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This Week
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input computing output
data device data

What is computation?
What is an algorithm?

How can we mathematically define them!?



No “universal’” machines exist.

Let’s assume two things about our world
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We only have machines to solve decision problems.



Definitions from last time

* = the set of all finite length strings over X
A subset L C X" is called a language.

A computational problem is a function f: X" — X*.
A decision problem is a function f : 3" — {0,1}.

There is a one-to-one correspondence between
decision problems and languages.



DFA state diagram

Input: OII11
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DFA: state diagram + input tape

tape I‘O‘I‘I‘I‘O‘I‘u‘u‘u‘u‘u{...
?

tape head “blank” symbol




DFA: state diagram + input tape
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DFA: state diagram + input tape
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DFA: state diagram + input tape

To [ ol [ooTou] o] -

Decision: Accept



DFA as a programming language

def foo(input):
1=0;
STATE O:
if (1 == input.length): return False;
letter = input[i];
1++;
switch(letter):
case ‘0’: go to STATE 0;
case ‘1’: goto STATE 1;

STATE 1:
if (1 == input.length): return True;
letter = input[i];
1++;
switch(letter):
case ‘0’: go to STATE 2;
case ‘1’: go to STATE 2;

input =

oft|r]1]l




Formal definition: DFA

A deterministic finite automaton (DFA) M is a 5-tuple
M = (Q72757QO7F)

where
- (Q is a finite set (which we call the set of states);

- 2. is a finite set (which we call the alphabet);
- 0 is a function of theform 0 : Q) x X — @)

(which we call the transition function);

- go € () is an element of ()
(which we call the start state);

- F' C @ is asubset of ()
(which we call the set of accepting states).



Formal definition: DFA accepting a string

Let w = wywsy - --w, be a string over an alphabet >..
Let M = (Q,,9,qo, F') be a DFA.

We say that M accepts the string w
if there exists a sequence of states 79,71,...,7n, € )
such that

- To = 4o ;
- 6(ry;_1,w;) =r; foreach ie{1,2,...,n};
- T'n GF.

Otherwise we say M rejects the string w.



Definition: Regular languages

-
Definition: A language L is called regular if

. L =L(M) for some DFA M.




2 Theorems

Let > be some finite alphabet.

\_

4 )
Theorem:
The language L = {0"1" : n € N} is not regular.

\_ J

4 )
Theorem:

If L7 C X" and Lo C X are regular, then so is L U L.

J




Input
data

s

computing
device

~

What is computation?

What is an algorithm?

output
data

A specification that describes
how information is transformed.

How can we mathematically define them!?

The properties we want from the definition:

Simplicity! (the simpler the better)

Generality! (general enough to capture all of computation)



1900 1936 2015

Goal is to reach the definition of a Turing machine.
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Input . compfjtlng
data device

.
output

data

2 important observations:

|. The device should be a “finite object”.

An algorithm should be a “finite object”.

[
An algorithm is a finite answer

to infinite number of questions.
-

~

-

Stephen Kleene



( )

input computing output
—> i —>
data device data

2 important observations:

2. The device should be able to use “unlimited memory”.

(there is always more space to work on, if needed)

Wouldn’t be mathematically natural otherwise.



Solvable with any
computing device

Factoring

on|n

Regular languages
Primality
EvenlLength




Solving O"["in Python

def foo(input):
1=0
] = len(input) - 1
while(j >=1):
if(input[i] != ‘0’ or input[j] != ‘1"):
return False
1=1+1
1=3-1
return True



Solving O"["in C

int foo(char input[])
{
inti=0,;
while(input[j] = NULL) /* NULL 1s end-of-string character */
J++;
J—:
while(j >=1)
1
if(input[1] != ‘0’ Il input[j] !=“1")
return O0; /* Reject */
1++;
J—;
¥

return 1; /* Accept */

¥



Solvable with Python?

Factoring

on|n

Regular languages
Primality
EvenlLength




r p
Should we define computable to mean

\what is computable by a Python function/program? )

Downsides as a formal definition?

- Why choose Python, why not C, Java, SML,... ?

Are these equivalent!
solvable in Python = solvable in C?

- Extremely complicated to define rigorously.
(even bytecode)



4 )
Should we define computable to mean

what is computable by a Python function/program?
\ _J

Downsides as a formal definition?

- Why choose Python, why not C, Java, SML,... ?

Are these equivalent!
solvable in Python = solvable in C?

- Extremely complicated to define rigorously.
(even bytecode)



So what we want is:

A totally minimal (TM) programming language such that

- it can simulate simple bytecode
(and therefore Python, C, Java, SML, etc...)

- it is simple to define and reason about completely
mathematically rigorously



Actually TM stands for Turing machine.

Defined by Alan Turing in a paper he wrote in 1936
while he was a PhD student.



Turing machine description

TM =~ DFA + infinite tape

3 2 -1 0 I 2 3 4 5 6 7 8 9 10 11 12 13

1) (5% 1 Y 3 5 5 S S

In
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but is written on the tape starting at index 0.

| other cells contain the blank symbol LJ.

There is a tape pointer/head (initially at position 0).

You can read & write to the tape cell pointed to.



3 2 -

Turing machine description

TM =~ DFA + infinite tape

o I 2 3 4 5 6 7 8 9 10 Il

12 13

oL

a‘a‘b‘a‘l_l‘l_l‘l_l‘l_l‘l_l‘l_l‘l_l‘l_l

nmi

?

TM could have been defined as a sequence of instructions,
where the allowed instructions are:

> Move the head left

> Move the head right

> Write a symbol a (from the alphabet)

> |If head is reading symbol a, GOTO step |
> Halt and accept

> Halt and reject

But, we want to keep the def’n as simple as possible.




Turing machine description

TM =~ DFA + infinite tape

;3-2-|O|23456789IOIII2I3|
1) (5% 1 Y 3 5 5 S S
?

So aTM is a sequence of steps (states), each looking like:

/STATE 0: h
switch(letter under the head):
case ‘a’: write ‘b’; move Left; go to STATE 2;
case ‘b’: write ‘L’; move Right; go to STATE O;
_ case ‘L’: write ‘b’; move Left; go to STATE 1; )




Turing machine description

/STATE 0: h
switch(letter under the head):
case ‘a’: write ‘b’; move Left; go to STATE 2;
case ‘b’: write ‘L’; move Right; go to STATE 0;
_ case ‘L’: write ‘b’; move Left; go to STATE 1; )

At each step, you have to:
- write a new symbol to the cell under the head
- move tape head Left or Right

- g0 to a new state
Don’t want to change the symbol: write the same symbol.
Want to stay put: move Left then Right.

Don’t want to change state: go to the same state.



3 -2 -

Turing machine official picture
0 I 2 3 4 5 6 7 8 9 10 Il

12 13

oL

a‘a‘b‘a‘l_l‘l_l‘l_l‘LI‘l_l‘l_l‘l_l‘l_l

N

Input: aaba;nd you read a,

?

if you are in state 0

then write blank
and move Right

(a— LR




Turing machine official picture

3 2 -1 0 1 2 3 4 5 6 7 8 9 1011 1213
ol e [alb e o oloToulo oo ool
?

what you read

Input: aaba what you write

direction




Turing machine simulation example
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Input: aaba
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Turing machine simulation example
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Turing machine simulation example

3 2 -1 0 1 2 3 4 5 6 7 8 9 1011 1213
1) [ N3  3 E E S E
?

Input: aaba Decision: Accept




Turing machine simulation example
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Turing machine simulation example
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Turing machine simulation example

3 2 -1 0 I 2 3 4 5 6.7 8 9 1011 1213
Jujululafajalafajujujujujujuju]u]
?

Input: baaaaa




Turing machine simulation example
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Turing machine simulation example
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Jujululafajalafajujujuiujujuju]u]

?

Input: baaaaa




Turing machine simulation example

3 2 -1 0 I 2 3 4 5 6.7 8 9 1011 1213
Jujululafajalafajujujuiujujuju]u]

?

Input: baaaaa




Turing machine simulation example

3 2 -1 0 1 2 3 4 5 6 7 8 9 1011 1213
1) [ I3 Y S Y S Y 6 L S ) S D O
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Input: baaaaa




Turing machine simulation example

3 2 -1 0 1 2 3 4 5 6 7 8 9 1011 1213
1) [ I3 1 5 S Y S Y 6 L S ) S A O
?

Input: baaaaa




Turing machine simulation example

3 2 -1 0 1 2 3 4 5 6 7 8 9 1011 1213
1) [ I3 1 5 S Y S Y 6 L S ) S A O
?

Input: baaaaa




Turing machine simulation example

3 2 -1 0 1 2 3 4 5 6 7 8 9 1011 1213
1) [ I3 1 5 S Y S Y 6 L S ) S A O
?

Input: baaaaa Decision: Reject




TM as a programming language

def foo(input):
i=0 tape head position
STATE 0:
letter = input[i];
switch(letter):
case ‘a’: input[i] = * ’; 1++; go to STATE a;

9

case ‘b’: input[i] = * ’; 1++; go to STATE b;
case

: input[i] = ¢ ’; 1++; go to STATE rej;
STATE a:
letter = input[i];

switch(letter):
case ‘a’: input[i] = *’;1--; go to STATE acc;

case ‘b’: input[i] = * ’; 1--; go to STATE rej;
: input[i] = * ’; 1--; go to STATE rej;

case ¢’



TM as a programming language

def foo(input):

1=0

STATE0.)
letter = input[i];
switch(letter):

case ‘a’: input[i] = * ’; 1++; go to STATE a;

case ‘b’: input[i] = * ’; 1++; go to STATE b;
case

STATE a:)

: input[i] = * ’; 1++; go to STATE rej;
letter = input[i];

switch(letter):
case ‘a’: input[i] = *’;1--; go to STATE acc;
case ‘b’: input[i] = ’; i--; go to STATE rej;
: input[i] = * ’; 1--; go to STATE rej;

U~ U, L U~ U, L

b— U, L

case ¢’



TM as a programming language

def foo(input):
1=0
STATE O:
letter = input[i];
switch(letter):
case ‘a’:

9

input[i] = * ’; 1++; go to STATE a;
case ‘b’:|input[i] = * ’; 1++; go to STATE b;
case

*:)Jinput[i] = ¢ ’; 1++; go to STATE rej;
STATE a:
letter = input[i];

switch(letter):
case ‘a’: input[i] = *’;1--; go to STATE acc;

case ‘b’: input[i] = * ’; 1--; go to STATE rej;
: input[i] = * ’; 1--; go to STATE rej;

case ¢’



TM as a programming language

def foo(input):
1=0
STATE 0:
letter = input[i];
switch(letter):
case input[i] = * ’; 1++; go to STATE a;
case input[i] = * ’; 14++; go to STATE b;
case input[i] = * ’; i++; go to STATE rej;
STATE a:
letter = input[i];
switch(letter):
case ‘a’: input[i] = *’;1--; go to STATE acc;
case ‘b’: input[i] = * ’; 1--; go to STATE rej;
: input[i] = * ’; 1--; go to STATE rej;

U~ U, L U~ U, L

b— U, L

case ¢’



TM as a programming language

def foo(input):
1=0
STATE 0:
letter = input[i];
switch(letter):
case ‘a’: input[i] = O i1++; go to STATE a;
case ‘b’: input[i] =(* ); 1++; go to STATE b;
case ¢ ’: input[i] =(* ); i++; go to STATE rej;
STATE a:
letter = input[i];
switch(letter):
case ‘a’: input[i] = *’;1--; go to STATE acc;
case ‘b’: input[i] = * ’; 1--; go to STATE rej;
: input[i] = * ’; 1--; go to STATE rej;

U— U, L

9

»

case ¢’



TM as a programming language

def foo(input):
1=0
STATE 0:
letter = input[i];
switch(letter):
case ‘a’: input[i] =’
case ‘b’: input[i] ="
case © ’: input[i] ="
STATE a:
letter = input[i];
switch(letter):
case ‘a’: input[i] = *’;1--; go to STATE acc;
case ‘b’: input[i] = ’; i--; go to STATE rej;
: input[i] = * ’; 1--; go to STATE rej;

U— U, L

(i+4) go to STATE a;
(i+4) go to STATE b;
(i+4) go to STATE rej;

9

case ¢’



TM as a programming language

def foo(input):
1=0
STATE 0:
letter = input[i];
switch(letter):
case ‘a’: input[i] = i++ go to STAT
case ‘b’: input[i] = ’; 1++; go to STAT
case ° ’: Input[i] = ¢ ’; i++; go to STATE‘
STATE a:
letter = input[i];
switch(letter):
case ‘a’: input[i] = *’;1--; go to STATE acc;
case ‘b’: input[i] = ’; i--; go to STATE rej;
case ° ’: input[i] = ’;i--; go to STATE rej;

U— U, L




TM as a programming language

def foo(input):
1=0
STATE 0:
letter = input[i];
switch(letter):
case ‘a’: input[i] = * ’; 1++; go to STATE a;

9

case ‘b’: input[i] = * ’; 1++; go to STATE b;
case

: input[i] = ¢ ’; 1++; go to STATE rej;
STATE a:
letter = input[i]j

switch(letter):
input[i] = * ’; 1--; go to STATE acc;

:|input[i] = * 7; 1--; go to STATE rej;
:)input[i] = * ’; 1--; go to STATE rej;




TM as a programming language

def foo(input):
1=0
STATE 0:
letter = input[i];
switch(letter): @— UL
case ‘a’: input[i] = * ’; 1++; go to STATE a;

9

case ‘b’: input[i] = * ’; 1++; go to STATE b;
case

: input[i] = ¢ ’; 1++; go to STATE rej;
STATE a:
letter = input[i];

switch(letter):
case input[i] = ¢ ’; i--; go to STATE acc;

case(b’) input[i] = ¢ ’; i--; go to STATE rej;
case( ) input[i] = ’;i--; go to STATE rej;

U— U, L

b— U, L




TM as a programming language

def foo(input):
1=0
STATE 0:
letter = input[i];
switch(letter):

case ‘a’: input[i] = * ’; 1++; go to STATE a;

case ‘b’: input[i] = * ’; 1++; go to STATE b;

U— U, L

b— U, L

case ¢ ’: input[i] = ’; i++; go to STATE rej;
STATE a:
letter = input[i];
switch(letter):
case ‘a’: input[i] =( ) i--; go to STATE acc;
case ‘b’ input[i] =(* ); i--; go to STATE rej;
case ¢ ’: input[i] =(* ); i--; go to STATE rej;



TM as a programming language

def foo(input):
1=0
STATE 0:
letter = input[i];
switch(letter):
case ‘a’: input
case ‘b’: input
case ° ’: 1nput
STATE a:
letter = input[i];
switch(letter):
case ‘a’: input[i] =
case ‘b’: input|
case ° ’: 1nput|

U— U, L

b— U, L
1] = * 7; 1++; go to STATE a;
1] = * ’; 1++; go to STATE b;

1] = * ’; i++; go to STATE rej;

(i--))go to STATE acc;
(i--;) go to STATE rej;
(i--;) go to STATE rej;




TM as a programming language

def foo(input):
1=0
STATE 0:
letter = input[i];
switch(letter):
case ‘a’: input
case ‘b’: input
case ° ’: 1nput
STATE a:
letter = input[i];
switch(letter):
case ‘a’: input
case ‘b’: input
case ° ’: 1nput

U~ U, L U~ U, L

b U, L
1] = * 7; 1++; go to STATE a;
1] = * ’; 1++; go to STATE b;
1] = * ’; i++; go to STATE rej;

1] =°’;1--; goto STATE
1] = ¢ ’;1--; go to STAT @
i] = ’;i--; go to STATE(rej)




The machine accepts a string x if and only if:
x[0] = x[I] and |x| = 2
X has at least two a’s or two b’s.
x[0] # x[1]
IX| > | and x[0] = x[ ] None of these.
x[0] = x[1] Beats me.



Exercise

Let > = {a,b}.

Draw the state diagram of a TM that accepts a string
iff it starts and ends with an a.



Formal definition: Turing machine

A Turing machine (TM) M is a 7-tuple

M = (Q, Z, F, 5, qd0, Qacc) QTej)
where

- () is a finite set (which we call the set of states);

- Y is a finite set with LI & X
(which we call the input alphabet);

- I isafinitesetwith LI €l and X C T
(which we call the tape alphabet);

- 0 is afunction of the form 0: Q@ xI' — @Q xI" x {L, R}
(which we call the transition function);

- go € QQ  (which we call the start state);

- Gacc € () (Which we call the accept state);

- Grej € @, Grej 7 Gacc (Which we call the reject state);



Formal definition: TM accepting a string

A bit complicated to define rigorously.
Not too much though.

See Homework 2.



DFAs vs TMs

- A DFA does not have access to tape cells that don’t
contain the input.

(doesn’t have access to unbounded memory)

- A DFA’s tape head can only move right.
- A DFA can’t write to the tape.

- A DFA can have more than one accepting state.

- A DFA always halts once all the input symbols are read.
A TM might loop forever.



DFAs vs TMs

- A DFA does not have access to tape cells that don’t
contain the input.

(doesn’t have access to unbounded memory)

- A DFA’s tape head can only move right.
- A DFA can’t write to the tape.

- A DFA can have more than one accepting state.

- A DFA always halts once all the input symbols are read.
A TM might loop forever.



Definition: decidable/computable languages

Let M be aTuring machine.
We let L(M) denote the set of strings that M accepts.
So, L(M)={x € X" : M(x) accepts.}

What is the analog of regular languages in this setting?

[Definition: A TM is called a decider if it halts on all inputs.]

4 )
Definition: A language L is called decidable (or computable)

if L = L(M) for some decider TM M.
.

J




?
regular languages = decidable languages



Turing machine that decides O"|"

>, =40,1} '=1{0,1,#, U}

(Omitted information
defined arbitrarily.
Missing transitions

go to the reject state.)
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Input: 0000101 |



Turing machine that decides O"|"

[olo[#[ZTo o[ [o[[#[0u[o]d

oL

Input: 0000101 |



Turing machine that decides O"|"

[olo[#[ZTo o[ [o[#[#F[0]u[o]d

oL

Input: 0000101 |



Turing machine that decides O"|"

!

[olo[#[ZTo o[ [o[#[#F[0]u[o]d

oL

Input: 0000101 |



Turing machine that decides O"|"

!

[olo[#[ZLo o[ [o[Z[#F[0]u[o]d

oL

Input: 0000101 |



Turing machine that decides O"|"

!

[CTo[#[#To o[ [o[#[#[0]u[o]d

oL

Input: 0000101 |



Turing machine that decides O"|"

!

[olo[#[ZLo o[ [o[Z[#F[0]u[o]d

oL

Input: 0000101 |



Turing machine that decides O"|"

!

SJuful#f#[# o 1 [of#[#[u]ufu]d

oL

Input: 0000101 |



Turing machine that decides O"|"

!

JJuful#f#[# o 1o #[#[u]ufu]d

oL

Input: 0000101 |



Turing machine that decides O"|"

SJuful#f#[# o 1o #[#[u]ufu]d

oL

Input: 0000101 |



Turing machine that decides O"|"

JJuful#f#[# o 1o #[#[u]ufu]d

oL

Input: 0000101 |



Turing machine that decides O"|"

SJuful#f#[# o 1[of#[#[u]ufu]d

oL

Input: 0000101 |



Turing machine that decides O"|"

JJoTol#[#[F o Jo[#[#[u] oo olu] o]

Input: 0000101 | Decision: reject



Programming with a TM is tiresome.

Every computer scientist should spend some time
doing it at least once in their life.

Unfortunately for you, that time is now!



Some TM subroutines and tricks

- Move right (or left) until first LI encountered
- Shift entire input string one cell to the right

- Convert input from

r1L2x3 ...y to UHrxiUxoUdxsg...Ux,
- Simulate a big I' by just {0, 1, LI}

- “Mark” cells. If T' = {0, 1, U}, extend it to
I = {0,1,0%1°, )}

- Copy a stretch of tape between two marked cells
into another marked section of the tape



Some TM subroutines and tricks

- Implement basic string and arithmetic operations
- Simulate a TM with 2 tapes and heads
- Implement a dictionary data structure

- Simulate “random access memory”

- Simulate assembly language

You could prove this rigorously if you wanted to.



So what we want is:

A totally minimal (TM) programming language such that

- it can simulate simple bytecode /
(and therefore Python, C, Java, SML, etc...)

- it is simple to define and reason about compy

mathematically rigorously



A note

You could describe aTM in 3 ways:

Low level description
State diagram

Medium level description

Description of the movement and the behavior
of the tape head.

High level description

Pseudocode or algorithm



Important Question

Is TM the right definition!?

Is there a reasonable definition of “algorithm”
that can compute more languages than TM-decidable ones?



Solvable with any computing device

) TM-decidable

Factoring

on|n

Regular languages
Primality
EvenLength




Church-Turing Thesis

Church-Turing Thesis

The intuitive notion of “computable” is captured by
functions computable by a Turing Machine.

This is not a theorem!

Is it ... an observation?
a definition?
a hypothesis?
a law of nature/physics?
a philosophical statement?




How did Turing think about all this?

1936: On Computable Numbers, with an Application to the
Entscheidungsproblem

2 A M. Tomise [Novx. 12,

ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO
THE ENTSCHEIDUNGSPROBLEM

By A. M. Tumaxe

[Rovewved 25 May, 1906 —Road 12 Novenber, M6

The “computable' mnumbers may be described briefly as the real A h M f 14=1

numbers whose expressions as a decimal are caloulable by finite means t t e tl I I Ie O ertl ng’
Although the subject of this paper is ostensibly the computable newbers

it is almoat equally easy to define and investigate computable functions 66 ’
of an integral variable or a real or computable variable, computable m t r m eant a e rso n
predicates, and so forth. The fundamental peoblems involved are, C O P u e p 9
howover, the same in each case, and I have chosen the computabde numbars
for explicit trentment sy involving the least cumbrous techeique. T hope . . .

shortly to give an ascount of the relations of the computable numbers, t ral n e d I n Ca I C u Iatl O n
fumctions, and so forth to cae ancther. This will include a development L
of the theory of functions of a real variable expressed in terms of com-
putable numbers. According to my defimition, & number is compatable
if its decimal can be written down by a machine.

In §59. 10 1 give some arguments with the intention of showing that the
compatable nwmbers include all mumbers which could natunally he
regarded as compmtablde, In particular, I show that certain largo olasses
of mumbers are computable. They include, for instance, the real parts of
all algobrase numbers, the real parts of the xeros of the Besel functions
the numbers =, ¢, ¢t0. The computable nambers do not, however, include
all defimakle numbers, and an example i given of a definable number
which is not computable

Although the class of computable numbers is 30 great, and in many
ways similar 16 the class of real numbers, it is nevertheless enumerable,
In §5 Lexamine certain arguments which would seem Lo prove the conteary.

By the correct application of one of these arguments, conclusions are
resched which are superficially similar to those of Godelt. These results

t Godel, “Uber formal wrmntacheldhase Sitoe der Principia Mathemation wod ver-
wanhier Spsteme, 17, Mosatslofiv Mash. Phge, 38 (E931), 173090,
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How did Turing think about all this?

1936: On Computable Numbers, with an Application to the
Entscheidungsproblem

2 A. M. Tonise [Nov. 12,

ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO Any n Oti O n Of ¢ C O m P utati O n »

THE ENTSCHEIDUNGSPROEBLEM

must be able to be carried out

[Rovewved 25 May, 1906 —Road 12 Novenber, M.

’»
The “computable' numbers may be described briefly as the real by a “Com Pute r N

numbers whose expressions as a decimal are calculable by finite means
Although the subject of this paper is cstansibly the computable neewders
it s almoat equally easy to define and investigate computable functions
of an integral variable or a real or computable variable, computable
predicates, and so forth. The fundamental peoblems involved are,
howover, the same in each case, and I have chosen the computabde numbars
for explicit treatment sy involving the least cumbrous techemique. T hope
xhortly to give an ascount of the relations of the computable numbers,
fumctions, and so foeth to cae ancther. This will include a development
of the theory of fanctions of & real vanable expressed in terms of com- o o o °
putable numbess. Acocrding to my defimition, & number is compatable Tu rl n u Stl ﬁ ed T M S b a r u I n
if its decimal can be written down by a machime.

In §59. 10 1 give some arguments with the intention of showing that the
compwtable nwmbers include all mumbers which could naturally he ° °
regarded as compmtable. In particular, I show that certain largo olasses th at It Can d O an th I n a
of mumbers are computable. They include, for instance, the real parts of
all algobrase numbers, the real parts of the zeros of the Bewel functions
the numbers =, ¢, ¢t0. The computable nambers do not, however, include
all defimakle numbers, and an example is given of a definable number h u I I Ian CO u I d .
uwhich is not computable

Although the class of computable numbers is 30 great, and in many
ways simdlar 10 the class of real nambers, it is nevertheless enumerable
In §8 Lexamine certain arguments which would seem o peove the conteary.
By the correct application of one of these arguments, conclusions are
resched which are superfictally similar to those of Godelt. These results

t Godel, “Uber formal wraotscheldhare St der Principia Mathemetion wnd ver.
wandier Systeme, 17, Masstslolv Mash. PAge, 38 (1931), 173154




What else did Turing do in his paper?

Universal Machine

(one machine to rule them all)

(" ) ("

- =

| J -

Primality

~

J

-

|

Sorting

~

J

e

|

DFA
x| even

J

All can be encoded/represented with a string.
(e.g. think source code)

<[A TMJ>\
7

X

thisisaTM

s

UNIVERSAL
MACHINE

~

on input X

output of the TM
—



What else did Turing do in his paper?

Universal Machine
(one machine to rule them all)

This is exactly what an interpreter does.

1l

\ /

)
o
5

X

.

Python
Interpreter

output of the
—> Python program

J

on input X



What else did Turing do in his paper?

There are languages that cannot be computed!



Solvable with any computing device

TM-decidable

Factoring

on|n

Regular languages
Primality
EvenLength




What else did Turing do in his paper?

There are languages that cannot be computed!

-

Entscheidungsproblem
Determining the validity of a given FOL sentence.

\e.g. —Jz,y,z,n € N: (n>3) A (" +y" = 2")

Not decidable!

/Halting problem

Determining if a given TM halts on all inputs.
\(i.e. determining if a given TM is a decider.)

Not decidable!



How do you show a problem is undecidable?

Well, of course, you assume it is decidable,
and reach a contradiction.

Next week’s topic!
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