
15-251
Great Theoretical Ideas in Computer Science

Lecture 21:
Computational Arithmetic

November 10th, 2015

This week

Computational arithmetic
(in particular, modular arithmetic)

Cryptography
(in particular, “public-key” cryptography)

+

Main goal of this lecture

Understanding modular arithmetic: theory + algorithms
Goal:

Why:
1. When we do addition or multiplication,
 the universe is infinite (e.g. .)Z,Q,R

Sometimes we prefer to restrict ourselves to a
finite universe (e.g. the modular universe).

And this is great for cryptography applications!

3. Some easy-to-do arithmetic operations in or
 seem to be hard in the modular universe.

Z Q

2. Some hard-to-do arithmetic operations in or
 is easy in the modular universe.

Z Q

Main goal of this lecture

Modular Universe

- How to view the elements of the universe?

- How to do basic operations:

> addition

> subtraction

> multiplication

> division

> exponentiation

> taking roots

> logarithm

theory
+

algorithms
(efficient (?))

The plan

Start with algorithms on good old integers.

Then move to the modular universe.

Integers

3618502788666131106986593281521497110455743021169260358536775932020762686101
7237846234873269807102970128874356021481964232857782295671675021393065473695
3943653222082116941587830769649826310589717739181525033220266350650989268038
3194839273881505432422077179121838888281996148408052302196889866637200606252
6501310964926475205090003984176122058711164567946559044971683604424076996342
7183046544798021168297013490774140090476348290671822743961203698142307099664
3455133414637616824423860107889741058131271306226214208636008224651510961018
9789006815067664901594246966730927620844732714004599013904409378141724958467
7228950143608277369974692883195684314361862929679227167524851316077587207648
7845058367231603173079817471417519051357029671991152963580412838184841733782

Algorithms on numbers involve BIG numbers.

Integers
5693030020523999993479642904621911725098567020556258102766251487234031094429 B =

B ⇡ 5.7⇥ 1075 (5.7 quattorvigintillion)

B is roughly the number of atoms in the universe
or the age of the universe in Planck time units.

Definition: len(B) = # bits to write B

⇡ log2 B

5693030020523999993479642904621911725098567020556258102766251487234031094429 B =For
len(B) = 251

(for crypto purposes, this is way too small)

Integers: Arithmetic

In general, arithmetic on numbers is not free!

Think of algorithms as performing string-manipulation.

Think of adding two numbers up yourself.
(the longer the numbers, the longer it will take)

36185027886661311069865932815214971104
65743021169260358536775932020762686101

101928049055921669606641864835977657205
+

The number of steps is measured with respect to the
length of the input numbers.

Integers: Addition

36185027886661311069865932815214971104
65743021169260358536775932020762686101

101928049055921669606641864835977657205
+

Grade school addition is linear time:

A
B

C

len(A), len(B)  nif

number of steps to produce is C O(n)

Integers: Multiplication
36185027886661311069865932815214971104

5932020762686101
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

x

214650336722050463946651358202698404452609868137425504

A

B

C

steps: O(len(A) · len(B))

= O(n2) len(A), len(B)  nif

Integers: Division

36185027886661311069865932815214971104

6099949635084593037586 
5932020762686101 AB

Q

XXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX

3960087002178918 R

A = Q ·B +R

steps: O(len(A) · len(B))

R = A mod B

Integers: Exponentiation

Given as input , compute .B 2B

5693030020523999993479642904621911725098567020556258102766251487234031094429 B =

If

len(B) = 251

but ~ len(2B) 5.7 quattorvigintillion

(output length exceeds number of particles in the universe)

exponential in
input length

Integers: Factorization

5693030020523999993479642904621911725098567020556258102766251487234031094429 A =

Goal: find one (non-trivial) factor of A

for B = 2, 3, 4, 5, …
 test if A mod B = 0.

A =

It turns out:
68452332409801603635385895997250919383

83167801886452917478124266362673045163

x

Each factor ~ age of the universe in Planck time.~

worst case: iterations.
p
A

exponential in
input length

p
A =

p
2log2 A =

p
2len(A) = 2len(A)/2

Integers: Factorization

Fastest known algorithm is exponential time!

That turns out to be a good thing:

can break most cryptographic systems
used on the internet

If there is an efficient algorithm to solve
the factoring problem

Integers: Primality testing

n = 2log2 n = 2len(n)

Your favorite function from 15-112

exponential in
input length

iterations: ~ ~ n

Integers: Primality testing

Exercise: Show that this is still exponential time.

Integers: Primality testing

Amazing result from 2002:

There is a poly-time algorithm for primality testing.

Agrawal, Kayal, Saxena

undergraduate students at the time

However, best known implementation is ~ time. O(n6)

Not feasible when .n = 2048

Integers: Primality testing

So that’s not what we use in practice.

Everyone uses the Miller-Rabin algorithm (1975).

The running time is ~ .O(n2)

It is a Monte Carlo algorithm with tiny error probability
1/2300(say)

CMU
Professor

Integers: Generating a random prime number

Suppose you need an n-bit long random prime number.

repeat:
 let A be a random n-bit number
 test if A is prime

Prime Number Theorem (informal):

About 1/n fraction of n-bit numbers are prime.

=)expected # iterations of the above algorithm ~ O(n3).

No poly-time deterministic algorithm is known!!

The plan

Start with algorithms on good old integers.

Then move to the modular universe.

Main goal of this lecture

Modular Universe

- How to view the elements of the universe?

- How to do basic operations:

> addition

> subtraction

> multiplication

> division

> exponentiation

> taking roots

> logarithm

theory
+

algorithms
(efficient (?))

Modular universe: How to view the elements

Hopefully everyone already knows:

Any integer can be reduced mod N.

0 1 2 3 4 5 6 7 8 9 10 11 12

Example

N = 5

…

0 1 2 3 4 0 1 2 3 4 0 1 2

mod 5

…

A mod N = remainder when you divide by A N

Modular universe: How to view the elements

We write or

when .

A ⌘ B mod N A ⌘N B

A mod N = B mod N

(In this case, we say is congruent to modulo .)A B N

Examples

5 ⌘5 100

13 ⌘7 27

A ⌘N B () N divides A�B

Exercise

Modular universe: How to view the elements

The universe is the finite set .
View 2

ZN = {0, 1, 2, . . . , N � 1}

2 Points of View

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 0 1 2 3 4 0 1 2

mod 5

…

…

Z5

The universe is .

Every element has a “mod N” representation.

View 1
Z

Modular universe: Addition

Addition plays nice mod N

A ⌘N B

A0 ⌘N B0

A+A0 ⌘N B +B0=)

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 0 1 2 3 4 0 1 2

mod 5

…

…

+ is always the same mod N

Modular universe: Addition

0
1
2
3

0 1 2 3+
0 1 2 3
1 2 3 4
2 3 4 0
3 4 0 1

4
0
1
2

4 0 1 2 34

4

Addition table for Z5

0 is called the (additive) identity: 0 + A = A + 0 = A
for any A

Modular universe: Subtraction

How about subtraction in ?

What does mean? A�B

It is actually addition in disguise: A+ (�B)

Then what does mean?�B

ZN

ZNGiven any , we define to be the number inB �B
such that .B + (�B) = 0

Modular universe: Subtraction

0
1
2
3

0 1 2 3+
0 1 2 3
1 2 3 4
2 3 4 0
3 4 0 1

4
0
2
2

4 0 1 2 34

4

Addition table for Z5

�0 = 0

�1 = 4

�2 = 3

�3 = 2

�4 = 1

Modular universe: Subtraction

0
1
2
3

0 1 2 3+
0 1 2 3
1 2 3 4
2 3 4 0
3 4 0 1

4
0
2
2

4 0 1 2 34

4

Addition table for Z5

Note:

i.e. every row is a permutation of .ZN

A row contains distinct elements.

This implies:

row col row col same col

 For every , exists.

Why?

A 2 ZN �A

�A = N �A

A+B A+B0= =) B = B0Fix row A

Modular universe: Multiplication

Multiplication plays nice mod N

A ·A0 ⌘N B ·B0

A ⌘N B

A0 ⌘N B0

=)

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 0 1 2 3 4 0 1 2

mod 5

…

…

. is always the same mod N

Modular universe: Multiplication

0
1
2
3

0 1 2 3.
0 0 0 0
0 1 2 3
0 2 4 1
0 3 1 4

0
4
3
2

0 4 3 2 14

4

Multiplication table for Z5

1 is called the (multiplicative) identity: 1 A = A 1 = A
for any A

. .

Modular universe: Division

How about division in ?ZN

What does mean? A÷B

Then what does mean?B�1

ZNGiven any , we define to be the number inB
such that

B�1

B ·B�1 = 1.

It is actually multiplication in disguise: A ·B�1A · 1

B
=

Modular universe: Division

0
1
2
3

0 1 2 3.
0 0 0 0
0 1 2 3
0 2 4 1
0 3 1 4

0
4
3
2

0 4 3 2 14

4

Multiplication table for Z5

0�1 = undefined

1�1 = 1
2�1 = 3

3�1 = 2

4�1 = 4

Modular universe: Division

0
1
2
3

0 1 2 3.
0 0 0 0
0 1 2 3
0 2 4 0
0 3 0 3

0
4
2
0

0 4 2 0 44

4

Multiplication table for

0�1 = undefined

1�1 = 1

Z6

0
5
4
3
2

0 5 4 3 2 15

5

5�1 = 5

2�1 = undefined

3�1 = undefined
4�1 = undefined

WTF?

Modular universe: Division

0
1
2
3

0 1 2 3.
0 0 0 0
0 1 2 3
0 2 4 6
0 3 6 2

0
4
1
5

0 4 1 5 24

4

Multiplication table for

0
5
3
1
6

0 5 3 1 6 45

5

Z7

0
6
5
4
3
2

6

0 6 5 4 3 26 1

Every number except 0 has a multiplicative inverse.

Modular universe: Division

0
1
2
3

0 1 2 3.
0 0 0 0
0 1 2 3
0 2 4 6
0 3 6 1

0
4
0
4

0 4 0 4 04

4

Multiplication table for

0
5
2
7
4

0 5 2 7 4 15

5
0
6
4
2
0
6

6

0 6 4 2 0 66 4
0 7 6 5 4 37 2

0
7
6
5
4
3

7

2
1

Z8

{1, 3, 5, 7} have inverses. Others don’t.

Modular universe: Division

Fact: exists if and only ifA�1 2 ZN gcd(A,N) = 1.

gcd(a, b) = greatest common divisor of and .a b

gcd(12, 18) = 6

Examples:

gcd(13, 9) = 1

gcd(1, a) = 1 8a
gcd(0, a) = a 8a

If , we say and are relatively prime.gcd(a, b) = 1 a b

Modular universe: Division

Fact: exists if and only ifA�1 2 ZN gcd(A,N) = 1.

Definition: Z⇤
N = {A 2 ZN : gcd(A,N) = 1}.

Definition: '(N) = |Z⇤
N |

Note that is “closed” under multiplication,Z⇤
N

i.e., A,B 2 Z⇤
N =) AB 2 Z⇤

N

(Why?)

Modular universe: Division

0
1
2
3

0 1 2 3.
0 0 0 0
0 1 2 3
0 2 4 1
0 3 1 4

0
4
3
2

0 4 3 2 14

4

Z⇤
5

'(5) = 4

Modular universe: Division

1
2
3

1 2 3.
1 2 3
2 4 1
3 1 4

4
3
2

4 3 2 14

4

Z⇤
5

'(5) = 4

Modular universe: Division

1
2
3

1 2 3.
1 2 3
2 4 1
3 1 4

4
3
2

4 3 2 14

4

Z⇤
5

PFor prime, '(P) = P � 1.

Modular universe: Division

0
1
2
3

0 1 2 3.
0 0 0 0
0 1 2 3
0 2 4 6
0 3 6 1

0
4
0
4

0 4 0 4 04

4
0
5
2
7
4

0 5 2 7 4 15

5
0
6
4
2
0
6

6

0 6 4 2 0 66 4
0 7 6 5 4 37 2

0
7
6
5
4
3

7

2
1

Z⇤
8

'(8) = 4

Modular universe: Division

1
3

1 3.
1 3
3 1

5
7

5 7 15

5

7 5 37

7
5
3

7

1

Z⇤
8

'(8) = 4

Modular universe: Division

1
2
4
7

1 2 4 7.
1 2 4 7
2 4 8 14
4 8 1 13
7 14 13 4

8
1
2
11

8 1 2 11 48

8
11
7
14
2
13

11 7 14 2 13 111

11
13
11
7
1
14
8

13

13 11 7 1 14 813 4
14 13 11 8 7 414 2

14
13
11
8
7
4

14

2
1

Z⇤
15

'(15) = 8

Modular universe: Division

1
2
4
7

1 2 4 7.
1 2 4 7
2 4 8 14
4 8 1 13
7 14 13 4

8
1
2
11

8 1 2 11 48

8
11
7
14
2
13

11 7 14 2 13 111

11
13
11
7
1
14
8

13

13 11 7 1 14 813 4
14 13 11 8 7 414 2

14
13
11
8
7
4

14

2
1

Z⇤
15

Exercise: For distinct primes, .P,Q '(PQ) = (P � 1)(Q� 1)

Modular universe: Division

Z⇤
8

1
3

1 3.
1 3
3 1

5
7

5 7 15

5

7 5 37

7
5
3

7

1

'(8) = 4

i.e. every row is a permutation of .

A row contains distinct elements.

This implies:

Z⇤
N

For every , exists. A 2 Z⇤
N A�1

A ·B = A ·B0 =) B = B0

0
1
2
3

0 1 2 3+
0 1 2 3
1 2 3 0
2 3 0 1
3 0 1 2

1
3
5
7

1 3 5 7.
1 3 5 7
3 1 7 5
5 7 1 3
7 5 3 1

Z4 Z⇤
8

behaves nicely
with respect to

addition

behaves nicely
with respect to

multiplication

Summary

Modular universe: Exponentiation

We saw for integers, no hope for a poly-time algorithm.

In fact, we can compute this efficiently!

In the modular universe, length of output not an issue.

Given

Compute .

A,B,N, len(A), len(B), len(N)  n

AB
mod N

Modular universe: Exponentiation

Example

Compute .2337

32
mod 100

Naïve strategy:

2337 x 2337 = 5461569

2337 x 5461569 = 12763686753

2337 x 12763686753 = …
... (30 more multiplications later)

626727565152155511653188886668668588313475824236665607396755008905770146236635537228216696030970612828922881

Modular universe: Exponentiation

Example

Compute .2337

32
mod 100

2 improvements:

- Reduce mod 100 after every step.

- Don’t multiply 32 times. Square 5 times.

2337 �! 23372 �! 23374 �! 23378 �! 233716 �! 233732

(what if the exponent was 53?)

Modular universe: Exponentiation

Example

Compute .2337

53
mod 100

Multiply powers 32, 16, 4, 1. (53 = 32 + 16 + 4 + 1)

233732 · 233716 · 23374 · 23371233753 =

11010153 in binary =

(what if the exponent was 53?)

Modular universe: Exponentiation

Algorithm:

Running time: a bit more than .O(n2
log n)

Given

Compute .

A,B,N, len(A), len(B), len(N)  n

AB
mod N

- Repeatedly square , always mod .
 Do this times.

A
n

- Multiply together the powers of
 corresponding to the binary digits of

A
B

(again, always mod).

N

N

Modular universe: Exponentiation

Anything interesting we can do in the special case of

Given

Compute .

A,B,N, len(A), len(B), len(N)  n

AB
mod N

gcd(A,N) = 1? i.e. A 2 Z⇤
N

Modular universe: Exponentiation

Euler’s Theorem:

For any , . A 2 Z⇤
N A'(N) = 1

Equivalently, for and with ,A N gcd(A,N) = 1

A'(N) ⌘ 1 mod N

Fermat’s Little Theorem:

Let be a prime. For any , P A 2 Z⇤
P AP�1 = 1.

Equivalently, for any not divisible by ,A P

AP�1 ⌘ 1 mod P

When N is a prime, this is known as:

Modular universe: Exponentiation

Example

1
3
5
7

1 3 5 7.
1 3 5 7
3 1 7 5
5 7 1 3
7 5 3 1

Z⇤
8

'(8) = 4

3 32 33 34 35 36 37 38

1 12 13 14 15 16 17 18

5 52 53 54 55 56 57 58

7 72 73 74 75 76 77 78

1 1 1 1 1 1 1 1

3 1 3 1 3 1 3 1

5 1 5 1 5 1 5 1

7 1 7 1 7 1 7 1

Modular universe: Exponentiation

Example

1
2
3
4

1 2 3 4.

3 32 33 34 35 36 37 38

1 12 13 14 15 16 17 18

1 1 1 1 1 1 1 1

3 4 2 1 3 4 2 1

1 2 3
2 4 1
3 1 4

4
3
2

4 3 2 1

2 22 23 24 25 26 27 28

2 4 3 1 2 4 3 1

4 42 43 44 45 46 47 48

4 1 4 1 4 1 4 1

Z⇤
5

2 and 3 are called generators.

'(8) = 4

Poll

What is ?213

248
mod 7

- 0
- 1
- 2
- 3
- 4
- 5
- 6
- Beats me.

Poll Answer

Euler’s Theorem:

For any , . A 2 Z⇤
N A'(N) = 1

A1 A2A0 · · · A'(N)A'(N)+1 A2'(N) A2'(N)+1· · ·
||

A0

||

A1

||

A0

||

A1· · ·

In other words, the exponent can be reduced mod '(N).

= 2

||

1

213248 ⌘7 3248

3248 ⌘7 32

Poll Answer

When exponentiating elements A 2 Z⇤
N

can think of the exponent living in the universe .Z'(N)

Modular universe: Taking logarithms

- is prime

Given such that:

Find such that .

A,B, P

P
- A 2 Z⇤

P

- is a generator. B 2 Z⇤
P

X BX ⌘P A

It is like we want to compute . logB A

Poll

What do you think of this algorithm:

DiscreteLog(A, B, P):
 for X = 0, 1, 2, …, P-2
 compute B (use fast modular exponentiation)
 check whether P divides B - A

Find such that .X BX ⌘P A

X

X

- simple and efficient. love it.

- loop should go up to X = P-1

- simple but not efficient.

- I don’t understand what is going on right now.

- I don’t understand why we are checking if P divides B - A.X

Modular universe: Taking logarithms

We don’t know how to compute this efficiently!

- is prime

Given such that:

Find such that .

A,B, P

P
- A 2 Z⇤

P

- is a generator. B 2 Z⇤
P

X BX ⌘P A

Modular universe: Taking roots

As an example, let’s consider taking cube roots

Given such that .A,N A 2 Z⇤
N

Find such that B B3 ⌘N A.

We don’t know how to compute this efficiently!

Main goal of this lecture

Modular Universe

- How to view the elements of the universe?

- How to do basic operations:

> addition

> subtraction

> multiplication

> division

> exponentiation

> taking roots

> logarithm

theory
+

algorithms
(efficient (?))

Back to division in the modular universe

(i.e. things you will prove in the homework)

😀

2 Questions remain

How do you prove:

 exists if and only ifA�1 2 ZN gcd(A,N) = 1.

How do you compute: A ·B�1
mod N

i.e., how do you compute B�1?

How to compute the multiplicative inverse

To determine if has an inverse, we need to computeB

gcd(B,N)

Euclid’s Algorithm finds gcd in polynomial time.

Arguably the first ever algorithm. ~ 300 BC

How do you compute: A ·B�1
mod N

i.e., how do you compute B�1?

How to compute the multiplicative inverse

gcd(A, B):
 if B == 0, return A
 return gcd(B, A mod B)

Euclid’s Algorithm

Homework

Why does it work?

Why is it polynomial time?

Major open problem in Computer Science

Is gcd computation efficiently parallelizable?

i.e., is there a circuit family of
 - poly(n) size
 - polylog(n) depth
 that computes gcd?

How to compute the multiplicative inverse

Ok, Euclid’s Algorithm tells us whether an element has
an inverse. How do you find it if it exists?

Definition: We say that is a miix of and ifC A B

C = k ·A+ ` ·B

for some k, ` 2 Z.

Examples:

2 is a miix of 14 and 10: 2 = (-2) 14 + 3 10. .

7 is not a miix of 55 and 40: any miix would be
 divisible by 5.

Any multiple of 2 is a miix of 14 and 10.

not a real term 😋

How to compute the multiplicative inverse

Fact: is a miix of and if and only ifC A B

 is a multiple of . gcd(A,B)C

The coefficients and can be found by
slightly modifying Euclid’s Algorithm.

k `

If , we can find such that gcd(B,N) = 1 k, ` 2 Z
1 = k ·B + ` ·N

gcd(A,B) = k ·A+ ` ·BSo

||
B�1Therefore found

Finding : B�1

2 Questions remain

How do you prove:

 exists if and only ifA�1 2 ZN gcd(A,N) = 1.

How do you compute: A ·B�1
mod N

i.e., how do you compute B�1?

When does the inverse exist

How do you prove:

 exists if and only ifA�1 2 ZN gcd(A,N) = 1.

Proof: A�1
exists

() 9k such that k ·A ⌘N 1

9k, q such that 1 = k ·A+ (�q) ·N()

1 is a miix of A and N()

gcd(A,N) = 1()

dividesN k ·A� 1

() 9k, q such that k ·A� 1 = q ·N

Main goal of this lecture

Modular Universe

- How to view the elements of the universe?

- How to do basic operations:

> addition

> subtraction

> multiplication

> division

> exponentiation

> taking roots

> logarithm

theory
+

algorithms
(efficient (?))

Next Time

Cryptography

