CMU 15-781
Lecture 10: Markov Decision Processes I
Teacher: Gianni A. Di Caro
DECISION-MAKING, so far ...

- Known environment
- Full observability
- Deterministic world

Plan: Sequence of actions with **deterministic consequences**, each next state is known with certainty

Diagram:
- **Agent** with sensors and actuators
- **Environment**
- **Percepts** and **Actions**

Carnegie Mellon University
Actions’ outcomes are usually uncertain in the real world!

Action effect is stochastic: probability distribution over next states

Deterministic, one single successor state: \((s, a) \rightarrow s'\)

Probabilistic, conditional distribution of successor states:
\((s, a) \rightarrow \mathcal{P}(s' \mid s, a)\)

In general, we need a sequence of actions (decisions):
\((s_t, a_t) \rightarrow \mathcal{P}(s_{t+1} = s' \mid s_t = s, \ a_t = a)\)

In general, the outcome can depend on all history of actions:
\[
\mathcal{P}(s_{t+1} = s' \mid s_t, s_{t-1}, \ldots, s_0, a_t, a_{t-1}, \ldots, a_0) = \mathcal{P}(s_{t+1} = s' \mid s_{t:0}, a_{t:0})
\]
Stochastic Decision Making Example

Example adapted from M. Hauskrecht
STOCHASTIC DECISION MAKING

EXAMPLE

Investing of $100 for 6 months

Stock 1

0.6 (up) 110

0.4 (down) 90

Stock 2

0.4 (up) 140

0.6 (down) 80

Bank

1.0 101

Home

1.0 100

Monetary outcomes for different states

How a rational agent makes a choice, given that its preference is to make money?
EXPECTED VALUES

- $X = \text{random variable}$ representing the monetary outcome for taking an action, with values in Ω_X (e.g., $\Omega_X = \{110, 90\}$ for action Stock 1)

- Expected value of X is: $E(X) = \sum_{x \in \Omega_X} xP(X = x)$

- Expected value summarizes all stochastic outcomes into a single quantity

\[\begin{align*}
\text{Expected value for the outcome of the Stock 1 option is:} \\
0.6 \times 110 + 0.4 \times 90 = 66 + 36 = 102
\end{align*}\]
The optimal decision is the action that maximizes the expected outcome.
WHERE DO PROBABILITIES VALUES COME FROM?

• Models
• Data
• For now assume we are given the probabilities for any chance node
Markov Decision Processes (MPDs)

- Consider multi-step decisions under stochastic action effects
- Add a state-dependent reward (cost) for each action taken
- Assume as known the probability model (system dynamics)
- Assume that only the current state and action matters for taking a decision Markov property (memoryless):

\[P(s_{t+1} = s' \mid s_{t:0}, a_{t:0}) = P(s_{t+1} = s' \mid s_t, a_t) \]
Markov Decision Processes (MPD)

- A set S of world states
- A set A of feasible actions
- A stochastic transition matrix T, $T : S \times S \times A \times \{0, 1, \ldots, H\} \mapsto [0, 1]$, $T(s, s', a) = P(s'|s, a)$
- A reward function R, $R : S \times A \times S \times \{0, 1, \ldots, H\} \mapsto \mathbb{R}$
- A start state (or a distribution of initial states)
- Terminal (goal) states

Goal: define decision sequences that maximize a given function of the rewards
Taxonomy of Markov Processes

- Markov decision process (MDP)
- Markov reward process $\text{MDP} \setminus \{\text{Actions}\}$
- Markov chain: $\text{MDP} \setminus \{\text{Actions}\} \setminus \{\text{Rewards}\}$

All share the state set and the transition matrix, that defines the internal stochastic dynamics of the system.
Example: Grid World

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent’s path
- The agent receives rewards each time step
 - Small “living” reward each step (can be negative)
 - Big rewards come at the end (good or bad)
- Goal: maximize sum of rewards
- Noisy movement: actions do not always go as planned
 - 80% of the time, the action takes the agent in the desired direction (if there is no wall there)
 - 10% of the time, the action takes the agent to the direction perpendicular to the right; 10% perpendicular to the left.
 - If there is a wall in the direction the agent would have gone, agent stays put

Slide adapted from Klein and Abbeel
Grid World Actions

Deterministic Grid World

Stochastic Grid World

Slide adapted from Klein and Abbeel
Recycling Robot

- At each step, robot has to decide whether it should: search for a can; wait for someone to bring it a can; go to home base and recharge. Searching is better but runs down the battery; if runs out of power while searching, has to be rescued.
- States are battery levels: high, low.
- Reward = number of cans collected.

Note: the “state” (robot’s battery status) is a parameter of the agent itself, not a property of the physical environment.

Example from Sutton and Barto
Policies

• In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal

• In MDPs instead of plans, we have a policy, a mapping from states to actions: \(\pi : S \rightarrow A \)
 - \(\pi(s) \) specifies what action to take in each state → deterministic policy
 - An explicit policy defines a reflex agent

• A policy can also be stochastic, \(\pi(s,a) \) specifies the probability of taking action \(a \) in state \(s \) (in MDPs, if \(R \) is deterministic, the optimal policy is deterministic)
How Many Policies?

- How many non-terminal states?
- How many actions?
- How many deterministic policies over non-terminal states?
- $9, 4, 4^9$
Utility of a Policy

• Starting from s_0, applying the policy π, generates a sequence of states s_0, s_1, \ldots, s_t, and of rewards r_0, r_1, \ldots, r_t

• For the (rational) decision-maker each sequence has an utility based on the preferences of the DM

• “Utility is an additive combination of the rewards”

• The utility, or value of a policy π starting in state s_0 is the expected utility over all the state sequences generated by the applying π

\[
\sum_{\forall \text{ state sequences starting from } s_0} P^\pi(\text{sequence})U(\text{sequence})
\]
Optimal Policies

- An optimal policy π^* yields the maximal utility
- The maximal expected sum of rewards from following it starting from the initial state
- **Principle of maximum expected utility**: a rational agent should choose the action that maximizes its expected utility
Optimal Policies

Balance between risk and reward changes depending on the value of $R(s)$.
• A robot car wants to travel far, quickly
• Three states: **Cool**, **Warm**, **Overheated**
• Two actions: **Slow**, **Fast**
• Going faster gets double reward
• Green numbers are rewards

Slide adapted from Klein and Abbeel
RACING SEARCH TREE

Slide adapted from Klein and Abbeel
Utilities of Sequences
Utilities of Sequences

• What preferences should an agent have over reward sequences?

• More or less?

 [1, 2, 2] or [2, 3, 4]

• Now or later?

 [0, 0, 1] or [1, 0, 0]
Stationary Preferences

- Theorem: if we assume stationary preferences between sequences:
 \[[a_1, a_2, \ldots] \succeq [b_1, b_2, \ldots] \]
 \[\iff \]
 \[[r, a_1, a_2, \ldots] \succeq [r, b_1, b_2, \ldots] \]

- Then: there are only two ways to define utilities over sequences of rewards
 - Additive utility: \[U([r_0, r_1, r_2, \ldots]) = r_0 + r_1 + r_2 + \cdots \]
 - Discounted utility: \[U([r_0, r_1, r_2, \ldots]) = r_0 + \gamma r_1 + \gamma^2 r_2 + \cdots \]
What are Discounts?

- It’s reasonable to prefer rewards now to rewards later.
- Decay rewards exponentially.

Worth Now
Worth Next Step
Worth In Two Steps

Slide adapted from Klein and Abbeel
DISCOUNTING

- Given:
 - Actions: East, West
 - Terminal states: a and e (end when reach one or the other)
 - Transitions: deterministic
 - Reward for reaching a is 10
 - Reward for reaching e is 1, and the reward for reaching all other states is 0

- Quiz 1: For $\gamma = 1$, what is the optimal policy?

- Quiz 2: For $\gamma = 0.1$, what is the optimal policy for states b, c and d?

- Quiz 3: For which γ are West and East equally good when in state d?

$U([r_0, r_1, r_2, \ldots]) = r_0 + \gamma r_1 + \gamma^2 r_2$
DISCOUNTING

- Given:
 - Actions: East, West
 - Terminal states: a and e (end when reach one or the other)
 - Transitions: deterministic
 - Reward for reaching a is 10
 - Reward for reaching e is 1, and the reward for reaching all other states is 0

- Quiz 1: For $\gamma = 1$, what is the optimal policy?
 - In all states, Go West (towards a)

- Quiz 2: For $\gamma = 0.1$, what is the optimal policy for states b, c and d?
 - b=W, c=W, d=E

- Quiz 3: For which γ are West and East equally good when in state d?
 - $\gamma = \sqrt{(1/10)}$
Infinite Utilities?!

- Problem: What if the process lasts forever? Do we get infinite rewards?
- Solutions:
 - **Finite horizon**: (similar to depth-limited search)
 - Terminate episodes after a fixed T steps (e.g. life)
 - Gives nonstationary policies (π depends on time left)
 - **Discounting**: use $0 < \gamma < 1$
 \[
 U([r_0, \ldots r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \leq R_{max}/(1 - \gamma)
 \]
 - Smaller γ means smaller “horizon” – shorter term focus
 - **Absorbing state**: guarantee that for every policy, a terminal state will eventually be reached (like “overheated” for racing)
Recap: Defining MDPs

• Markov decision processes:
 o Set of states S
 o Start state s_0
 o Set of actions A
 o Transitions $P(s'|s,a)$ (or $T(s,a,s')$)
 o Rewards $R(s,a,s')$ (and discount γ)

• MDP quantities so far:
 o Policy $\pi =$ Choice of action for each state
 o Utility/Value = sum of (discounted) rewards
 o Optimal policy $\pi^* =$ Best choice, that max Utility