

OUR PROTAGONISTS

NP, REVISITED

Prover wants to convince Verifier that $x \in A$; cooks up a proof and sends it to Verifier

Verifier checks in polynomial time that the proof is legit

NP, REVISITED

- This strategy works, by definition, for any language in NP
- But what about languages like ¬3COL?
- We will relax the assumptions:
 - Make the protocol interactive
 - Make the verifier probabilistic

COKE VS. PEPSI

IP FOR COKE VS. PEPSI

Verifier fills a cup with a random choice of Coke/Pepsi, passes it to Prover

Prover tastes the contents of the cup, says whether it is Coke or Pepsi

If Prover is correct Verifier accepts, otherwise verifier rejects

GRAPH NONISOMORPHISM

• Two graphs $G_0 = (V_0, E_0)$ and $G_1 = (V_1, E_1)$ are isomorphic iff there is a permutation $\pi: V_0 \to V_1$ such that $(u, v) \in E_0 \Leftrightarrow (\pi(u), \pi(v)) \in E_1$

GRAPH NONISOMORPHISM

- Observation: If G_0 is isomorphic to G_1 , and G_1 is isomorphic to G_2 , then G_0 is isomorphic to G_2
- Graph isomorphism is clearly in **NP** (unknown if it's **NP**-complete)
- But how do we prove that two graphs are not isomorphic?
- We will give an interactive protocol!

IP FOR GRAPH NONISOMORPHISM

Verifier chooses $b \in \{0,1\}$ and permutation π at random, and sends $\pi(G_b)$ to prover

Prover sends a bit b'

If b = b' verifier accepts, otherwise verifier rejects

IP FOR GRAPH NONISOMORPHISM

Accept

IP FOR GRAPH NONISOMORPHISM

- 1. Verifier chooses $b \in \{0,1\}$ and permutation π at random, and sends $\pi(G_h)$ to prover
- 2. Prover sends a bit b'
- 3. If b = b' verifier accepts, otherwise it rejects
- Poll 2: Probability that prover will get the verifier to accept, when the graphs are nonisomorphic and isomorphic, respectively?
 - 1. 1 and 1/n!
 - $2 \cdot 1 \text{ and } 1/2$
 - 3. 1/2 and 1/n!
 - 1/2 and 1/2

INTERACTIVE PROOFS

- An interactive proof system for problem L is a protocol between a computationally unbounded prover P and a probabilistic polynomial-time verifier V such that:
 - Completeness: $\forall x \in L, \Pr[(V \leftrightarrow P)(x) \text{ accepts}] = 1$
 - ∘ Soundness: $\forall x \notin L, \forall P', \Pr[(V \leftrightarrow P')(x) \text{ accepts}] \leq 1/2$

INTERACTIVE PROOFS

• Graph Nonisomorphism has an interactive proof system

> But being fooled with probability ½ is still pretty bad! What can we do about it?

INTERACTIVE PROOFS

- Poll 1: What is the relation between **NP** and **IP**?
 - 1. $NP \subset IP$
 - 2. $IP \subset NP$
 - $_{3.}$ IP = NP
 - 4. They are incomparable

ZERO KNOWLEDGE PROOFS

- Graph isomorphism clearly has an interactive proof: Prover sends a solution, verifier checks it
- But can the prover convince the verifier that there is a solution without revealing the solution?
- This is called a zero knowledge proof

WHY DO WE NEED ZKPS?

Merlin, prove that you are who you say you are!

Intuition for ZKPs

ZKP FOR GRAPH ISOMORPHISM

Prover chooses $b \in \{0,1\}$ and permutation π at random, and sends $H = \pi(G_h)$ to Verifier

Verifier sends a random bit b' to Prover

Prover picks a permutation π' and sends it to Verifier

Verifier accepts iff $H = \pi'(G_{h'})$

ZKP FOR GRAPH ISOMORPHISM

- 1. Prover chooses $b \in \{0,1\}$ and permutation π at random, and sends $H = \pi(G_h)$ to Verifier
- Verifier sends a random bit b' to Prover
- Prover picks a permutation π' and sends it to Verifier
- 4. Verifier accepts iff $H = \pi'(G_{h'})$
- This is an interactive proof protocol:
 - It is complete (why?)
 - It is sound (why?)
- The verifier learns nothing about the solution!

- Next, we want to design an zero knowledge proof system for 3-COLORING
- We will rely on a cryptographic construction known as bit commitment
- Prover can put bits in envelopes and send them to Verifier; Verifier can only open an envelope if Prover tells him how to do it

Prover selects random permutation π of $\{R, G, B\}$, commits to $\pi(\gamma(v))$ for all $v \in V$ and sends

Verifier selects an edge $(u, v) \in E$ uniformly at random and sends

Prover reveals $a = \pi(\gamma(u))$ and $b = \pi(\gamma(v))$

Verifier accepts iff $a \neq b$

Accept

- 1. Prover selects random permutation π of $\{R, G, B\}$, commits to $\pi(\gamma(v))$ for all $v \in V$ and sends
- 2. Verifier selects an edge $(u, v) \in E$ uniformly at random and sends
- 3. Prover reveals $a = \pi(\gamma(u))$ and $b = \pi(\gamma(v))$
- 4. Verifier accepts iff $a \neq b$
- Poll 3: If G has no 3-coloring, what is the worstcase prob. Prover can convince Verifier?

1.
$$1-\frac{1}{2}$$
 3. $1-\frac{1}{3!}$

2.
$$1 - \frac{1}{n!}$$
 4. $1 - \frac{1}{|E|}$

- 1. Prover selects random permutation π of $\{R, G, B\}$, commits to $\pi(\gamma(v))$ for all $v \in V$ and sends
- 2. Verifier selects an edge $(u, v) \in E$ uniformly at random and sends
- 3. Prover reveals $a = \pi(\gamma(u))$ and $b = \pi(\gamma(v))$
- 4. Verifier accepts iff $a \neq b$
- To get soundness, we must repeat the protocol
- Intuition for zero knowledge: Prover just reveals a pair of distinct random colors!

MORE GENERALLY

- This "proves" that every problem in NP can be proved in zero-knowledge
- Theorem (Ben-Or et al., 1990): Every problem in IP can be proved in zero-knowledge

WHAT YOU NEED TO KNOW

Nothing

