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This week

Computational arithmetic
(in particular,  modular arithmetic)

Cryptography
(in particular,  “public-key” cryptography)

+



Main goal of this lecture

Understanding modular arithmetic:  theory + algorithms
Goal:

Why:
1.  When we do addition or multiplication,
     the universe is infinite (e.g.             .)Z,Q,R

Sometimes we prefer to restrict ourselves to a
finite universe (e.g. the modular universe).

And this is great for cryptography applications!

3.  Some easy-to-do arithmetic operations in      or 
     seem to be hard in the modular universe.

Z Q

2.  Some hard-to-do arithmetic operations in      or 
     is easy in the modular universe.

Z Q



Main goal of this lecture

Modular Universe

- How to view the elements of the universe?

- How to do basic operations:

> addition

> subtraction

> multiplication

> division

> exponentiation

> taking roots

> logarithm

theory 
+ 

algorithms
(efficient (?))



The plan

Start with algorithms on good old integers.

Then move to the modular universe.



Integers

3618502788666131106986593281521497110455743021169260358536775932020762686101 
7237846234873269807102970128874356021481964232857782295671675021393065473695 
3943653222082116941587830769649826310589717739181525033220266350650989268038 
3194839273881505432422077179121838888281996148408052302196889866637200606252 
6501310964926475205090003984176122058711164567946559044971683604424076996342 
7183046544798021168297013490774140090476348290671822743961203698142307099664 
3455133414637616824423860107889741058131271306226214208636008224651510961018 
9789006815067664901594246966730927620844732714004599013904409378141724958467 
7228950143608277369974692883195684314361862929679227167524851316077587207648 
7845058367231603173079817471417519051357029671991152963580412838184841733782 

Algorithms on numbers involve BIG numbers.



Integers
5693030020523999993479642904621911725098567020556258102766251487234031094429 B =

B ⇡ 5.7⇥ 1075 ( 5.7 quattorvigintillion )

B is roughly the number of atoms in the universe
or the age of the universe in Planck time units.

Definition: len(B) = # bits to write B

⇡ log2 B

5693030020523999993479642904621911725098567020556258102766251487234031094429 B =For
len(B) = 251

(for crypto purposes, this is way too small)



Integers:  Arithmetic

In general, arithmetic on numbers is not free!

Think of algorithms as performing string-manipulation.

Think of adding two numbers up yourself.
(the longer the numbers, the longer it will take)

36185027886661311069865932815214971104 
65743021169260358536775932020762686101 

101928049055921669606641864835977657205 
+

The number of steps is measured with respect to the
length of the input numbers.



Integers:  Addition

36185027886661311069865932815214971104 
65743021169260358536775932020762686101 

101928049055921669606641864835977657205 
+

Grade school addition is linear time:

A
B

C

len(A), len(B)  nif

number of steps to produce      is C O(n)



Integers:  Multiplication
36185027886661311069865932815214971104 

5932020762686101 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

x

214650336722050463946651358202698404452609868137425504 

A

B

C

# steps: O(len(A) · len(B))

= O(n2) len(A), len(B)  nif



Integers:  Division

36185027886661311069865932815214971104 

6099949635084593037586 
5932020762686101 AB

Q

XXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX

3960087002178918 R

A = Q ·B +R

# steps: O(len(A) · len(B))

R = A mod B



Integers:  Exponentiation

Given as input     , compute      .B 2B

5693030020523999993479642904621911725098567020556258102766251487234031094429 B =

If

len(B) = 251

but                ~  len(2B)  5.7 quattorvigintillion 

(output length exceeds number of particles in the universe)

exponential in 
input length



Integers:  Factorization

5693030020523999993479642904621911725098567020556258102766251487234031094429 A =

Goal:  find one (non-trivial) factor of A

for B = 2, 3, 4, 5, … 
     test if A mod B = 0.

A =

It turns out:
68452332409801603635385895997250919383 

83167801886452917478124266362673045163 

x

Each factor ~ age of the universe in Planck time.~

worst case:          iterations.
p
A

exponential in 
input length

p
A =

p
2log2 A =

p
2len(A) = 2len(A)/2



Integers:  Factorization

Fastest known algorithm is exponential time!

That turns out to be a good thing:

can break most cryptographic systems 
used on the internet

If there is an efficient algorithm to solve 
the factoring problem



Integers:  Primality testing

n = 2log2 n = 2len(n)

Your favorite function from 15-112

exponential in 
input length

# iterations:  ~ ~ n



Integers:  Primality testing

Exercise:  Show that this is still exponential time.



Integers:  Primality testing

Amazing result from 2002:

There is a poly-time algorithm for primality testing.

Agrawal,  Kayal,      Saxena

undergraduate students at the time

However, best known implementation is ~           time. O(n6)

Not feasible when                 .n = 2048



Integers:  Primality testing

So that’s not what we use in practice.

Everyone uses the Miller-Rabin algorithm (1975).

The running time is ~           .O(n2)

It is a Monte Carlo algorithm with tiny error probability
1/2300(say             )

CMU
Professor



Integers:  Generating a random prime number

Suppose you need an n-bit long random prime number.

repeat: 
    let A be a random n-bit number 
    test if A is prime

Prime Number Theorem (informal):

About 1/n fraction of n-bit numbers are prime.

=)expected # iterations of the above algorithm ~ O(n3).

No poly-time deterministic algorithm is known!!



The plan

Start with algorithms on good old integers.

Then move to the modular universe.



Main goal of this lecture

Modular Universe

- How to view the elements of the universe?

- How to do basic operations:

> addition

> subtraction

> multiplication

> division

> exponentiation

> taking roots

> logarithm

theory 
+ 

algorithms
(efficient (?))



Modular universe:  How to view the elements

Hopefully everyone already knows:

Any integer can be reduced mod N.

0 1 2 3 4 5 6 7 8 9 10 11 12

Example

N = 5

…

0 1 2 3 4 0 1 2 3 4 0 1 2

mod 5

…

A mod N = remainder when you divide     by A N



Modular universe:  How to view the elements

We write                                or  

when                                     .

A ⌘ B mod N A ⌘N B

A mod N = B mod N

(In this case, we say      is congruent to      modulo     .)A B N

Examples

5 ⌘5 100

13 ⌘7 27

A ⌘N B () N divides A�B

Exercise



Modular universe:  How to view the elements

The universe is the finite set                                         . 
View 2

ZN = {0, 1, 2, . . . , N � 1}

2 Points of  View

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 0 1 2 3 4 0 1 2

mod 5

…

…

Z5

The universe is     .

Every element has a “mod N” representation.

View 1
Z



Modular universe:  Addition

Addition plays nice mod N

A ⌘N B

A0 ⌘N B0

A+A0 ⌘N B +B0=)

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 0 1 2 3 4 0 1 2

mod 5

…

…

+ is always the same  mod N



Modular universe:  Addition

0
1
2
3

0 1 2 3+
0 1 2 3
1 2 3 4
2 3 4 0
3 4 0 1

4
0
1
2

4 0 1 2 34

4

Addition table for Z5

0 is called the (additive) identity:  0 + A  =  A + 0  =  A 
for any A



Modular universe:  Subtraction

How about subtraction in        ?

What does             mean? A�B

It is actually addition in disguise: A+ (�B)

Then what does         mean?�B

ZN

ZNGiven any     ,  we define         to be the number inB �B
such that                         .B + (�B) = 0



Modular universe:  Subtraction

0
1
2
3

0 1 2 3+
0 1 2 3
1 2 3 4
2 3 4 0
3 4 0 1

4
0
2
2

4 0 1 2 34

4

Addition table for Z5

�0 = 0

�1 = 4

�2 = 3

�3 = 2

�4 = 1



Modular universe:  Subtraction

0
1
2
3

0 1 2 3+
0 1 2 3
1 2 3 4
2 3 4 0
3 4 0 1

4
0
2
2

4 0 1 2 34

4

Addition table for Z5

Note:

i.e. every row is a permutation of       .ZN

A row contains distinct elements.

This implies:

row col row col same col

 
  For every              ,         exists.

Why?

A 2 ZN �A

�A = N �A

A+B A+B0= =) B = B0Fix row A



Modular universe:  Multiplication

Multiplication plays nice mod N

A ·A0 ⌘N B ·B0

A ⌘N B

A0 ⌘N B0

=)

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 0 1 2 3 4 0 1 2

mod 5

…

…

. is always the same  mod N



Modular universe:  Multiplication

0
1
2
3

0 1 2 3.
0 0 0 0
0 1 2 3
0 2 4 1
0 3 1 4

0
4
3
2

0 4 3 2 14

4

Multiplication table for Z5

1 is called the (multiplicative) identity:  1  A  =  A  1  =  A 
for any A

. .



Modular universe:  Division

How about division in        ?ZN

What does             mean? A÷B

Then what does          mean?B�1

ZNGiven any     ,  we define         to be the number inB
such that             

B�1

B ·B�1 = 1.

It is actually multiplication in disguise: A ·B�1A · 1

B
=



Modular universe:  Division

0
1
2
3

0 1 2 3.
0 0 0 0
0 1 2 3
0 2 4 1
0 3 1 4

0
4
3
2

0 4 3 2 14

4

Multiplication table for Z5

0�1 = undefined

1�1 = 1
2�1 = 3

3�1 = 2

4�1 = 4



Modular universe:  Division

0
1
2
3

0 1 2 3.
0 0 0 0
0 1 2 3
0 2 4 0
0 3 0 3

0
4
2
0

0 4 2 0 44

4

Multiplication table for 

0�1 = undefined

1�1 = 1

Z6

0
5
4
3
2

0 5 4 3 2 15

5

5�1 = 5

2�1 = undefined

3�1 = undefined
4�1 = undefined

WTF?



Modular universe:  Division

0
1
2
3

0 1 2 3.
0 0 0 0
0 1 2 3
0 2 4 6
0 3 6 2

0
4
1
5

0 4 1 5 24

4

Multiplication table for 

0
5
3
1
6

0 5 3 1 6 45

5

Z7

0
6
5
4
3
2

6

0 6 5 4 3 26 1

Every number except 0 has a multiplicative inverse.



Modular universe:  Division

0
1
2
3

0 1 2 3.
0 0 0 0
0 1 2 3
0 2 4 6
0 3 6 1

0
4
0
4

0 4 0 4 04

4

Multiplication table for 

0
5
2
7
4

0 5 2 7 4 15

5
0
6
4
2
0
6

6

0 6 4 2 0 66 4
0 7 6 5 4 37 2

0
7
6
5
4
3

7

2
1

Z8

{1, 3, 5, 7} have inverses.  Others don’t. 



Modular universe:  Division

Fact:                     exists if and only ifA�1 2 ZN gcd(A,N) = 1.

gcd(a, b) = greatest common divisor of     and    .a b

gcd(12, 18) = 6

Examples:

gcd(13, 9) = 1

gcd(1, a) = 1 8a
gcd(0, a) = a 8a

If                      ,  we say     and      are relatively prime.gcd(a, b) = 1 a b



Modular universe:  Division

Fact:                     exists if and only ifA�1 2 ZN gcd(A,N) = 1.

Definition: Z⇤
N = {A 2 ZN : gcd(A,N) = 1}.

Definition: '(N) = |Z⇤
N |

Note that         is “closed” under multiplication,Z⇤
N

i.e., A,B 2 Z⇤
N =) AB 2 Z⇤

N

(Why?)



Modular universe:  Division

0
1
2
3

0 1 2 3.
0 0 0 0
0 1 2 3
0 2 4 1
0 3 1 4

0
4
3
2

0 4 3 2 14

4

Z⇤
5

'(5) = 4



Modular universe:  Division

1
2
3

1 2 3.
1 2 3
2 4 1
3 1 4

4
3
2

4 3 2 14

4

Z⇤
5

'(5) = 4



Modular universe:  Division

1
2
3

1 2 3.
1 2 3
2 4 1
3 1 4

4
3
2

4 3 2 14

4

Z⇤
5

PFor       prime,                        '(P ) = P � 1.



Modular universe:  Division

0
1
2
3

0 1 2 3.
0 0 0 0
0 1 2 3
0 2 4 6
0 3 6 1

0
4
0
4

0 4 0 4 04

4
0
5
2
7
4

0 5 2 7 4 15

5
0
6
4
2
0
6

6

0 6 4 2 0 66 4
0 7 6 5 4 37 2

0
7
6
5
4
3

7

2
1

Z⇤
8

'(8) = 4



Modular universe:  Division

1
3

1 3.
1 3
3 1

5
7

5 7 15

5

7 5 37

7
5
3

7

1

Z⇤
8

'(8) = 4



Modular universe:  Division

1
2
4
7

1 2 4 7.
1 2 4 7
2 4 8 14
4 8 1 13
7 14 13 4

8
1
2
11

8 1 2 11 48

8
11
7
14
2
13

11 7 14 2 13 111

11
13
11
7
1
14
8

13

13 11 7 1 14 813 4
14 13 11 8 7 414 2

14
13
11
8
7
4

14

2
1

Z⇤
15

'(15) = 8



Modular universe:  Division

1
2
4
7

1 2 4 7.
1 2 4 7
2 4 8 14
4 8 1 13
7 14 13 4

8
1
2
11

8 1 2 11 48

8
11
7
14
2
13

11 7 14 2 13 111

11
13
11
7
1
14
8

13

13 11 7 1 14 813 4
14 13 11 8 7 414 2

14
13
11
8
7
4

14

2
1

Z⇤
15

Exercise: For         distinct primes,                                  .P,Q '(PQ) = (P � 1)(Q� 1)



Modular universe:  Division

Z⇤
8

1
3

1 3.
1 3
3 1

5
7

5 7 15

5

7 5 37

7
5
3

7

1

'(8) = 4

i.e. every row is a permutation of       .

A row contains distinct elements.

This implies:

Z⇤
N

For every              ,           exists.   A 2 Z⇤
N A�1

A ·B = A ·B0 =) B = B0



0
1
2
3

0 1 2 3+
0 1 2 3
1 2 3 0
2 3 0 1
3 0 1 2

1
3
5
7

1 3 5 7.
1 3 5 7
3 1 7 5
5 7 1 3
7 5 3 1

Z4 Z⇤
8

behaves nicely
with respect to

addition

behaves nicely
with respect to

multiplication

Summary



Modular universe:  Exponentiation

We saw for integers, no hope for a poly-time algorithm.

In fact, we can compute this efficiently!

In the modular universe,  length of output not an issue.

Given             

Compute                    .

A,B,N, len(A), len(B), len(N)  n

AB
mod N



Modular universe:  Exponentiation

Example

Compute                           .2337

32
mod 100

Naïve strategy:

2337 x 2337 = 5461569

2337 x 5461569 = 12763686753

2337 x 12763686753 = …
... (30 more multiplications later)

626727565152155511653188886668668588313475824236665607396755008905770146236635537228216696030970612828922881 



Modular universe:  Exponentiation

Example

Compute                           .2337

32
mod 100

2 improvements:

- Reduce mod 100 after every step.

- Don’t multiply 32 times.  Square 5 times.

2337 �! 23372 �! 23374 �! 23378 �! 233716 �! 233732

(what if the exponent was 53?)



Modular universe:  Exponentiation

Example

Compute                           .2337

53
mod 100

Multiply powers 32, 16, 4, 1.    (53 = 32 + 16 + 4 + 1)

233732 · 233716 · 23374 · 23371233753 =

11010153 in binary  = 

(what if the exponent was 53?)



Modular universe:  Exponentiation

Algorithm:

Running time:   a bit more than                    .O(n2
log n)

Given             

Compute                    .

A,B,N, len(A), len(B), len(N)  n

AB
mod N

- Repeatedly square    ,  always mod    .
  Do this     times.

A
n

- Multiply together the powers of 
  corresponding to the binary digits of 

A
B

(again, always mod     ).

N

N



Modular universe:  Exponentiation

Anything interesting we can do in the special case of                        

Given             

Compute                    .

A,B,N, len(A), len(B), len(N)  n

AB
mod N

gcd(A,N) = 1? i.e. A 2 Z⇤
N



Modular universe:  Exponentiation

Euler’s Theorem:

For any               ,                       .  A 2 Z⇤
N A'(N) = 1

Equivalently, for     and      with                         ,A N gcd(A,N) = 1

A'(N) ⌘ 1 mod N

Fermat’s Little Theorem:

Let      be a prime.  For any              , P A 2 Z⇤
P AP�1 = 1.

Equivalently, for any      not divisible by     ,A P

AP�1 ⌘ 1 mod P

When N is a prime, this is known as:



Modular universe:  Exponentiation

Example

1
3
5
7

1 3 5 7.
1 3 5 7
3 1 7 5
5 7 1 3
7 5 3 1

Z⇤
8

'(8) = 4

3 32 33 34 35 36 37 38

1 12 13 14 15 16 17 18

5 52 53 54 55 56 57 58

7 72 73 74 75 76 77 78

1 1 1 1 1 1 1 1

3 1 3 1 3 1 3 1

5 1 5 1 5 1 5 1

7 1 7 1 7 1 7 1



Modular universe:  Exponentiation

Example

1
2
3
4

1 2 3 4.

3 32 33 34 35 36 37 38

1 12 13 14 15 16 17 18

1 1 1 1 1 1 1 1

3 4 2 1 3 4 2 1

1 2 3
2 4 1
3 1 4

4
3
2

4 3 2 1

2 22 23 24 25 26 27 28

2 4 3 1 2 4 3 1

4 42 43 44 45 46 47 48

4 1 4 1 4 1 4 1

Z⇤
5

2 and 3 are called generators.

'(8) = 4



Poll

What is                         ?213

248
mod 7

- 0
- 1
- 2
- 3
- 4
- 5
- 6
- Beats me.



Poll Answer

Euler’s Theorem:

For any               ,                       .  A 2 Z⇤
N A'(N) = 1

A1 A2A0 · · · A'(N)A'(N)+1 A2'(N) A2'(N)+1· · ·
||

A0

||

A1

||

A0

||

A1· · ·

In other words, the exponent can be reduced mod '(N).

= 2

||

1

213248 ⌘7 3248

3248 ⌘7 32



Poll Answer

When exponentiating elements A 2 Z⇤
N

can think of the exponent living in the universe           .Z'(N)



Modular universe:  Taking logarithms

-      is prime

Given              such that:

Find       such that                  .

A,B, P

P
-     A 2 Z⇤

P

-               is a generator.    B 2 Z⇤
P

X BX ⌘P A

It is like we want to compute             . logB A



Poll

What do you think of this algorithm:

DiscreteLog(A, B, P): 
     for  X = 0, 1, 2, …, P-2 
          compute B      (use fast modular exponentiation) 
          check whether P divides B   - A

Find       such that                  .X BX ⌘P A

X

X

- simple and efficient. love it.

- loop should go up to X = P-1 

- simple but not efficient.

- I don’t understand what is going on right now.

- I don’t understand why we are checking if P divides B   - A.X



Modular universe:  Taking logarithms

We don’t know how to compute this efficiently!

-      is prime

Given              such that:

Find       such that                  .

A,B, P

P
-     A 2 Z⇤

P

-               is a generator.    B 2 Z⇤
P

X BX ⌘P A



Modular universe:  Taking roots

As an example, let’s consider taking cube roots

Given            such that              .A,N A 2 Z⇤
N

Find      such that  B B3 ⌘N A.

We don’t know how to compute this efficiently!



Main goal of this lecture

Modular Universe

- How to view the elements of the universe?

- How to do basic operations:

> addition

> subtraction

> multiplication

> division

> exponentiation

> taking roots

> logarithm

theory 
+ 

algorithms
(efficient (?))



Back to division in the modular universe

(i.e. things you will prove in the homework)

😀



2 Questions remain

How do you prove:

                            exists if and only ifA�1 2 ZN gcd(A,N) = 1.

How do you compute: A ·B�1
mod N

i.e., how do you compute B�1?



How to compute the multiplicative inverse

To determine if      has an inverse, we need to computeB

gcd(B,N)

Euclid’s Algorithm finds gcd in polynomial time.

Arguably the first ever algorithm.  ~ 300 BC

How do you compute: A ·B�1
mod N

i.e., how do you compute B�1?



How to compute the multiplicative inverse

gcd(A, B): 
     if B == 0, return A 
     return gcd(B,  A mod B)

Euclid’s Algorithm

Homework

Why does it work?

Why is it polynomial time?



Major open problem in Computer Science

Is gcd computation efficiently parallelizable?

i.e., is there a circuit family of 
        -  poly(n) size
        -  polylog(n) depth
     that computes gcd?



How to compute the multiplicative inverse

Ok,  Euclid’s Algorithm tells us whether an element has 
an inverse.      How do you find it if it exists?

Definition: We say that      is a miix of      and      ifC A B

C = k ·A+ ` ·B

for some k, ` 2 Z.

Examples:

2 is a miix of 14 and 10:      2 = (-2) 14 + 3 10. .

7 is not a miix of 55 and 40:    any miix would be
                                            divisible by 5.

Any multiple of 2 is a miix of 14 and 10.

not a real term 😋



How to compute the multiplicative inverse

Fact:      is a miix of      and      if and only ifC A B

    is a multiple of                  . gcd(A,B)C

The coefficients      and      can be found by
slightly modifying Euclid’s Algorithm.  

k `

If                          ,  we can find                 such that  gcd(B,N) = 1 k, ` 2 Z
1 = k ·B + ` ·N

gcd(A,B) = k ·A+ ` ·BSo

||
B�1Therefore found

Finding         : B�1



2 Questions remain

How do you prove:

                            exists if and only ifA�1 2 ZN gcd(A,N) = 1.

How do you compute: A ·B�1
mod N

i.e., how do you compute B�1?



When does the inverse exist

How do you prove:

                            exists if and only ifA�1 2 ZN gcd(A,N) = 1.

Proof: A�1
exists

() 9k such that k ·A ⌘N 1

9k, q such that 1 = k ·A+ (�q) ·N()

1 is a miix of A and N()

gcd(A,N) = 1()

dividesN k ·A� 1

() 9k, q such that k ·A� 1 = q ·N



Main goal of this lecture

Modular Universe

- How to view the elements of the universe?

- How to do basic operations:

> addition

> subtraction

> multiplication

> division

> exponentiation

> taking roots

> logarithm

theory 
+ 

algorithms
(efficient (?))



Next Time

Cryptography


