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What are the limitations to what computers can learn!?

Do certain mathematical theorems have short proofs?

Can quantum mechanics be exploited to speed up computation!?

Is every problem whose solution is efficiently verifiable also
efficiently solvable? ie. P = NP?
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Communication complexity



Cool Things About Communication Complexity

Many useful applications:

machine learning, proof complexity, quantum computation,
pseudorandom generators, data structures, game theory,...

The setting is simple and neat.

Beautiful mathematics
combinatorics, algebra, analysis, information theory, ...



Motivating Example |: Checking Equality

I~

O010010101110101 010010100110101

<«——— 1 bits —> <«——— 10, bits ——>

How many bits need to be communicated?
Naively: n Actually: n

What if we allow 0.00000000001% probability of error?
Naively: Q(n) Actually: O(logn)



Motivating Example 2: Auctions
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Defining the model a bit more formally



2 Player Model of Communication Complexity

F:{0,1}" x {0,1}" — {0, 1}

known to
both players

Goal: Compute F(x, y) (both players should know the value)

How: Sending bits back and forth according to a protocol.

Resource: Number of communicated bits.

(We assume players have unlimited computational power individually.)



Poll |

z,y € {0,1}"  PAR(x,y) = parity of the sum of all the bits.
(i.e. it’s | if the parity is odd, 0 otherwise.)

How many bits do the players need to communicate?
Choose the tightest bound.

0(1)

logn)
log® n)




Poll | Answer

z,y € {0,1}"  PAR(x,y) = parity of the sum of all the bits.
(i.e. it’s | if the parity is odd, 0 otherwise.)

How many bits do the players need to communicate?
Choose the tightest bound.

Once Bob knows the parity of x, he can compute
PAR(x,y).

- Alice sends PAR(x) to Bob. | bit
- Bob computes PAR(z,y) and sends it to Alice. | bit

2 bits in total
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2 Player Model of Communication Complexity

Goal: Compute F(:E, y) (both players should know the value)

How: Sending bits back and forth according to a protocol.

Resource: Number of communicated bits.

A protocol P is the “strategy” players use to communicate.

It determines what bits the players send in each round.

P(x,y) denotes the output of P.



2 Player Model of Communication Complexity

Goal: Compute F(ac, y) (both players should know the value)

How: Sending bits back and forth according to a protocol.

Resource: Number of communicated bits.

A (deterministic) protocol P computes [ if

V(z,y) € {0,1}" x {0,1}"  P(z,y) = F(z,y)

l \

Analogous to: algorithm decision
(TM) problem

Ve e ¥* A(x) = F(x)



2 Player Model of Communication Complexity

Goal: Compute F(ac, y) (both players should know the value)

How: Sending bits back and forth according to a protocol.

Resource: Number of communicated bits.

A randomized protocol P computes [’ with € error if

Via,y) € {0,1)" x (0,13 PrlP(z,y) # F(z.)] < e

Analogous to: Monte Carlo algorithms



2 Player Model of Communication Complexity

Goal: Compute F(ac, y) (both players should know the value)

How: Sending bits back and forth according to a protocol.

Resource: Number of communicated bits.

cost(P) = ]Enazs;c # bits P communicates for (x,y)
.y

if P is randomized, you take max
over the random choices it makes.

Deterministic communication complexity
D(F') = min cost of a (deterministic) protocol computing F..

Randomized communication complexity

R (F") = min cost of a randomized protocol computing F'
with € error.



2 Player Model of Communication Complexity

Goal: Compute F(:E, y) (both players should know the value)

How: Sending bits back and forth according to a protocol.

Resource: Number of communicated bits.

cost(P) = max_# bits P communicates for (x,y)

(

We usually fix € to some constant.

eg. €=1/3

Deterministic c¢

D(F) = mi

We can always boost the success
Randgwr probability if we want.

with € error.



What is considered hard or easy!?

F:{0,1}" x {0,1}" — {0,1}



Example

Equality: EQ(x,y) = { 0 otherwise.

D(EQ) =n+ 1. RY3(EQ) = O(logn).



Poll 2

MAJ(z,y) = | iff majority of all the bits in = and y
are set to |.

Whatis D(M AJ)? Choose the tightest bound.




Poll 2 Answer

MAJ(z,y) = | iff majority of all the bits in = and y
are set to |.

Whatis D(M AJ)? Choose the tightest bound.

The result can be computed from

Z Ti T+ Z Yi

ie{1,2,...,n} ie{1,2,...,n}

- Alice sends ) . Z; to Bob. ~ log n bits

- Bob computes M AJ(x,y) and sends it to Alice. | bit
O(logn) in total



Another example

Disjointness: DISJ(z,y) = { . herw
otnerwise

RY/3(DISJT) = Q(n). hard



The plan

|. Efficient randomized communication protocol for
checking equality.

2. An application of communication complexity.

3. How to prove lower bounds.



Efficient randomized communication protocol
for checking equality



The Power of Randomization
RY/3(EQ) = O(logn).

Alice gets = € {0,1}", Bobgets y € {0,1}".
We treat = and y as numbers: 0 <z, y <2" —1.
The Protocol:

- Let p; be the 7’th smallest prime number.
prL=2,p2=3,p3=95, ps=71, ...

- Alice picks a random ¢ € {1,2,... n7 ),

- Alice sends Bob: 7, x mod p;

- Bob outputs | iff x mod p; =y mod p;. (x =p, V)



The Power of Randomization

RY/3(EQ) = O(logn).

Correctness:

Want to show: For all inputs (z, y), probability of erroris < 1/3.

Forall (z,y)with z =1y :
Prlerror| = Pr[x #,, y] = 0.

For all (x,y)with = #y :
Prlerror] = Pr[x =, y] = Pr[p; divides = — y]

Claim: x — y has at most n distinct prime factors.

n 1
Prlerror| = Pr[p; is a prime factor of x — y] < o=



The Power of Randomization

RY/3(EQ) = O(logn).
Cost:

The only communication is:

[—Alice sends Bob: ‘ z mod p; D

The first number 7 is such that 7 < n?.

Can represent it using ~ log, n®* = 2log,n = O(logn) bits.

The second number x mod p; is at most p,,2.

2

By the Prime Number Theorem: p,2 ~ n?logn < 2n°

Can represent p,,2 using at most log(2n°) = O(logn) bits. []



The plan

|. Efficient randomized communication protocol for
checking equality.

2. An application of communication complexity.

3. How to prove lower bounds.



An application of communication complexity



Applications of Communication Complexity

- circuit complexity - pseudorandom generators

- time/space tradeoffs for - pseudorandomness

Turing Machines - branching programs

- VLSI chips - data streaming algorithms

- machine learning - quantum computation

- game theory - lower bounds for polytopes

_ data structures representing NP-complete
problems

- proof complexity

communication
complexity
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How Communication Complexity Comes In

Setting: Solve some task while minimizing some resource.

e.g. find a fast algorithm, design a small circuit,
find a short proof of a theorem, ...

Goal: Prove lower bounds on the resource needed.

Sometimes:
efficient solution to our problem il

efficient communication protocol for a certain function.

i.e. no efficient protocol for the function el

no efficient solution to our problem.



Time/space tradeoffs for TMs



Recall Turing Machines

finite state machine

input
tape
(read only)

O |[¢—

0]0

work
tape L0

(memory)

O |[¢—

T'(n) time: # steps the machine takes

S(n) space: # work tape cells the machine uses



An observation

finite state machine

O [€&—

input
tape

work
tape

O [€&—

Suppose we both know the TM M and the input w.

You start running M (w). |. current state

2. positions of

You pause after a certain number of steps.
tape heads

What information do | need to continue 3. contents of
the computation from where you left it? work tape




An observation

finite state machine

O [€&—

input

tapeoo ofrytjiyl
WorklOilJI_II_II_II_II_II_II_II_II_I
tape

Suppose we both know the TM M and the input w.

You start runninj O(1) |. current state

2. positions of

You pause after § O(logn) + O(log S(n))

tape heads
What informatio O(S(n)) 3. contents of
the computation work tape




Time/space tradeoff for a simple language

Let L = {x#mx rx € {0,1}%}

000444000 € L
101044441010 € L
001444000 & L
00044000 & L

-

Theorem:

\_

IfaTM M decides L in T(n) timeand S(n)
on inputs of size 3n, then T(n) - S(n) = Q(n?).

space




Time/space tradeoff for a simple language

Let L = {x#maﬁ rx € {0,1}%}

e ™~
Theorem:

IfaTM M decides L in T(n) time and S(n) space
2

on inputs of size 3n, then T'(n) - S(n) = Q(n~).
- Y

Strategy:

Using M, we design a communication protocol
for £Q) of cost < cT'(n)S(n)/n for some constant c.

We know E() requires > n bits of communication.

— cT(n)S(n)/n > n = cT(n)S(n) > n?



Time/space tradeoff for a simple language

Let L = {z#®lz:2¢€{0,1}*}. M decides L.

Protocol for EQ) :

Given input « € {0,1}" to Alice,and y € {0,1}" to Bob.
They want to decide if * = y. They will make use of M.

Let w = x#"

Y.
They simulate M(w).
If M(w) accepts, they output 1.

If M(w) rejects, they output 0. A correct protocol.



Time/space tradeoff for a simple language

Let L = {z#®lz:2¢€{0,1}*}. M decides L.

Protocol for EQ) :

Given input « € {0,1}" to Alice,and y € {0,1}" to Bob.
They want to decide if * = y. They will make use of M.

Let w = x#"

Y.

How do they simulate M!?

They simulate M(w).

What is the cost!?

If M(w) accepts, they output 1.

If M(w) rejects, they output 0. A correct protocol.



Time/space tradeoff for a simple language

Let L = {z#®lz:2¢€{0,1}*}. M decides L.

Protocol for EQ) :
They simulate M(z#"y ).

Alice starts the simulation.

When input tape head reaches y symbol,

she sends |.current state
2. position of work tape head
3. contents of work tape



Time/space tradeoff for a simple language

Let L = {z#®lz:2¢€{0,1}*}. M decides L.

Protocol for EQ) :
They simulate M(x#"y).

Bob continues the simulation.

When input tape head reaches x symbol,

he sends |.current state
2. position of work tape head
3. contents of work tape

This continues until M halts.



Time/space tradeoff for a simple language

Analysis:

It is clear the protocol is correct. What is the cost!

In each transmission, players send

|. current state — 01

2. position of work tape head —  O(log S(n))

3. contents of work tape — 4+ O(S(n))
O(5(n))

What is the number of transmissions?
For each transmission, M takes > n steps.

So T'(n) > (# transmissions) - n.

> #£ transmissions < T'(n)/n.

Total cost: O(S(n)T'(n)/n).



The plan

|. Efficient randomized communication protocol for
checking equality.

2. An application of communication complexity.

3. How to prove lower bounds.



Lower bounds for
deterministic communication complexity



Mp =

The function matrix

F:{0,1}" x {0,1}" — {0,1}

Y

ol1olol1iotolirrr1o0i010010101000
ololololollol0l00I0101001O01T11100
ololoooolololiiolrolololorrirtololl
ooololl1ololliiololorioolololoiol
oololololololololollolooololololl
ololrfrrororriroroolorioltorori11olroo
olololl10l0l0I0IOI000IO10001O11OI
olololololrtiorotortoriofrtorriolol
[11010101011010IO10IOIOIOITT11100
[1101110101010101O010IOIOIOIOOIIT]
|10101101010101000101010101000101
Ol11100001111100000000011101O1111
Ol10l0I110IOITTT11001010010101000
oololololololoolololololirr11o000

101010101000001110101011101011000

Mp|x,y| = F(z,y)

2" by 2"
matrix



Equality: FEQ(x,y) :{ 0

n=3
Mgrg =

000
001
010
Oll
100
101
|10
|11

The function matrix

000 00l OlI0 Ol

Y
100 101

1 it x =y,
otherwise.

110 111

o O O O O O o

0
I

o O O O O o

0
0

o O O O O

0
0

o O O O

O 0 O

o O O
o O O O
o O O O O

o O O
o

0

o O O O O o

2" by 2"
matrix



The function matrix

How do you prove lower bounds on
communication complexity?

X

’

Y

[(Partltlon number(covering numberj
N

Discrepancy

UITUUIUVIVIVUIVUI

\ 0100010101011
( R Rank
Sign Rank Mp|z,y| = F(z,y)
. (
N\  Norm

Approximate Norm

001010] Information Theory | 10000
101010

00001 LLIOOT 111
01000

1 1000

You study this matrix!



IMPORTANT(!) property of communication protocols:

A protocol partitions function matrix into monochromatic rectangles.
What is a rectangle!?

000 00l Ol0 oIl 100 101 110 11l

000 | O I 0 I 0 I 0 I
ool | | o 0 O I O O O
010 | | o o0 Oo0| 0 |0 O I
olrj]o O I I O 0 O I
000 |O O O I O O O
|01 | O I I 0 O I 0 O
lnoyo 0 o0 0} 0 |O O O
11 | O I o 0 o0 o0 0 I

A rectangle is of the form S x T for S,T C {0,1}"



IMPORTANT(!) property of communication protocols:

A protocol partitions function matrix into monochromatic rectangles.

Whatis arectangle! | | + T |} |
000 ool ol0 oIl 100 101 110 Il

o000 1 0 I 0 I 0 |
—o001 |1 o o ol 1 [0 o] o
—olof1 [0 o of o0 [0 of I

S oo o 1 1 o o o0 I
— 1000 [0 o ol 1 [0 o] o

orlo 1 1 0o 0 1 0 O©
—110l0 [0 o ol o0 |0 o O
imlo 1 o 0 0 0 0 I

A rectangle is of the form S x T for S,T C {0,1}"



IMPORTANT(!) property of communication protocols:

Suppose we have a deterministic protocol of cost ¢ that
computes a function F': {0,1}" x {0,1}" — {0,1}.

This protocol partitions Mg
into at most 2° monochromatic rectangles.

You will prove this in the homework.



Example

PAR(x,y) sz +1y; (mod 2)

Protocol:

Alice sends the parity of her input bits.
Bob sends the output of the function.

The cost of the protocol is 2 bits. =l

This protocol partitions the function matrix into
at most 4 monochromatic rectangles.
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Lower bound for Equality function

A protocol for E(@) of cost ¢ partitions MEgg
into at most 2° monochromatic rectangles.

00
Ol
|0
|l

o0 oI 10 1l
| O O O
0 I 0O O
O O I 0
O 0O O |

Observe:

Any protocol computing £()
must cover the |’s with
monochromatic rectangles.



Lower bound for Equality function

A protocol for E(@) of cost ¢ partitions MEgg
into at most 2° monochromatic rectangles.

00
Ol
|0
|l

o0 oI 10 1l
| O O O
0 I 0O O
O O I 0
O 0O O |

Observe:

Any protocol computing E()
must cover the |’s with
monochromatic rectangles.

Claim: No two |’s can be in the same

Proof:

monochromatic rectangle

Suppose two |’s are in the same rectangle.



Lower bound for Equality function

A protocol for E(@) of cost ¢ partitions MEgg
into at most 2° monochromatic rectangles.

00 Ol 10 II
w0l o o ol Observe:
ol {0 [1] o o Any protocol computing F()
wlo o 1 o must cover the |’s with
nHlo o o |I| monochromatic rectangles.

Claim: No two |’s can be in the same
monochromatic rectangle

Proof:

Suppose two |’s are in the same rectangle.



Lower bound for Equality function

A protocol for E(@) of cost ¢ partitions MEgg
into at most 2° monochromatic rectangles.

00 Ol 10 I
w0l o o ol Observe:
ol o [1] o [o] Any protocol computing EQ)
wlo o 1 o must cover the |’s with
TR El 0 IIl monochromatic rectangles.

Claim: No two |’s can be in the same
monochromatic rectangle

Proof:
Suppose two |’s are in the same rectangle.
Then there must also be O’s in the rectangle. Contradiction.




Lower bound for Equality function

A protocol for E(@) of cost ¢ partitions MEgg
into at most 2° monochromatic rectangles.

00 Ol 10 I
wl1 o o o Observe:
ol o [1] o [o] Any protocol computing EQ)
wlo o 1 o must cover the |’s with
TR El 0 IIl monochromatic rectangles.

Claim: No two |’s can be in the same
monochromatic rectangle

Conclusion: We need a separate rectangle for each |.
—> We need at least 2" rectangles to cover the Is.



Lower bound for Equality function

A protocol for E(@) of cost ¢ partitions MEgg
into at most 2° monochromatic rectangles.

Conclusion: We need a separate rectangle for each |.
—> We need at least 2" rectangles to cover the Is.

We also need at least one rectangle to cover the Os.
20> 2"+ 1
—> c>n-+1

This is true for any protocol computing E(Q).
In particular, it is true for the most efficient protocol.

D(EQ) >n+ 1.



Summary of the lower bound technique

et F:{0,1}" x {0,1}" — {0,1}.

A lower bound on # monochromatic rectangles
needed to partition MF

+

A lower bound on D(F).

-
Interesting corollary (not hard to prove):

D(F') > log, rank(Mp)

-




The plan

|. Efficient randomized communication protocol for
checking equality.

2. An application of communication complexity.

3. How to prove lower bounds.



Take-Home Message

Communication complexity studies natural distributed tasks.

Communication complexity (lower bounds) has many
interesting applications.

Lower bounds can be proved using a variety of tools:
combinatorial, algebraic, analytic, information theoretic,...



