain using no more than 2 sentences why infinite-horizon MDPs need the discount factor γ. [2 pts]

Answer: Mathematical explanation: Since V ∗(s) represents the expected accumulated reward, the discount

factor γ ∈ [0,1) is necessary in order to guarantee that |V ∗(s)| <∞.

Economical interpretation: We can see γ as the inflation per time step, i.e., one unit of reward at time t is

worth γt units of reward now.

b) Explain using no more than 2 sentences why SSPs do not need the discount factor γ. [6 pts]

Answer: SSPs do not need the discount factor γ because they have a termination condition, i.e. when a goal

state is reached the problem is finished.

c) Derive the optimal value function for SSPs, i.e. the equivalent of equation (1) for SSPs. [6 pts]

Answer:

V ∗(s) =
{

mina∈A
{
C (s, a)+∑

s′∈S P (s′|s, a)V ∗(s′)
}

if s ∈ S \G

0 if s ∈G
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d) SSPs are more expressive than infinite-horizon MDPs, i.e. any infinite-horizon MDP can be transformed to

an SSP, however not all SSPs can be represented as an infinite-horizon MDP. Given an infinite-horizon MDP

M = 〈S, s0, A,C ,P〉with discount factorγ ∈ [0,1) show how to translate M into the SSP S = 〈S′, s0,G , A,C ′,P ′〉.
[20 pts]

Answer: Given an MDP M = 〈S, s0, A,C ,P〉 with discount factor γ ∈ [0,1), we need to construct an SSP

S = 〈S′, s0,G , A,C ′,P ′〉 such that, for all s ∈ S, V ∗
MDP(s) =V ∗

SSP(s). Now, define:

• S′ = S ∪ {sg }

• G = {sg }

• P ′(s′|s, a) =
{

γP (s′|s, a) if s ∈ S and s′ ∈ S

1−γ if s ∈ S and s′ = sg
, for all a ∈ A, and

• C ′(s, a) =
{

C (s, a) if s ∈ S

0 if s = sg
, for all a ∈ A.

Now, for all s ∈ S, we have that:

V ∗
SSP(s) = min

a∈A

{
C ′(s, a)+ ∑

s′∈S′
P ′(s′|s, a)V ∗

SSP(s′)

}
(∗)= min

a∈A

{
C (s, a)+ (1−γ)V ∗

SSP(sg )+ ∑
s′∈S

γP (s′|s, a)V ∗
SSP(s′)

}
(∗∗)= min

a∈A

{
C (s, a)+γ

∑
s′∈S

P (s′|s, a)V ∗
SSP(s′)

}
= V ∗

MDP(s)

(∗) Applying the definition of C ′, P ′ and S′. Also, notice that s ∈ S, i.e. s 6= sg .

(∗∗)V ∗
SSP(sg ) = 0 by definition of SSPs.

e) Give an interpretation for the discount factor γ based in the previous item using no more than 2 sentences.

[6 pts]

Answer: As we can see from the previous item, the discount factor γ for infinite-horizon MDPs can be inter-

preted as the probability that the agent will keep playing the game and accumulating more rewards. In other

words, at each time step, the agent dies with probability 1−γ.

Problem 3: In search of stolen cheese [John, 40pts]

You are a mouse, and some thief has stolen your cheese! Worse still, this bandit has hidden each of your blocks of

cheese in a different, difficult maze. You must retrieve your cheese from these mazes, and you must do it quickly –

winter is coming.

Luckily, a sympathetic friend has given you a set of maps, one for each of the mazes. It turns out these mazes

consist of m ×n square blocks that are either passable or impassable. There is exactly one entrance to each maze,

and exactly one goal location in the maze where your cheese sits. You know both these locations, as well as the

passable/impassable traits of every block in each maze.

Being a clever, computationally aware mouse, you decide to use the A∗ search algorithm to plot a path through

each maze to its guarded block of cheese. Moving from one block to another takes energy; since you’d like to

conserve energy for the winter, your goal is to minimize the amount of energy you use to retrieve each block of

cheese.
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a) Assume each movement takes a single unit of energy. If you can only move vertically or horizontally, de-

scribe an admissible heuristic for this problem. Now let diagonal movement be allowed; is your heuristic

still admissible? Why or why not? [5 pts]

Answer: Most people got this answer correct. Let the mouse’s current position be m = (xm , ym) and the goal’s

position be g = (xg , yg ). Then a sampling of admissible heuristics include:

Manhattan distance. By far the most popular heuristic in the class. It is named after the grid-like geometry

of the New York City streets. Calculated as

hM (m, g ) = |xm −xg |+ |ym − yg |

Clearly, if we allow diagonal moves this heuristic is no longer admissible. Take as a counterexample

m′ = (0,0) and g ′ = (1,1). Then hM (m′, g ′) = 2 > 1 = |opt_path(m′, g ′)|. The heuristic overestimated the

distance to goal, violating the admissibility condition.

Euclidean distance. Second most popular heuristic in the class. Calculated as

hE (m, g ) =
√

|xm −xg |2 +|ym − yg |2

We see that ∀m′, g ′.hM (m′, g ′) ≥ hE (m′, g ′) and, since hM is guaranteed never to overestimate the dis-

tance to the goal, so to is hE .

If we allow diagonal moves, this heuristic is no longer admissible. Recall that our cost function was

one energy unit per move. This means that a move from, e.g., (0,0) to (1,1) has cost 1, not cost
p

2 as it

would in Euclidean space. Thus, the heuristic can overestimate the distance to the goal, violating the

admissibility condition.

Chebychev distance. The least popular heuristic in the class (two people mentioned it). This heuristic is

calculated as

hC (m, g ) = max
(|xm −xg |, |ym − yg |

)
We see that ∀m′, g ′.hE (m′, g ′) ≥ hC (m′, g ′) and, since hE is guaranteed never to overestimate the dis-

tance to the goal, so to is hC . This is the “loosest” heuristic reported (there are looser heuristics, e.g.,

∀m′, g ′.h≤(m′, g ′) = 0, which turns A∗ search into standard BFS).

Unlike the other heuristics discussed above, if we allow diagonal moves, the Chebychev heuristic is still

admissible.

b) Using the admissible heuristic you developed earlier, implement the A∗ algorithm in the programming lan-

guage of your choice. Run your implementation of A∗ on each of the mazes. In a single table, record the

optimal path lengths, as well as the total number of nodes that were visited and total number of nodes that

were explored, for each maze.

For this problem and the next, only horizontal and vertical (i.e., no diagonal) movement is allowed. Each

movement takes one unit of energy. [15 pts]

Answer: Again, most people got this answer correct. A few comments:

• In A∗, you are constantly enqueuing nodes that have an associated numeric “score” (i.e., the f value)

and then searching for the lowest scoring node in the queue. Many people did a linear search over all

nodes in the queue to find a lowest score. This resulted in very long A∗ runtimes, even on the very small

maps in this homework assignment. A better method would be to use a data structure like a priority

queue or a heap. It’s important to look at an algorithm and optimize for the type of operations you’ll be

doing frequently! For more information, see:

– http://en.wikipedia.org/wiki/Priority_queue

– http://en.wikipedia.org/wiki/Heap_%28data_structure%29
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• After the A∗ search concludes, we are guaranteed to have an optimal path from start to goal. An easy

way to retrieve this path is to, at each node you explore, store a pointer to the node that you visited

immediately before (the “parent” node). In a simple grid world like the mazes in this homework, one

could also store “parent” coordinates in an m×n array, although this is not recommended due to wast-

ing memory (you’re allocating a slot in the array for every possible cell, not just those the algorithm

visited). Some solutions I saw did worse things like store entire paths in each node, or search over the

final matrix of f values to find a path after A∗ converged. This resulted, again, in extremely increased

runtime and/or memory requirements for A∗.

• More than half of the class did not read the file format! Specifically, the second line of the maze file

is formatted <num-rows> <num-columns>, while the third and fourth lines report the start and goal

coordinates in <x> <y> format. Many people read the start and goal lines in <y> <x> format, which

made the Scotty maze seem unsolvable. By luck of the draw, all the other mazes still had valid paths

from valid start locations to valid goal locations. I did not take off points for misreading the file format.

The best runtimes (with correct answers) I saw were as follows:

Map Path Length Explored Visited Time(s)

cubism 320x320 504 41420 38973 0.093472

diffusion 640x640 1237 165994 164567 0.642666

empty 320x320 508 1521 507 0.012962

maze 320x320 3975 47917 47871 0.067668

polar 640x640 993 108311 107727 0.294654

scotty 214x234 358 4825 4483 0.012298

These were all done by the same student. The algorithm was implemented in OCaml with a priority queue

and handily beat your TA’s Python implementation. For a very easy-to-read implementation of A∗ in a

Python-like language (which appears to be, with Matlab, the language of choice in our class), see

http://en.wikipedia.org/wiki/A*#Pseudocode.

c) Is A∗ really worth the effort? As you learned as an undergradumouse, DFS and BFS will also find paths to the

cheese. To test this, you decide to empirically compare DFS, BFS, and A∗.

First, tweak your implementations of A∗, DFS, and BFS to include the following randomizations:

A∗. When selecting the node with lowest f value, randomly select from all nodes with the same lowest f

value.

BFS. Enqueue new nodes (i.e., the unexplored neighbors of the current explored node) in random order.

DFS. Push new nodes (i.e., the unexplored neighbors of the current explored node) onto the stack in random

order.

For each maze, run your implementation of A∗ against implementations of DFS and BFS at least 100 times.

In a single table, record the average path lengths, nodes visited, and nodes explored for each of the three

algorithms. In general, did A∗ result in significant gains? [20 pts]

Answer: Once again, most people got this answer entirely or mostly correct. You can change your A∗ code

to BFS or DFS in at most two lines.

(a) For BFS, set the heuristic function to always return zero. This means that the f -score equals the g -score

for all explored nodes.

(b) For DFS, swap the queue out for a stack, and ignore the f values of nodes.
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The A∗ machinery is overkill, but these changes are extremely programmer-friendly to make, given an A∗

implementation from the question above.

The takeaway messages from this problem are as follows:

• BFS still returns an optimal path (albeit potentially a different one than A∗), but may explore many

more nodes to do so.

• DFS can return extremely suboptimal paths and, typically, does. However, on some types of maps it

can explore fewer nodes than, e.g., the A∗ algorithm.

• Randomization can help, but (at least on these maps, with the most common heuristics) not by much.

It can help, though!

How to load a map of the maze

Your sympathetic friend left a tarball of the maps on the course webpage. They are formatted as follows:

<map-name>
<num-rows> <num-columns>
<x-coord-of-entrance> <y-coord-of-entrance>
<x-coord-of-cheese> <y-coord-of-cheese>
0 1 0 ... num-columns ... 0 1
0 0 1 ... num-columns ... 1 1
. . . . . .
. . . . . .
. . . . . .

Where a 0 at cell (i , j ) means the block at location (i , j ) is passable, and a 1 means impassable. These maps are

0-indexed. That is, coordinates run from (0,0) to (m−1,n−1), with m being the number of rows and n the number

of columns.

For example, the following describes a map named easy-map with 3 rows and 3 columns. The entrance is in

the top-left corner of the maze at (0,0), and the cheese is in the bottom-right corner at (2,2).

easy-map
3 3
0 0
2 2
0 1 1
0 0 1
1 0 0

Page 6 of 6


