

CMU 15-781

Lecture 10:

Markov Decision Processes I

Teacher:

Gianni A. Di Caro

DECISION-MAKING, SO FAR ...

- Known environment
- Full observability
- Deterministic world

Plan: Sequence of actions with deterministic consequences, each next state is known with certainty

ACTIONS' OUTCOMES ARE USUALLY UNCERTAIN IN THE REAL WORLD!

Action effect is *stochastic*: probability distribution over next states

Deterministic, one single successor state: $(s, a) \to s'$

Probabilistic, conditional distribution of successor states:

$$(s,a) \to P(s'|s,a)$$

In general, we need a sequence of actions (decisions):

$$(s_t, a_t) \to P(s_{t+1} = s' \mid s_t = s, \ a_t = a)$$

In general, the outcome can depend on all history of actions:

$$P(s_{t+1} = s' \mid s_t, s_{t-1}, \dots, s_0, a_t, a_{t-1}, \dots, a_0) = P(s_{t+1} = s' \mid s_{t:0}, a_{t:0})$$

STOCHASTIC DECISION MAKING

EXAMPLE

STOCHASTIC DECISION MAKING

EXAMPLE

Investing of \$100 for 6 months

How a rational agent makes a choice, given that its *preference* is to make money?

EXPECTED VALUES

- X = random variable representing the monetary outcome for taking an action, with values in $\Omega_{\rm X}$ (e.g., $\Omega_{\rm X} = \{110, \, 90\}$ for action Stock 1)
- Expected value of X is: $E(X) = \sum_{x \in \Omega_X} x P(X = x)$
- Expected value summarizes all stochastic outcomes into a single quantity

Expected value for the outcome of the Stock 1 option is: $0.6 \times 110 + 0.4 \times 90 = 66 + 36 = 102$

EXPECTED VALUES

Investing \$100 for 6 months

OPTIMAL DECISION

The optimal decision is the action that maximizes the expected outcome

- decision node
- Chance node
- outcome (value) node

Where do probabilities values COME FROM?

- Models
- Data
- For now assume we are given the probabilities for any chance node

Markov Decision Processes (MPDs)

- Consider multi-step decisions under stochastic action effects
- Add a state-dependent reward (cost) for each action taken
- Assume as known the probability model (system dynamics)
- Assume that only the current state and action matters for taking a decision Markov property (memoryless):

$$P(s_{t+1} = s' \mid s_{t:0}, a_{t:0}) = P(s_{t+1} = s' \mid s_t, a_t)$$

Markov Decision Processes (MPD)

- A set S of world states
- A set A of feasible actions

- A reward function R $R(s)|R(s,a), |R(s,a,s'), R: S \times A \times S \times \{0,1,\ldots H\} \mapsto \mathbb{R}$
- A start state (or a distribution of initial states)
- Terminal (goal) states

Goal: define decision sequences that maximize a given function of the rewards

 A_2

TAXONOMY OF MARKOV PROCESSES

- Markov decision process (MDP)
- Markov reward process MDP \ {Actions}
- Markov chain: MDP \ {Actions} \ {Rewards}

All share the state set and the transition matrix, that defines the internal stochastic dynamics of the system

EXAMPLE: GRID WORLD

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent's path
- The agent receives rewards each time step
 - Small "living" reward each step (can be negative)
 - Big rewards come at the end (good or bad)
- Goal: maximize sum of rewards
- Noisy movement: actions do not always go as planned
 - 80% of the time, the action takes the agent in the desired direction (if there is no wall there)
 - 10% of the time, the action takes the agent to the direction perpendicular to the right; 10% perpendicular to the left.
 - If there is a wall in the direction the agent would have gone, agent stays put

GRID WORLD ACTIONS

Deterministic Grid World

RECYCLING ROBOT

- At each step, robot has to decide whether it should: search for a can; wait for someone to bring it a can; go to home base and recharge. Searching is better but runs down the battery; if runs out of power while searching, has to be rescued.
- States are battery levels: high, low.
- Reward = number of cans collected.

s	s'	a	p(s' s,a)	r(s,a,s')
high	high	search	α	$r_{\mathtt{search}}$
high	low	search	$1-\alpha$	$r_{\mathtt{search}}$
low	high	search	$1-\beta$	-3
low	low	search	β	$r_{\mathtt{search}}$
high	high	wait	1	$r_{\mathtt{wait}}$
high	low	wait	0	$r_{\mathtt{wait}}$
low	high	wait	0	$r_{\mathtt{wait}}$
low	low	wait	1	$r_{\mathtt{wait}}$
low	high	recharge	1	0
low	low	recharge	0	0.

Note: the "state" (robot's battery status) is a parameter of the agent itself, not a property of the physical environment

POLICIES

- In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal
- In MDPs instead of plans, we have a policy, a mapping from states to actions: $\pi: S \to A$
 - $\pi(s)$ specifies what action to take in each state \rightarrow deterministic policy
 - An explicit policy defines a reflex agent
- A policy can also be stochastic, $\pi(s,a)$ specifies the probability of taking action a in state s (in MDPs, if R is deterministic, the *optimal* policy is deterministic)

HOW MANY POLICIES?

- How many non-terminal states?
- How many actions?
- How many deterministic policies over non-terminal states?
- $9, 4, 4^9$

Utility of a Policy

- Starting from s_{θ} applying the policy π , generates a sequence of states $s_0, s_1, \dots s_t$, and of rewards $r_0, r_1, \dots r_t$
- For the (rational) decision-maker each sequence has an **utility** based on the *preferences* of the DM
- "Utility is an additive combination of the rewards"
- The utility, or value of a policy π starting in state s_{θ} is the expected utility over all the state sequences generated by the applying π

 $P^{\pi}(\text{sequence})U(\text{sequence})$

 \forall state sequences starting from s_0

OPTIMAL POLICIES

- An optimal policy π^* yields the maximal utility
- The maximal expected sum of rewards from following it starting from the initial state
- Principle of maximum expected utility: a rational agent should choose the action that maximizes its expected utility

OPTIMAL POLICIES

$$R(s) = -0.04$$

Balance between **risk** and **reward** changes depending on the value of R(s)

A robot car wants to travel far, quickly

EXAMPLE: RACING

- Three states: Cool, Warm, Overheated
- Two actions: Slow, Fast
- Going faster gets double reward

RACING SEARCH TREE

Utilities of Sequences

Utilities of Sequences

• What preferences should an agent have over reward sequences?

• More or less?

• Now or later?

[0, 0, 1] or [1, 0, 0]

STATIONARY PREFERENCES

• Theorem: if we assume *stationary* preferences between sequences:

$$[a_1, a_2, \ldots] \succ [b_1, b_2, \ldots]$$
 \updownarrow
 $[r, a_1, a_2, \ldots] \succ [r, b_1, b_2, \ldots]$

• Discounted utility:
$$U([r_0, r_1, r_2, ...]) = r_0 + \gamma r_1 + \gamma^2 r_2 \cdots$$

WHAT ARE DISCOUNTS?

- It's reasonable to prefer rewards now to rewards later
- Decay rewards exponentially

DISCOUNTING

 $U([r_0, r_1, r_2, \ldots]) = r_0 + \gamma r_1 + \gamma^2 r_2 \cdots$ 10 Given: b а

- Actions: East, West 0
- Terminal states: a and e (end when reach one or the other) 0
- Transitions: deterministic
- Reward for reaching a is 10
- reward for reaching e is 1, and the reward for reaching all other states is 0
- Quiz 1: For $\gamma = 1$, what is the optimal policy?
- Quiz 2: For $\gamma = 0.1$, what is the optimal policy for states b, c and d?
- Quiz 3: For which γ are West and East equally good when in state d?

DISCOUNTING

Given:

$$U([r_0, r_1, r_2, \ldots]) = r_0 + \gamma r_1 + \gamma^2 r_2 \cdots$$

b d а е

- Actions: East, West 0
- Terminal states: a and e (end when reach one or the other) 0
- Transitions: deterministic
- Reward for reaching a is 10
- reward for reaching e is 1, and the reward for reaching all other states is 0
- Quiz 1: For $\gamma = 1$, what is the optimal policy?
 - In all states, Go West (towards a)
- Quiz 2: For $\gamma = 0.1$, what is the optimal policy for states b, c and d?
 - b=W, c=W, d=E
- Quiz 3: For which γ are West and East equally good when in state d?

$$\gamma = \sqrt{(1/10)}$$

INFINITE UTILITIES?!

- Problem: What if the process lasts forever? Do we get infinite rewards?
- Solutions:
 - Finite horizon: (similar to depth-limited search)
 - Terminate episodes after a fixed T steps (e.g. life)
 - Gives nonstationary policies (π depends on time left)
 - Discounting: use $0 < \gamma < 1$

$$U([r_0, \dots r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \le R_{\text{max}}/(1-\gamma)$$

- Smaller γ means smaller "horizon" shorter term focus
- Absorbing state: guarantee that for every policy, a terminal state will eventually be reached (like "overheated" for racing)

RECAP: DEFINING MDPS

- Markov decision processes:
 - Set of states S
 - Start state s_0
 - Set of actions A
 - Transitions P(s'|s,a) (or T(s,a,s'))
 - Rewards R(s, a, s') (and discount γ)
- MDP quantities so far:
 - Policy π = Choice of action for each state
 - Utility/Value = sum of (discounted) rewards
 - Optimal policy π^* = Best choice, that max Utility