CMU 15-781
Lecture 3: Constraint Satisfaction Problems (CSPs)

Teacher: Gianni A. Di Caro
Overview

• Definitions, toy and real-world examples
• Basic algorithms for solving CSPs
• Pruning space through propagating information
 CONSTRAINT SATISFACTION PROBLEMS (CSP)

• Set of decision Variables: \(V = \{ V_1, \ldots, V_N \} \)
• Domains: Sets of \(D_i \) possible values for each variable \(V_i \)
• Set of Constraints: \(C = \{ C_1, \ldots, C_K \} \) restricting the values the variables can simultaneously take
• A constraint consists of:
 o variable tuple
 o list of possible values for tuple (ex. \([(V_2, V_3), \{(R, B), (R, G)\}] \))
 o Or functional relation (ex. \(V_2 \neq V_3, V_1 > V_4 + 5 \))
• Allows useful general-purpose algorithms with more power than standard search algorithms
Example: N-Queens

- **Variables:**
 - \(Q_i \) position of queen in column \(i \)

- **Domains:**
 - \{1, ..., 8\}

- **Constraints:**
 - No queen attack each other
 - \(Q_i = k \Rightarrow Q_j \neq k, \ \forall \ j = 1,..8, \ j \neq i \)
 - Similar constraints for diagonals

Alternative formulation?
Example: Map Coloring

Given n different colors, color a map so that adjacent areas are different colors.

![Map Coloring Diagram]

- Western Australia
- Northern Territory
- South Australia
- Queensland
- New South Wales
- Victoria
- Tasmania
Map Coloring: Match!

Constraints

\{\text{red, green, blue}\}

Variables

\{WA = \text{red}, NT = \text{green}, Q = \text{red}, NSW = \text{green}, V = \text{red}, SA = \text{blue}, T = \text{green}\}

Domain

\{(WA, NT) \in \{(\text{red, green}), (\text{red, blue}), (\text{green, red}), \ldots\}\}

Solutions

WA, NT, Q, NSW, V, T, SA
Example: Sudoku

- Variables:
 - X_{ij}, each open square

- Domain:
 - \{1:9\}

- Constraints:
 - 9-way all diff col
 - 9-way all diff row
 - 9-way all diff box
Scheduling (Important Example)

• Many industries. Many multi-million $ decisions. Used extensively for space mission planning. Military uses.

• People really care about improving scheduling algorithms! Problems with phenomenally huge state spaces. But for which solutions are needed very quickly.

• Many kinds of scheduling problems e.g.:
 o *Job shop*: Discrete time; weird ordering of operations possible; set of separate jobs.
 o *Batch shop*: Discrete or continuous time; restricted operation of ordering; grouping is important.
JOB SCHEDULING

- A set of J jobs, J_1, \ldots, J_n
- A set of R resources, R_1, R_2, \ldots, R_m to do the jobs
- Each job j is a sequence of operations O_{j1}, \ldots, O_{jL_j} to be scheduled according to process plans: $O_{j1} < O_{j2} < O_{j3} \ldots$
- Each operation has a fixed processing time and requires the use of resources R_i, a resource can have capacity constraints
- Each job has a *ready time* and a *due time*
- A resource can only be used by a single operation at a time.
- All jobs must be completed by a due time.

- Problem: assign a start time to each job such that all jobs are completed by their due times respecting all constraints
Job Scheduling

Project job scheduling

For each job, choose an execution mode and a start time.

1. **Design**
2. **Cover**
3. **Pages (400/book)**
4. **Assembly**

Book 1

1. **1 day**

Book 2

1. **1 day**

Resources

1. **1 day**

10X10 Job Shop Scheduling Problem

Constrained Schedule

<table>
<thead>
<tr>
<th>JOB</th>
<th>0</th>
<th>60</th>
<th>120</th>
<th>180</th>
<th>240</th>
<th>300</th>
<th>360</th>
<th>420</th>
<th>480</th>
<th>540</th>
<th>600</th>
<th>660</th>
<th>720</th>
<th>780</th>
<th>840</th>
<th>900</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Machine Required

- M0
- M1
- M2
- M3
- M4
- M5
- M6
- M7
- M8
- M9

15781 Fall 2016: Lecture 3
CLASS SCHEDULING WOES

• 4 more required classes to graduate
 o A: Algorithms B: Bayesian Learning
 o C: Computer Programming D: Distributed Computing

• A few restrictions
 o Algorithms must be taken same semester as Distributed computing
 o Computer programming is a prereq for Distributed computing and Bayesian learning, so it must be taken in an earlier semester
 o Advanced algorithms and Bayesian Learning are always offered at the same time, so they cannot be taken the same semester

• 3 semesters (semester 1,2,3) when can take classes
Exercise: Define CSP

- 4 more required classes to graduate: A, B, C, D
- A must be taken same semester as D
- C is a prereq for D and B so must take C earlier than D & B
- A & B are always offered at the same time, so they cannot be taken the same semester
- 3 semesters (semester 1, 2, 3) when can take classes
Exercise: Define CSP

- 4 more required classes to graduate: A, B, C, D
- A must be taken same semester as D
- C is a prereq for D and B so must take C earlier than D & B
- A & B are always offered at the same time, so they cannot be taken the same semester
- 3 semesters (semester 1, 2, 3) when can take classes
- Variables: A, B, C, D
- Domain: {1, 2, 3}
- Constraints: A ≠ B, A=D, C < B, C < D
Types of CSPs

• Discrete-domain variables
 o **Finite domains** (Map coloring, Sudoku, N-queens, SAT) ➔ Our focus!
 o **Infinite domains** (Integers or strings, deadline-free JSS)
 Constraint language is needed to understand relations $J_1 + d_1 \leq J_2$ without enumerating all tuples
 Integer programming methods deal effectively with (integer, binary) problems with linear constraints

• Continuous variables (planning, blending, positioning,...)
 o **Linear/convex programming** for linear/convex constraints
Types of Constraints

- **Unary**: involve a single variable
- **Binary**: involve two variables
- **n-ary**: involve n variables
- **Soft constraints**: violation incurs a cost, the problem becomes a constraint optimization one
Constraint Graph

- Variables \rightarrow Vertices
- Constraints \rightarrow Edges
 - Unary: Self-edges
 - Binary: regular edges
 - n-ary: hyperedges (hypergraphs)

\[
\begin{align*}
A &< 2 \\
A > C \\
B \neq C
\end{align*}
\]
Cryptarithmetic puzzles

\[
\begin{align*}
\text{TWO} & \quad + \quad \text{TWO} \\
\hline
\text{FOUR} & \quad = \\
\end{align*}
\]

\[V = \{O,W,T,R,U,F\}\]

\[D = \{0, \ldots, 9\}\]

\[10^0(O+O) + 10^1(W+W) + 10^2(T+T) = 10^0R + 10^1U + 10^2O + 10^3F\]

\[\{O+O = R+10C_1, C_1+W+W=U+10C_2, C_2+T+T=O+10C_3, C_3 = F\}\]

\[V = \{O,W,T,R,U,F, C_1, C_2, C_3\} \quad \text{Auxiliary vars}\]
Binary constraint graphs

It’s always possible to reduce a hypergraph to a binary constraint graph!

But this is not always the best thing to do

If you want to know more ...

OVERVIEW

• Definitions, toy and real-world examples
• Basic algorithms for solving CSPs
• Pruning space through propagating information
WHY NOT JUST DO BASIC SEARCH ALGORITHMS FROM LAST TIME?

• **States:** Partial assignments to the n variables
• **Initial state:** Empty state
• **Action:** Select an unassigned variable i and assign a feasible value from its domain D_i to it
• **Goal test:** Assignment consistent (no violations) and complete (all variables assigned)
• **Step cost:** Constant
• Solution is found at depth n, using **depth-limited DFS**
• Size of the search tree?
Why not just do basic search algorithms from last time?

\[n = 4 \text{ variables each taking } d = 4 \text{ values} \]

\[b = nd \]

\[b = (n-1)d \]

Generate a search tree of \(n!d^n \) but there are only \(d^n \) possible assignments!
COMMUTATIVITY!

• The order of assigning the variables has no effect on the final outcome

• CSPs are commutative: Regardless of the assignment order, the same partial solution is reached for a defined set of assignment values

• Don’t care about path!

• ➔ Only a single variable at each node in the search tree needs to be considered!! (can fix the order)

• ➔ d^n number of leaves in the search tree!
Backtracking: DFS with Single Variable Assignments

- Only consider a single variable at each point
- Don’t care about path
- Order of variable assignment doesn’t matter, so fix ordering
- Only consider values which do not conflict with assignment made so far
- Depth-first search for CSPs with these two improvements is called backtracking search
BACKTRACKING

- Function **Backtracking**(csp) returns solution or fail
 - Return Backtrack({},csp)
- Function **Backtrack**(assignment,csp) returns solution or fail
 - If assignment is complete, return assignment
 - $V_i \leftarrow select_unassigned_var(csp)$
 - For each val in order-domain-values(var, csp, assign)
 - If value is consistent with assignment
 - Add [$V_i = val$] to assignment
 - Result \leftarrow Backtrack(assignment, csp)
 - If Result \neq fail, return result
 - Remove [$V_i = val$] from assignments
 - Return fail
Backtracking

- Function **Backtracking**(csp) returns soln or fail
 - Return Backtrack({},csp)
- Function **Backtrack**(assignment,csp) returns soln or fail
 - If assignment is complete, return assignment
 - $V_i \leftarrow select_unassigned_var(csp)$
 - For each val in order-domain-values(var,csp,assign)
 - If value is consistent with assignment
 - Add [$V_i = \text{val}$] to assignment
 - Result \leftarrow Backtrack(assignment,csp)
 - If Result \neq fail, return result
 - Remove [$V_i = \text{val}$] from assignments
 - Return fail
THINK AND DISCUSS

• Does the variable/value order used affect how long backtracking takes to find a solution?
• Does the variable/value order used affect the solution found by backtracking?
Example

Variables: A, B, C, D **Domain:** \{1, 2, 3\}

Constraints: A ≠ B, A = D, C < B, C < D

Variable order: alphabetical **Value order:** Descending

- \((A = 3)\)
EXAMPLE

Variables: A, B, C, D
Domain: \{1, 2, 3\}
Constraints: A ≠ B, A = D, C < B, C < D

Variable order: alphabetical
Value order: Descending

• (A=3)
• (A=3, B=3) inconsistent with A ≠ B
• (A=3, B=2)
• (A=3, B=2, C=3) inconsistent with C < B
• (A=3, B=2, C=2) inconsistent with C < B
• (A=3, B=2, C=1)
• (A=3, B=2, C=1, D=3) VALID
EXAMPLE

 VARIABLES: A,B,C,D
 Domain: \{1,2,3\}
 Constraints: A \neq B, A=D, C < B, C < D

 Variable order: alphabetical
 Value order: ascending

• \(A=1\)
Example

Variables: A, B, C, D Domain: \{1, 2, 3\}

Constraints: A \neq B, A=D, C < B, C < D

Variable order: alphabetical Value order: ascending

- (A=1)
- (A=1, B=1) inconsistent with A \neq B
- (A=1, B=2)
- (A=1, B=2, C=1)
- (A=1, B=2, C=1, D=1) inconsistent with C < D
- (A=1, B=2, C=1, D=2) inconsistent with A=D
- (A=1, B=2, C=1, D=3) inconsistent with A=D
Example

Variables: A, B, C, D **Domain:** \{1, 2, 3\}

Constraints: A ≠ B, A = D, C < B, C < D

Variable order: alphabetical **Value order:** ascending

- (A=1, B=1) inconsistent with A ≠ B
- (A=1, B=2)
- (A=1, B=2, C=1)
- (A=1, B=2, C=1, D=1) inconsistent with C < D
- (A=1, B=2, C=1, D=2) inconsistent with A = D
- (A=1, B=2, C=1, D=3) inconsistent with A = D
- No valid assignment for D, return result = fail
 - Backtrack to (A=1, B=2, C=)
- Try (A=1, B=2, C=2) but inconsistent with C < B
- Try (A=1, B=2, C=3) but inconsistent with C < B
- No other assignments for C, return result = fail
 - Backtrack to (A=1, B=)
- (A=1, B=3)
- (A=1, B=3, C=1)
- (A=1, B=3, C=1, D=1) inconsistent with C < D
- (A=1, B=3, C=1, D=2) inconsistent with A = D
- (A=1, B=3, C=1, D=3) inconsistent with A = D
- Return result = fail
 - Backtrack to (A=1, B=3, C=)

- (A=1, B=3, C=2) inconsistent with C < B
- (A=1, B=3, C=3) inconsistent with C < B
- No remaining assignments for C, return fail
 - Backtrack to (A=1, B=)
- No remaining assignments for B, return fail
 - Backtrack to A
- (A=2)
- (A=2, B=1)
- (A=2, B=1, C=1) inconsistent with C < B
- (A=2, B=1, C=2) inconsistent with C < B
- (A=2, B=1, C=3) inconsistent with C < B
- No remaining assignments for C, return fail
 - Backtrack to (A=2, B=?)
- (A=2, B=2) inconsistent with A ≠ B
- (A=2, B=3)
- (A=2, B=3, C=1)
- (A=2, B=3, C=1, D=1) inconsistent with C < D
- (A=2, B=3, C=1, D=2) inconsistent with C < D
- (A=2, B=3, C=1, D=3) ALL VALID
ORDERING MATTERS!

- Function Backtracking(csp) returns soln or fail
 - Return Backtrack({},csp)
- Function Backtrack(assignment,csp) returns soln or fail
 - If assignment is complete, return assignment
 - $V_i \leftarrow \text{select_unassigned_var}(csp)$
 - For each val in order-domain-values(var,csp,assign)
 - If value is consistent with assignment
 - Add $[V_i = \text{val}]$ to assignment
 - Result $\leftarrow \text{Backtrack}(assignment,csp)$
 - If Result \neq fail, return result
 - Remove $[V_i = \text{val}]$ from assignments
 - Return fail

15781 Fall 2016: Lecture 3
ORDERING HEURISTICS

• Next variable?
 o Random or static
 o Variable with the fewest legal values: Minimum remaining values (MRV) heuristic (aka the most constrained var, the fail-first var)
 o Variable with the largest number of constraints on other unassigned variables, reduces b on future choices (Degree heuristic)

• Variable’s value?
 o Value that leaves most choices for the neighboring variables in the constraint graph, max flexibility (least-constraining-value heuristic), fail-last
(Test) Cost of Backtracking?

- d values per variable
- n variables
- Possible number of CSP assignments?

- A) $O(d^n)$
- B) $O(n^d)$
- C) $O(nd)$
OVERVIEW

- Real world CSPs
- Basic algorithms for solving CSPs
- Pruning space through propagating information
LIMITATIONS OF BACKTRACKING

• Can inevitable failure be detected earlier?
• Can problem structure can be exploited?
• Can the search space be reduced to speed up computation?
If we choose a value for one variable, that affects its neighbors. And then potentially those neighbors... We can use this inference to prune the search space.
Arc Consistency

- **Definition:**
 - An “arc” (connection between two variables $X \rightarrow Y$ in constraint graph) is **consistent** if:
 - For every value could assign to X there exists some value of Y that could be assigned without violating a constraint.

If a variable is not arc consistent with another one, it can be made so by removing some values from its domain. This can be done recursively → **Form of constraint propagation** that enforces arc consistency, maintains the problem solutions, and prunes the tree!
Arc Consistency in Practice

Example from Kevin Leyton-Brown

- $\text{dom}(A) = \{1, 2, 3, 4\}$; $\text{dom}(B) = \{1, 2, 3, 4\}$; $\text{dom}(C) = \{1, 2, 3, 4\}$
- Suppose you first select the arc $\langle A, A < B \rangle$.
 - Remove $A = 4$ from the domain of A.
 - Add nothing to TDA. (To-Do-Arcs)
- Suppose that $\langle B, B < C \rangle$ is selected next.
 - Prune the value 4 from the domain of B.
 - Add $\langle A, A < B \rangle$ back into the TDA set (why?)
- Suppose that $\langle B, A < B \rangle$ is selected next.
 - Prune 1 from the domain of B.
 - Add no element to TDA (why?)
- Suppose the arc $\langle A, A < B \rangle$ is selected next
 - The value $A = 3$ can be pruned from the domain of A.
 - Add no element to TDA (why?)
- Select $\langle C, B < C \rangle$ next.
 - Remove 1 and 2 from the domain of C.
 - Add $\langle B, B < C \rangle$ back into the TDA set

The other two edges are arc consistent, so the algorithm terminates with $\text{dom}(A) = \{1, 2\}$, $\text{dom}(B) = \{2, 3\}$, $\text{dom}(C) = \{3, 4\}$.

\[\square \]
AC-3 Computational Complexity?

- Input: CSP
- Output: CSP, possible with reduced domains for variables, or inconsistent
- Local variables: queue, initially queue of all arcs (binary constraints in csp)
- While queue is not empty
 - \((X_i,X_j) = \text{Remove-First(queue)}\)
 - \([\text{domain}X_i, \text{anyChangeToDomain}X_i] = \text{Revise(csp,X_i,X_j)}\)
 - if anyChangeToDomainX_i == true
 - if size(domainX_i) = 0, return inconsistent
 - else
 - for each \(X_k\) in Neighbors(X_i) except \(X_j\)
 - add \((X_k,X_i)\) to queue
 - Return csp

Function \(\text{Revise(csp,X_i,X_j)}\) returns DomainXi and anyChangeToDomainX_i
- anyChangeToDomainX_i = false
- for each \(x\) in Domain(X_i)
 - if no value \(y\) in Domain(X_j) allows \((x,y)\) to satisfy constraint between \((X_i,X_j)\)
 - delete \(x\) from Domain(X_i)
 - anyChangeToDomainX_i = true

Have to add in arc for \((X_i,X_j)\) and \((X_j,X_i)\) for \(i,j\) constraint

\(D\) domain values
\(C\) binary constraints

Complexity of revise function? \(D^2\)

Number of times can put a constraint in queue? \(D\)

Total: \(CD^3\)
(Test) Sufficient?

• After we run AC-3 have we always found a solution? (aka only 1 value left for each variable)

• A) Yes
• B) No
AC-3 Example

- Variables: A, B, C, D
- Domain: \{1, 2, 3\}
- Constraints: A ≠ B, C < B, C < D (subset of constraints from before)
AC-3 Example

- Variables: A, B, C, D
- Domain: \{1, 2, 3\}
- Constraints: A \neq B, C < B, C < D (subset of constraints from before)
- Constraints both ways: A \neq B, B \neq A, C < B, B > C, C < D, D > C
AC-3 Example

- Variables: A, B, C, D
- Domain: \{1,2,3\}
- Constraints: A \neq B, C < B, C < D (subset of constraints from before)
- Constraints both ways: A \neq B, B \neq A, C < B, B > C, C < D, D > C
- Queue: AB, BA, BC, CB, CD, DC
AC-3 EXAMPLE

- Variables: A, B, C, D
- Domain: \{1, 2, 3\}
- Constraints: A \neq B, C < B, C < D (subset of constraints from before)
- Constraints both ways: A \neq B, B \neq A, C < B, B > C, C < D, D > C
- Queue: AB, BA, BC, CB, CD, DC
- Pop AB:
 - for each x in Domain(A)
 - if no value y in Domain(B) that allows (x, y) to satisfy constraint between (A, B)
 - delete x from Domain(A)
 - No change to domain of A
AC-3 Example

- Variables: A, B, C, D
- Domain: \{1, 2, 3\}
- Constraints: A \neq B, C < B, C < D (subset of constraints from before)
- Constraints both ways: A \neq B, B \neq A, C < B, B > C, C < D, D > C
- Queue: AB, BA, BC, CB, CD, DC
- Pop AB
- Queue: BA, BC, CB, CD, DC
AC-3 Example

- Variables: A, B, C, D
- Domain: \{1, 2, 3\}
- Constraints: A ≠ B, C < B, C < D (subset of constraints from before)
- Constraints both ways: A ≠ B, B ≠ A, C < B, B > C, C < D, D > C
- Queue: AB, BA, BC, CB, CD, DC
- Pop AB
- Queue: BA, BC, CB, CD, DC
- Pop BA
- for each x in Domain(B)
 if no value y in Domain(A) that allows (x, y) to satisfy constraint between (B, A)
 delete x from Domain(B)
- No change to domain of B
AC-3 EXAMPLE

• Variables: A, B, C, D
• Domain: \{1, 2, 3\}
• Constraints: A \neq B, C < B, C < D (subset of constraints from before)
• Constraints both ways: A \neq B, B \neq A, C < B, B > C, C < D, D > C
• Queue: AB, BA, BC, CB, CD, DC
• Queue: BA, BC, CB, CD, DC
• Queue: BC, CB, CD, DC
• Pop BC
• for each x in Domain(B)
 • if no value y in Domain(C) that allows (x, y) to satisfy constraint between (B, C)
 • delete x from Domain(B)
• If B is 1, constraint B > C cannot be satisfied. So delete 1 from B’s domain, B = \{2, 3\}
• **Also have to add neighbors of B (except C) back to queue: AB**
• Queue: AB, CB, CD, DC
AC-3 EXAMPLE

Variables: A,B,C,D
Domain: \{1,2,3\}
Constraints: A \neq B, C < B, C < D

- Queue: AB, BA, BC, CB, CD, DC \quad A-D = \{1,2,3\}
- Queue: BA, BC, CB, CD, DC \quad A-D = \{1,2,3\}
- Queue: BC, CB, CD, DC \quad A-D = \{1,2,3\}
- Queue: AB, CB, CD, DC \quad B=\{2,3\}, A/C/D = \{1,2,3\}
- Pop AB
 - For every value of A is there a value of B such that A \neq B?
 - Yes, so no change
AC-3 Example

- Queue: AB, BA, BC, CB, CD, DC, A-D = {1,2,3}
- Queue: BA, BC, CB, CD, DC, A-D = {1,2,3}
- Queue: BC, CB, CD, DC, A-D = {1,2,3}
- Queue: AB, CB, CD, DC, B={2,3}, A/C/D = {1,2,3}
- Queue: CB, CD, DC, B={2,3}, A/C/D = {1,2,3}
- Pop CB
 - For every value of C is there a value of B such that C < B
 - If C = 3, no value of B that fits
 - So delete 3 from C’s domain, C = {1,2}
 - Also have to add neighbors of C (except B) back to queue: no change because already in

Variables: A,B,C,D
Domain: {1,2,3}
Constraints: A ≠ B, C < B, C < D
AC-3 EXAMPLE

Variables: A,B,C,D
Domain: \{1,2,3\}
Constraints: A ≠ B, C < B, C < D

- Queue: AB, BA, BC, CB, CD, DC, A-D = \{1,2,3\}
- Queue: BA, BC, CB, CD, DC, A-D = \{1,2,3\}
- Queue: BC, CB, CD, DC, A-D = \{1,2,3\}
- Queue: AB, CB, CD, DC, B={2,3}, A/C/D = \{1,2,3\}
- Queue: CB, CD, DC, B={2,3}, A/C/D = \{1,2,3\}
- Queue: CD, DC, B={2,3}, C = \{1,2\} A,D = \{1,2,3\}
- Pop CD
 - For every value of C, is there a value of D such that C < D?
 - Yes, so no change
AC-3 EXAMPLE

Variables: A, B, C, D
Domain: \{1, 2, 3\}
Constraints: A \neq B, C < B, C < D

- Queue: AB, BA, BC, CB, CD, DC \quad A-D = \{1, 2, 3\}
- Queue: BA, BC, CB, CD, DC \quad A-D = \{1, 2, 3\}
- Queue: BC, CB, CD, DC \quad A-D = \{1, 2, 3\}
- Queue: AB, CB, CD, DC \quad B=\{2, 3\}, A/C/D = \{1, 2, 3\}
- Queue: CB, CD, DC \quad B=\{2, 3\}, A/C/D = \{1, 2, 3\}
- Queue: CD, DC \quad B=\{2, 3\}, C = \{1, 2\} A,D = \{1, 2, 3\}
- Queue: DC \quad B=\{2, 3\}, C = \{1, 2\} A,D = \{1, 2, 3\}
- For every value of D is there a value of C such that D > C?
 - Not if D = 1
 - So D = \{2, 3\}
AC-3 EXAMPLE

Variables: A, B, C, D
Domain: \{1,2,3\}
Constraints: A ≠ B, C < B, C < D

- Queue: AB, BA, BC, CB, CD, DC \hspace{1cm} A-D = \{1,2,3\}
- Queue: BA, BC, CB, CD, DC \hspace{1cm} A-D = \{1,2,3\}
- Queue: BC, CB, CD, DC \hspace{1cm} A-D = \{1,2,3\}
- Queue: AB, CB, CD, DC \hspace{1cm} B={2,3}, A/C/D = \{1,2,3\}
- Queue: CB, CD, DC \hspace{1cm} B={2,3}, A/C/D = \{1,2,3\}
- Queue: CD, DC \hspace{1cm} B={2,3}, C = \{1,2\} A,D = \{1,2,3\}
- Queue: DC \hspace{1cm} B={2,3}, C = \{1,2\} A,D = \{1,2,3\}
- A = \{1,2,3\} \hspace{1cm} B={2,3}, C = \{1,2\} D = \{2,3\}
Forward Checking

- AC-3 can run *before* the search begins to prune search tree; it operates on the entire search tree (expensive!)
- It’s a form of inference (inferring reductions)
- What if, instead, we make inference at run-time?
- **Forward checking:** When assign a variable, make all of its neighbors arc-consistent (*purely local*)
Backtracking + Forward Checking

- Function $\text{Backtrack}(\text{assignment},\text{csp})$ returns soln or fail
 - If assignment is complete, return assignment
 - $V_i \leftarrow \text{select_unassigned_var}(\text{csp})$
 - For each val in $\text{order_domain_values}(\text{var},\text{csp},\text{assign})$
 - If value is consistent with assignment
 - Add $[V_i = \text{val}]$ to assignment
 - Make domains of all neighbors of V_i arc-consistent with $[V_i = \text{val}]$
 - Result $\leftarrow \text{Backtrack}(\text{assignment},\text{csp})$
 - If Result \neq fail, return result
 - Remove $[V_i = \text{val}]$ from assignments
 - Return fail

- Note: When backtracking, domains must be restored
Maintaining Arc Consistency

- Forward checking doesn’t ensure all arcs are consistent, only the local ones, no look-ahead
- AC-3 can detect failure faster than forward checking
- The MAC algorithm includes AC-3 in the search, executing it from the arcs of the locally unassigned variables
- What’s the downside? **Computation**
Maintaining Arc Consistency (MAC)

- Function `Backtrack(assignment,csp)` returns soln or fail
 - If assignment is complete, return assignment
 - \(V_i \leftarrow \text{select_unassigned_var}(csp) \)
 - For each \(\text{val} \) in \(\text{order_domain_values}(\text{var},csp,\text{assign}) \)
 - If value is consistent with assignment
 - Add \([V_i = \text{val}]\) to assignment
 - Run AC-3 to make all variables arc-consistent with \([V_i = \text{val}]\).
 - Initial queue is arcs \((X_j,V_i)\) of neighbors of \(V_i\) that are unassigned, but add other arcs if these vars change domains.
 - \(\text{Result} \leftarrow \text{Backtrack}(\text{assignment},csp) \)
 - If Result \(\neq\) fail, return result
 - Remove \([V_i = \text{val}]\) from assignments
 - Return fail
(Test) Sufficient to Avoid Backtracking?

- If we maintain arc consistency, we will never have to backtrack while solving a CSP

 - A) True
 - B) False
AC LIMITATIONS

- After running AC-3
 - Can have one solution left
 - Can have multiple solutions left
 - Can have no solutions left (and not know it)

Arc-consistent but no feasible assignment

What went wrong here?
COMPLEXITY

• CSPs in general are NP-complete
• Valued, optimization version of CSPs are usually NP-hard
• Some structured domains, like those with a constraint tree, are easier and can be solved in polynomial time
Constraint Trees

- Constraint tree
 - Any 2 variables in constraint graph connected by ≤ 1 path
- Can be solved in time *linear in # of variables*

![Constraint Tree Diagram](image)
Algorithm for CSP Trees

1) Choose any var as root and order vars such that every var’s parents in constraint graph precede it in ordering

2) Let X_i be the parent of X_j in the new ordering

3) For $j=n:2$, run arc consistency to arc (X_i, X_j)

4) For $j=1:n$, assign val for X_j consistent w/val assigned for X_i
1) Choose any var as root and order vars such that every var’s parents in constraint graph precede it in ordering

2) Let X_i be the parent of X_j in the new ordering
3) For $j=n:2$, run arc consistency to arc (X_i, X_j)
4) For $j=1:n$, assign val for X_j consistent w/val assigned for X_i
SUMMARY

• Be able to define real world CSPs
• Understand basic algorithm (backtracking)
 o Complexity relative to basic search algorithms
 o Doesn’t require problem specific heuristics
 o Ideas shaping search (ordering heuristics)
• Pruning space through propagating information
 o Arc consistency
 o Tradeoffs: + reduces search space, - computation costs
• Computational complexity and special cases (tree)
• Relevant reading: R&N Chapter 6