
CMU 15-251
Great Theoretical Ideas in Computer Science

Fall 2015

Course Notes:
Definitions and Proofs∗

November 27, 2015

∗Please send comments and corrections to aada@cs.cmu.edu.

Acknowledgements

These notes are based on the lectures given by Ariel Procaccia and Anil Ada for the
Fall 2015 edition of the course 15-251 “Great Theoretical Ideas in Computer Science”
at Carnegie Mellon University. They are also very much related to the Spring 2015
edition of the course and the lectures given by Ryan O’Donnell. The purpose of these
notes is to collect the definitions and proofs seen in class. These notes do not contain
full explanations of all the material covered during lectures.

Thanks to Eric Bae, Teddy Ding, Ellen Kim, Aditya Krishnan, Matthew Salim,
Ticha Sethapakdi, Vanessa Siriwalothakul, Natasha Vasthare, Jenny Wang, Ling Xu
and Ming Yang for sending valuable comments and corrections.

i

Contents

1 Pancake Sorting Problem 1

2 Deterministic Finite Automata 4

3 Turing Machines 9

4 Countable and Uncountable Sets 12
4.1 Countable sets . 13
4.2 Uncountable sets . 14

5 Undecidable Languages 16

6 Time Complexity 22

7 Cake Cutting 25

8 Boolean Circuits 30

9 Graphs I: The Basics 36

10 Graphs II 41
10.1 Depth-first search . 41
10.2 Minimum spanning tree . 44

11 Graphs III 47
11.1 Maximum matching . 47
11.2 Stable matching . 49

12 Polynomial-time Reductions 53

13 Non-Deterministic Polynomial Time 59
13.1 The complexity class NP . 59
13.2 NP-complete problems . 61

14 Computational Social Choice Theory 66

15 Approximation Algorithms 69

16 Online Algorithms 74

17 Probability I: The Basics 78

ii

18 Probability II: Random Variables 81
18.1 Basics of random variables . 81
18.2 Three popular random variables . 84
18.3 Some general tips . 85

19 Randomized Algorithms 87

20 Modular Arithmetic 93
20.1 Basic modular operations . 93

20.1.1 Addition and subtraction . 93
20.1.2 Multiplication and division . 94
20.1.3 Exponentiation . 95

20.2 Computational complexity of basic modular operations 96
20.2.1 Addition and subtraction . 96
20.2.2 Multiplication and division . 96
20.2.3 Exponentiation . 97

21 Cryptography 99

iii

1 Pancake Sorting Problem

Definition 1.1 (Pancake numbers).
We are given a stack of n pancakes, each of different size. Our goal is to sort this stack
from smallest to largest (largest being on the bottom of the stack). The only thing
we are allowed to do is to insert the spatula in between two pancakes (or between the
bottom pancake and the plate), and flip over all the pancakes that are on top of the
spatula.

We are interested in the maximum number of flips (in terms of n) we would need to
sort a stack of n pancakes, where the maximum is over all stacks with n pancakes. In
other words, we are interested in

Pn = max
S

min
A

number of flips that method A takes to sort stack S.

Here, the maximum is over all pancake stacks of size n, and the minimum is over all
methods/algorithms for sorting a given stack of pancakes. �

Notation 1.2. We represent a stack of n pancakes with a permutation of {1, 2, . . . , n}.
Here, the numbers correspond to how large the pancake is, so 1 represents the smallest
pancake and n represents the largest pancake. For example, (5 2 3 4 1) corresponds to
a stack of 5 pancakes, where the largest pancake 5 is at the top of the stack, and the
smallest pancake 1 is at the bottom.

Proposition 1.3 (Number of flips required for (5 2 3 4 1)). Let X denote the minimum
number of flips needed to sort the stack (5 2 3 4 1). Then X = 4.

Proof. To prove X ≤ 4, we show how to sort (5 2 3 4 1) in 4 flips:

(5 2 3 4 1)→ (1 4 3 2 5)→ (2 3 4 1 5)→ (4 3 2 1 5)→ (1 2 3 4 5).

We now prove X ≥ 4. The proof is by contradiction, so assume that there is a way to
sort (5 2 3 4 1) in 3 or less flips.
Observation. Right before a pancake is placed at the bottom of the stack, it must be
placed at the top of the stack.
Claim. The first flip must put 5 on the bottom of the stack.
Proof of Claim. Suppose the first flip does not put 5 on the bottom of the stack, so it
puts it somewhere in the middle. Then we can show that (5 2 3 4 1) cannot be sorted
in 3 or less flips. We know that after 3 flips, 5 must be placed at the bottom of the

1

stack. The observation above implies that the second flip must send 5 to the top. So
in the first two flips, 5 first gets sent from the top to somewhere in the middle, and
then it gets flipped back up to the top. In other words, after 2 flips we end up with the
original stack (5 2 3 4 1). There is no way to sort (5 2 3 4 1) with the remaining flip,
which proves the claim.

So we know that the first flip must be (5 2 3 4 1) → (1 4 3 2 5). In the remaining
two flips, 4 must be placed next to 5. It is clear that 5 should not be touched (i.e., we
should not be flipping the whole stack). So we can ignore 5 and and just consider the
stack of 4 pancakes (1 4 3 2). We need to put 4 at the bottom of this stack in 2 flips.
Again, using the observation stated above, we know that 4 must be first placed at the
top of the stack. So the 2 flips must be (1 4 3 2)→ (4 1 3 2)→ (2 3 1 4). The resulting
stack is not sorted, which is the desired contradiction.

Theorem 1.4. For n ≥ 4, we have

n ≤ Pn ≤ 2n− 3.

The proof of the theorem follows from the following two lemmas.

Lemma 1.5. For n ≥ 2, we have Pn ≤ 2n− 3.

Proof. Consider the following algorithm for sorting an arbitrary stack of n pancakes.

• If n = 1: do nothing.

• If n = 2: sort the pancakes in one flip if they are not already sorted.

• Else (if n ≥ 3):

– Bring the largest pancake to the bottom of the stack in 2 flips.

– Recursively sort the remaining n− 1 pancakes.

Clearly,1 the algorithm correctly sorts a given stack of pancakes. Let T (n) be the
number of flips that this algorithm uses to sort a stack of n pancakes. By the definition
of Pn, Pn ≤ T (n). So we are done once we show T (n) ≤ 2n−3 for n ≥ 2. The recursive
relation that T (n) satisfies is

T (1) = 0,

T (2) ≤ 1,

T (n) ≤ 2 + T (n− 1) for n ≥ 3.

This implies that T (n) ≤ 2n− 3 for n ≥ 2, which completes the proof.2

1You should be careful using the word “clearly”. In this case, it is justified.
2To be more complete, you can prove T (n) ≤ 2n− 3 for n ≥ 2 with a quick induction. This part is

omitted.

2

Exercise 1.6. Show by induction that the recurrence relation in the above proof solves
to T (n) ≤ 2n− 3 for n ≥ 2.

Lemma 1.7. For n ≥ 4, we have Pn ≥ n.

Proof. Given i, j ∈ {1, 2, . . . , n} and a pancake stack, we say that (i, j) form a bad pair
with respect to that stack if they are adjacent in the stack, and |i − j| > 1 (i.e., they
are not supposed to be adjacent once the stack is sorted). Observe that if two pancakes
are adjacent in a stack, they will remain adjacent if the spatula is never inserted in
between them. This means that if (i, j) form a bad pair, then any sorting method that
sorts the stack must insert the spatula in between i and j at some point. Note that
we can also consider the bottom pancake and the plate as a bad pair too. If we never
insert the spatula at the bottom of the stack, then the bottom pancake and the plate
will remain adjacent. So we extend our definition of a bad pair to include the plate too.

Now we can conclude that a stack with b bad pairs needs at least b flips to be sorted.
We finish the proof by showing that for n ≥ 4, there is a stack of n pancakes containing
n bad pairs. We do this by considering two cases: when n is even and when n is odd.
When n is even, the following stack has n bad pairs:

(2 4 6 · · · n− 2 n 1 3 5 · · · n− 1).

When n is odd, the following stack has n bad pairs:

(1 3 5 · · · n− 2 n 2 4 6 · · · n− 1).

(Note that the assumption n ≥ 4 is required so that the pancakes right in the middle
of the stacks form a bad pair.)

Exercise 1.8. Suppose we are allowed to take any contiguous set of pancakes and flip
them in place (they need not be on the top of the stack). Let Qn be the maximum over
stacks of size n of the minimum number of flips required to sort that stack, using this
new flipping operation. Show that n/2 ≤ Qn ≤ n− 1 for all n ≥ 2.

3

2 Deterministic Finite Automata

Notation 2.1. We let Σ denote a finite and non-empty set of symbols, which we refer
to as the alphabet. Then, Σ∗ denotes the set of all words/strings over the alphabet Σ
with finitely many symbols. This includes the string with no symbols. As examples,
consider the following:

{1}∗ = {ε, 1, 11, 111, 1111, 11111, . . .},
{0, 1}∗ = {ε, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, . . .}.

Above, ε denotes the empty word, i.e. the word with no symbols.
If u and v are two strings in Σ∗, then we denote by uv the string obtained by

concatenating u and v. For example, if u = 101 and v = 001, then uv = 101001. For
a word u ∈ Σ∗, we denote by un the word obtained by concatenating u with itself n
times. For example, if u = 101 then u3 = 101101101.

For u ∈ Σ∗, |u| is called the length of u and is defined to be the number of symbols
in u.

Exercise 2.2. Let Σ be some arbitrary finite alphabet. Let u and v be two non-empty
words with the property that uv = vu. Prove that there must be a non-empty word w
and numbers i, j ∈ N+ such that u = wi and v = wj.
(Hint: Prove by induction on |uv|.)

Definition 2.3 (Language).
Any subset L ⊆ Σ∗ is called a language over the alphabet Σ. �

Definition 2.4 (Computational problem).
Any function f : Σ∗ → Σ∗ is called a computational problem. �

Definition 2.5 (Decision problem).
Any function f : Σ∗ → {0, 1} is called a decision problem. The range of the function
is not important as long as it has two elements. Other common choices for the range
are {Yes,No}, {True,False} and {Accept,Reject}. Any w ∈ Σ∗ is called an input or
an instance of the decision problem. �

Remark. There is a one-to-one correspondence between decision problems and lan-
guages. Let f : Σ∗ → {0, 1} be some decision problem. Now define L ⊆ Σ∗ to be
the set of all words in Σ∗ that f maps to 1. This L is the language corresponding to
the decision problem f . Similarly, if you take any language L ⊆ Σ∗, we can define the
corresponding decision problem f : Σ∗ → {0, 1} as f(w) = 1 iff w ∈ L. We consider
the set of languages and the set of decision problems to be the same set of objects.

Exercise 2.6. Consider the problem of primality testing: given a number in N, output
True if the number is prime, and output False otherwise. Express the problem as a
decision problem f : {0, 1}∗ → {0, 1}. What is the language corresponding to this
decision problem?

4

Definition 2.7 (Deterministic Finite Automaton (DFA)).
A deterministic finite automaton (DFA) M is a 5-tuple

M = (Q,Σ, δ, q0, F),

where

• Q is a finite set
(which we refer to as the set of states);

• Σ is a finite set
(which we refer to as the alphabet, and each element of the alphabet is called a
symbol of the alphabet);

• δ is a function of the form δ : Q× Σ→ Q
(which we refer to as the transition function);

• q0 ∈ Q is an element of Q
(which we refer to as the start state);

• F ⊆ Q is a subset of Q
(which we refer to as the set of accepting states).

Below is an example of how we draw a DFA:

In this example, Σ = {0, 1}, Q = {q0, q1, q2, q3}, F = {q1, q2}. The labeled arrows
between the states encode the transition function δ, which can also be represented with
a table as below (row qi ∈ Q and column b ∈ Σ contains δ(qi, b)).

0 1
q0 q0 q1

q1 q2 q2

q2 q3 q2

q3 q0 q2

�

5

Definition 2.8 (A DFA accepting a string).
Let w = w1w2 · · ·wn be a string over an alphabet Σ (so wi ∈ Σ for each i ∈ {1, 2, . . . , n}).
Let M = (Q,Σ, δ, q0, F) be a DFA. We say that M accepts the string w if there exists
a sequence of states r0, r1, r2, . . . , rn ∈ Q such that:

• r0 = q0;

• δ(ri−1, wi) = ri for each i ∈ {1, 2, . . . , n};

• rn ∈ F .

Otherwise, we say that M rejects the string w. �

Definition 2.9 (Language recognized/accepted by a DFA).
For a deterministic finite automaton M , we let L(M) denote the set of all strings that
M accepts, i.e. L(M) = {w ∈ Σ∗ : M accepts w}. We refer to L(M) as the language
recognized by M (or as the language accepted by M).3 �

Definition 2.10 (Regular language).
A language L ⊆ Σ∗ is called regular if there is a deterministic finite automaton M such
that L = L(M). �

Theorem 2.11 (A non-regular language).
The language L = {0n1n : n ∈ N} is not regular.

Proof. The proof is by contradiction. So let’s assume that L is regular. By definition,
this means that there is some deterministic finite automaton M that decides L. Let k
denote the number of states of M . For n ∈ N, let rn denote the state that M reaches
after reading 0n. By the pigeonhole principle4, we know that there must be a repeat
among r0, r1, . . . , rk. In other words, there are indices i, j ∈ {0, 1, . . . , k} with i 6= j
such that ri = rj. This means that the string 0i and the string 0j end up in the same
state in M . Therefore 0iw and 0jw, for any string w ∈ {0, 1}∗, end up in the same
state in M . We’ll now reach a contradiction, and conclude the proof, by considering
a particular w such that 0iw and 0jw end up in different states. Consider the string
w = 1i. Then since M decides L, we know 0iw = 0i1i must end up in an accepting
state. On the other hand, since i 6= j, 0jw = 0j1i is not in the language, and therefore
cannot end up in an accepting state.

Exercise 2.12. Let Σ = {a, b, c}. Is the language L = {anbncn : n ∈ N} regular?

Exercise 2.13. Let Σ = {0, 1}. Is the following language regular?

L = {w ∈ Σ∗ : w contains an equal number of occurrences of 01 and 10 as substrings.}
3Here the word “accept” is overloaded since we also use it in the context of a DFA accepting a

string. However, this usually does not create any ambiguity.
4The pigeonhole principle states that if n items are put inside m containers, and n > m, then there

must be at least one container with more than one item. The name pigeonhole principle comes from
thinking of the items as pigeons, and the containers as holes.

6

Exercise 2.14. Is it true that if L ⊆ Σ∗ is a regular language, then any L′ ⊆ L is also
a regular language?

Theorem 2.15 (Regular languages are closed under the union operation).
Let Σ be some finite alphabet. If L1 ⊆ Σ∗ and L2 ⊆ Σ∗ are regular languages, then the
language L1 ∪ L2 is also regular.

Proof. Since L1 and L2 are regular languages, by definition, there are DFAs M =
(Q,Σ, δ, q0, F) and M ′ = (Q′,Σ, δ′, q′0, F

′) that decide L1 and L2 respectively. To show
L1 ∪L2 is regular, we’ll construct a DFA M ′′ = (Q′′,Σ, δ′′, q′′0 , F

′′) that decides L1 ∪L2.
The definition of M ′′ will make use of M and M ′. In particular:

• Q′′ = Q×Q′ = {(q, q′) : q ∈ Q, q′ ∈ Q′},

• δ′′ is defined such that for (q, q′) ∈ Q′′ and a ∈ Σ,

δ′′((q, q′), a) = (δ(q, a), δ′(q′, a)),

• q′′0 = (q0, q
′
0),

• F ′′ = {(q, q′) : q ∈ F or q′ ∈ F ′}.

This completes the definition of M ′′. It remains to show that M ′′ indeed decides the
language L1 ∪ L2, i.e. L(M ′′) = L1 ∪ L2. We’ll first argue that L1 ∪ L2 ⊆ L(M ′′) and
then argue that L(M ′′) ⊆ L1∪L2. Both inclusions will follow easily from the definition
of M ′′ and the definition of a DFA accepting a string.

L1 ∪ L2 ⊆ L(M ′′): Suppose w ∈ L1 ∪ L2, which means w either belongs to L1 or
it belongs to L2. Our goal is to show that w ∈ L(M ′′). Without loss of generality,
assume w belongs to L1, or in other words, M accepts w. Let n be the length of w.
Using Definition 2.8, we know w induces a sequence of states r0, r1, . . . , rn ∈ Q such
that r0 = q0, δ(ri−1, wi) = ri for each i ∈ {1, 2, . . . , n}, and rn ∈ F . This w will also
induce a sequence of states of M ′′, r′0, r

′
1, . . . , r

′
n ∈ Q′ such that r′0 = q′0, δ′(r′i−1, wi) = r′i

for each i ∈ {1, 2, . . . , n}, but r′n is not necessarily an element of F ′ (because M ′ need
not accept w). Due to how we have defined M ′′, when we run w on M ′′, it will induce
the sequence of states (r0, r

′
0), (r1, r

′
1), . . . , (rn, r

′
n) ∈ Q′′ such that (r0, r

′
0) = (q0, q

′
0),

δ′′((ri−1, r
′
i−1), wi) = (δ(ri, a), δ′(r′i, a)) for each i ∈ {1, 2, . . . , n}. The final state (rn, r

′
n)

is such that rn ∈ F , which implies by the definition of F ′′ that (rn, r
′
n) ∈ F ′′. Therefore

M ′′ accepts w, i.e. w ∈ L(M ′′). This establishes L1 ∪ L2 ⊆ L(M ′′).
L(M ′′) ⊆ L1 ∪L2: Suppose that w ∈ L(M ′′). Our goal is to show that w ∈ L1 ∪L2.

We know that w induces a sequence of states of M ′′, (r0, r
′
0), (r1, r

′
1), . . . , (rn, r

′
n) ∈

Q′′, such that (r0, r
′
0) = (q0, q

′
0), δ′′((ri−1, r

′
i−1), wi) = (δ(ri, a), δ′(r′i, a)) for each i ∈

{1, 2, . . . , n}, and (rn, r
′
n) ∈ F ′′. By the definition of F ′′, this implies that either rn ∈ F

or r′n ∈ F ′. Without loss of generality assume rn ∈ F . If we run w on M , it would
induce the sequence of states r0, r1, . . . , rn ∈ Q such that r0 = q0, δ(ri−1, wi) = ri for
each i ∈ {1, 2, . . . , n}. And since rn ∈ F , M would accept w. Therefore w ∈ L1 ∪ L2.
This establishes L(M ′′) ⊆ L1 ∪ L2, completing the proof.

7

Exercise 2.16. The above proof shows that regular languages are closed under the
union operation. Suppose we want to show that regular languages are closed under the
intersection operation. How can we modify the above proof to show this?

Exercise 2.17. Suppose that L1 ⊆ Σ∗1 and L2 ⊆ Σ∗2 are regular languages, where Σ1

and Σ2 are not necessarily the same set. Is it still true that L1 ∪ L2 is regular? Justify
your answer.

Exercise 2.18. Let L be a finite language, i.e., it contains a finite number of words.
Show that L is regular.

8

3 Turing Machines

Definition 3.1 (Turing machine).
A Turing machine (TM) M is a 7-tuple

M = (Q,Σ,Γ, δ, q0, qaccept, qreject),

where

• Q is a finite set
(which we refer to as the set of states);

• Σ is a non-empty finite set that does not contain the blank symbol t
(which we refer to as the input alphabet);

• Γ is a finite set such that t ∈ Γ and Σ ⊂ Γ
(which we refer to as the tape alphabet);

• δ is a function of the form δ : Q× Γ→ Q× Γ× {L,R}
(which we refer to as the transition function);

• q0 ∈ Q is an element of Q
(which we refer to as the start state);

• qacc ∈ Q is an element of Q
(which we refer to as the accepting state);

• qrej ∈ Q is an element of Q such that qrej 6= qacc

(which we refer to as the rejecting state).

Below is an example of how we draw a TM:

In this example, Σ = {a, b}, Γ = {a, b,t}, Q = {q0, qa, qb, qacc, qrej}. The labeled arrows
between the states encode the transition function δ. The above picture is called the
state diagram of the Turing machine. �

9

Remark. We’ll consider two Turing machines to be equivalent/same if they are the
same machine up to renaming the elements of the sets Q, Σ and Γ.

Exercise 3.2. For each language below, draw a TM that decides the language. You
can use any finite tape alphabet Γ containing Σ and t.

(a) L = {an : n is a nonnegative integer power of 2}, where Σ = {a}.

(b) L = {x ∈ {a, b}∗ : x has the same number of a’s and b’s}.

Definition 3.3 (A TM accepting or rejecting a string).
Let M be a Turing machine where Q is the state set, t is the blank symbol, and Γ is the
tape alphabet.5 To understand how M ’s computation proceeds we generally need to
keep track of three things: (i) the state M is in; (ii) the contents of the tape; (iii) where
the tape head is. These three things are collectively known as the “configuration” of the
TM. More formally: a configuration for M is defined to be a string uqv ∈ (Γ∪Q)∗, where
u, v ∈ Γ∗ and q ∈ Q. This represents that the tape has contents · · ·tttuvttt· · · , the
head is pointing at the leftmost symbol of v, and the state is q. We say the configuration
is accepting if q is M ’s accept state and that it’s rejecting if q is M ’s reject state.
Technicality alert: We also have some technicalities: The string u cannot start with
t and the string v cannot end with t. This is so that the configuration is always unique.
Also, if v = ε it means the head is pointing at the t immediately to the right of u.

Suppose that M reaches a certain configuration α (which is not accepting or reject-
ing). Knowing just this configuration and M ’s transition function δ, one can determine
the configuration β that M will reach at the next step of the computation. (As an
exercise, make this statement precise.) We write

α `M β

and say that “α yields β (in M)”. If it’s obvious what M we’re talking about, we just
write α ` β.

Given an input x ∈ Σ∗ we say that M(x) halts if there exists a sequence of config-
urations (called the computation trace) α0, α1, . . . , αT such that:

(i) α0 = q0x, where q0 is M ’s initial state;

(ii) αt `M αt+1 for all t = 0, 1, 2, . . . , T − 1;

(iii) αT is either an accepting configuration (in which case we say M(x) accepts) or a
rejecting configuration (in which case we say M(x) rejects).

Otherwise, we say M(x) loops. �

5Supernerd note: we will always assume Q and Γ are disjoint sets.

10

Definition 3.4 (Decider Turing machine).
A Turing machine is called a decider if it halts on all inputs. �

Definition 3.5 (Language accepted/decided by a TM).
Let M be a Turing machine. We denote by L(M) the set of all strings that M accepts.
When M is a decider, we say that M decides the language L(M). �

Definition 3.6 (Decidable/Computable language).
A language L is called decidable (or computable) if L = L(M) for some decider Turing
machine M . �

Notation 3.7. Let M be a Turing machine and Σ a finite alphabet. We denote by
〈M〉 ∈ Σ∗ a string encoding of M .6

Technicality Alert: After fixing some encoding scheme, it is clear that every 〈M〉
for some TM M corresponds to a word w ∈ Σ∗. We can also say that every w ∈ Σ∗

actually corresponds to 〈M〉 for some TM M , by assuming that if w does not encode a
proper TM, then we’ll automatically assume that it corresponds to the simple TM that
rejects everything. We’ll adopt this convention in order to avoid some uninteresting
technicalities in the future.

Notation 3.8. We use the notation 〈·〉 to denote an encoding of not just Turing
machines, but any object we want. For example, if D is a DFA, we can write 〈D〉
to denote the encoding of D as a string. When we want to encode a tuple of objects,
we use the comma sign. For example, if M1 and M2 are two Turing machines, we can
write 〈M1,M2〉 to denote the encoding of the tuple (M1,M2). As another example, if
M is a TM and x ∈ Σ∗, we can write 〈M,x〉 to denote the encoding of the tuple (M,x).

Definition 3.9 (Universal Turing machine).
Let Σ be some finite alphabet. A universal Turing machine U is a Turing machine that
takes 〈M,x〉 as input, where M is a TM and x is a word in Σ∗, and has the following
description:

"On input <M,x>:

Simulate M on input x (i.e. run M(x)).

If it accepts, accept.

If it rejects, reject.

"

Note that if M(x) loops forever, then U loops forever as well. �

6As an example, if P is some Python program, we can take 〈P 〉 to be the string that represents the
source code of the program. We saw in class that one can view a TM as a piece of code as well. So we
can take, for example, 〈M〉 to be the string that represents that code.

11

4 Countable and Uncountable Sets

Definition 4.1 (Injection, surjection, and bijection).
Let A and B be two (possibly infinite) sets.

• A function f : A→ B is called injective if for any a, a′ ∈ A such that a 6= a′, we
have f(a) 6= f(a′). We write A ↪→ B if there exists an injective function from A
to B.

• A function f : A → B is called surjective if for all b ∈ B, there exists an a ∈ A
such that f(a) = b. We write A � B if there exists a surjective function from A
to B.

• A function f : A→ B is called bijective if it is both injective and surjective. We
write A↔ B if there exists a bijective function from A to B.

�

Theorem 4.2. Let A,B and C be three (possibly infinite) sets. Then,

• A ↪→ B if and only if B � A,

• A↔ B if and only if A ↪→ B and B ↪→ A,

• if A ↪→ B and B ↪→ C, then A ↪→ C.

Notation 4.3. Let A and B be two (possibly infinite) sets.

• We write |A| = |B| if A↔ B.

• We write |A| ≤ |B| if A ↪→ B, or equivalently, if B � A.7

• We write |A| < |B| if it is not the case that |A| ≥ |B|.8

Definition 4.4 (Countable and uncountable sets).

• A set A is called countable if |A| ≤ |N|.

• A set A is called countably infinite if it is countable and infinite.

• A set A is called uncountable if it is not countable, i.e. |A| > |N|.

�

Theorem 4.5. A set A is countably infinite if and only if |A| = |N|.

Exercise 4.6. Can you prove the above theorem?

7Even though not explicitly stated, |B| ≥ |A| has the same meaning as |A| ≤ |B|.
8Similar to above, |B| > |A| has the same meaning as |A| < |B|.

12

4.1 Countable sets

Proposition 4.7. The set Z× Z is countable.

Proof. Consider the plot of Z × Z on a 2-dimensional grid. Starting at (0, 0) we can
list all the elements of Z× Z using a spiral shape, as shown below.

(The picture shows only a small part of the spiral.) This gives us a way to list all the
elements of Z× Z such that every element eventually appears in the list. This implies
that there is a surjective function f from N to Z × Z: f(i) is defined to be the i’th
element in the list. Since there is a surjection from N to Z × Z, |Z × Z| ≤ |N|, and
Z× Z is countable.9

Proposition 4.8. The set of rational numbers Q is countable.

Proof. This follows easily from the previous proposition. Every element of Q can be
written as a fraction a/b where a, b ∈ Z. In other words, there is a surjection from
Z × Z to Q that maps (a, b) to a/b (if b = 0, map (a, b) to say 0). This shows that
|Q| ≤ |Z × Z|. Since Z × Z is countable, i.e. |Z × Z| ≤ |N|, Q is also countable, i.e.
|Q| ≤ |N|.

Proposition 4.9. Let Σ be a finite set. Then Σ∗ is countable.

Proof. Recall that Σ∗ denotes the set of all words/strings over the alphabet Σ with
finitely many symbols. For each n = 0, 1, 2, . . ., let Σn denote the set of words in Σ∗

that have length exactly n. Note that Σn is a finite set for each n, and Σ∗ is a union
of these sets: Σ∗ = Σ0 ∪ Σ1 ∪ Σ2 ∪ · · · . This gives us a way to list the elements of Σ∗

so that any element of Σ∗ eventually appears in the list. First list the elements of Σ0,
then list the elements of Σ1, then list the elements of Σ2, and so on. This way of listing
the elements gives us a surjective function f from N to Σ∗: f(i) is defined to be the
i’th element in the list. Since there is a surjection from N to Σ∗, |Σ∗| ≤ |N|, and Σ∗ is
countable.

9Note that it is not a requirement that we give an explicit formula for f(i). In fact, sometimes in
such proofs, an explicit formula may not exist. This does not make the proof any less rigorous.

13

Exercise 4.10. Is the above proposition true if we allow Σ to be any countable set?
In other words, is it true that if Σ is countable, then Σ∗ is countable?

Proposition 4.11. The set of all Turing machines {M : M is a TM} is countable.

Proof. Let T = {M : M is a TM}. Then |T | ≤ |Σ∗| for some finite set Σ because the
mapping M 7→ 〈M〉, where 〈M〉 ∈ Σ∗, is an injective map. Since |T | ≤ |Σ∗|, and we
already know Σ∗ is countable from Proposition 4.9, the result follows.

Proposition 4.12. Let Q[x] denote the set of all polynomials in one variable with
rational coefficients. Q[x] is countable.

Proof. We prove this using the fact that Σ∗ is countable for any finite set Σ (Proposi-
tion 4.9). Let

Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,+,−, /,̂ }.

Then observe that every element of Q[x] can be written as a string over this alphabet.
For example,

2xˆ3− 1/34xˆ2 + 99/100xˆ1 + 22/7.

This implies that there is a surjective map from Σ∗ toQ[x]. And therefore |Q[x]| ≤ |Σ∗|.
Since Σ∗ is countable, Q[x] is also countable.

Exercise 4.13. Show that Z× Z× Z is countable.

4.2 Uncountable sets

Definition 4.14 (Power set).
Let A be any set. The set of all subsets of A is called the power set of A, and is denoted
by P(A). �

Theorem 4.15 (Cantor’s Theorem). For any non-empty set A, |P(A)| > |A|.

Proof. The proof that we present here is called the diagonalization argument. The
proof is by contradiction. So assume that |P(A)| ≤ |A|. By definition, this means
that there is a surjective function from A to P(A). Let f be such a surjection. So
for any S ∈ P(A), there exists an s ∈ A such that f(s) = S. Now consider the set
S = {a ∈ A : a 6∈ f(a)}. Since S is a subset of A, S ∈ P(A). So there is an s ∈ A such
that f(s) = S. But then if s 6∈ S, by the definition of S, s is in f(s) = S, which is a
contradiction. If s ∈ S, then by the definition of S, s is not in f(s) = S, which is also
a contradiction. So either way, we get a contradiction as desired.

Corollary 4.16. The set P(N) is uncountable.

Corollary 4.17. Let Σ be a finite set with |Σ| > 0. Then P(Σ∗) is uncountable.

14

Proof. For Σ with |Σ| > 0, Σ∗ is a countably infinite set (Proposition 4.9). So by
Theorem 4.5, we know |Σ∗| = |N|. Theorem 4.15 implies that |Σ∗| < |P(Σ∗)|. So we
have |N| = |Σ∗| < |P(Σ∗)|, which shows, by the definition of uncountable sets, that
P(Σ∗) is uncountable.

Notation 4.18. Let Σ be some finite alphabet. We denote by Σ∞ the set of all infinite
length words over the alphabet Σ.

Theorem 4.19. The set {0, 1}∞ is uncountable.

Proof. One can prove this result simply by observing that {0, 1}∞ ↔ P(N), and using
Corollary 4.16. Here, we will give a direct proof using a diagonalization argument. The
proof is by contradiction, so assume that {0, 1}∞ is countable. By definition, this means
that |{0, 1}∞| ≤ |N|, i.e. there is a surjective map f from N to {0, 1}∞. Consider the
table in which the i’th row corresponds to f(i). Below is an example.

(The elements in the diagonal are highlighted.) Using f , we construct an element a
of {0, 1}∞ as follows. If the i’th symbol of f(i) is 1, then the i’th symbol of a is defined
to be 0. And if the i’th symbol of f(i) is 0, then the i’th symbol of a is defined to be
1. Notice that the i’th symbol of f(i), for i = 1, 2, 3, . . . corresponds to the diagonal
elements in the above table. So we are creating this element a of {0, 1}∞ by taking the
diagonal elements, and flipping their value.

Now notice that the way a is constructed implies that it cannot appear as a row in
this table. This is because a differs from f(1) in the first symbol, it differs from f(2) in
the second symbol, it differs from f(3) in the third symbol, and so on. So it differs from
every row of the table and hence cannot appear as a row in the table. This leads to the
desired contradiction because f is a surjective function, which means every element of
{0, 1}∞, including a, must appear in the table.

Exercise 4.20. Show that the following sets are uncountable.

(a) {a1a2a3 . . . ∈ {0, 1}∞ : ∀n ≥ 1, the string a1 . . . an contains more 1’s than 0’s.}

(b) The set of all bijections f : N→ N.

15

5 Undecidable Languages

Theorem 5.1. Fix some alphabet Σ (|Σ| > 0). There are languages L ⊆ Σ∗ that are
not decidable.

Proof. To prove the result, we simply observe that the set of all languages is uncount-
able whereas the set of decidable languages is countable. First, consider the set of all
languages. Since a language L is defined to be a subset of Σ∗, the set of all languages
is P(Σ∗). By Corollary 4.17, we know that this set is uncountable. Now consider
the set of all decidable languages, which we’ll denote by D. Let T be the set of all
TMs. By Proposition 4.11, we know that T is countable. Furthermore, the mapping
M 7→ L(M) can be viewed as a surjection from T to D (if M is not a decider, just map
it to ∅). So |D| ≤ |T |. Since T is countable, this shows D is countable and completes
the proof.10

Definition 5.2 (Halting problem).
The halting problem is defined as the decision problem corresponding to the language
HALT = {〈M,x〉 : M is a TM which halts on input x}. �

Theorem 5.3 (Turing’s Theorem). The language HALT is undecidable.

Proof. The proof is by contradiction, so assume that HALT is decidable. By definition,
this means that there is a decider TM, call it MHALT, that decides HALT. We construct
a new TM, which we’ll call MTURING, that uses MHALT as a subroutine. The description
of MTURING is as follows:

1. "On input <M>:

2. run M_HALT(<M,M>).

3. if it accepts, go into an infinite loop.

4. if it rejects, accept.

5. "

We get the desired contradiction once we consider what happens when we feed
MTURING as input to itself, i.e. when we run MTURING(〈MTURING〉).

If MHALT(〈MTURING,MTURING〉) accepts, then MTURING(〈MTURING〉) is supposed to
halt by the definition of MHALT. However, from the description of MTURING above, we
see that it goes into an infinite loop. This is a contradiction. The other option is that
MHALT(〈MTURING,MTURING〉) rejects. Then MTURING(〈MTURING〉) is supposed to lead
to an infinite loop. But from the description of MTURING above, we see that it accepts,
and therefore halts. This is a contradiction as well.

10This kind of an argument is called non-constructive because it does not present an explicit unde-
cidable language. A constructive argument would prove the undecidability of an explicit language, as
in Theorem 5.3.

16

Definition 5.4 (Turing reduction).
Fix some alphabet Σ. Let A and B be two languages. We say that A reduces to B,
written A ≤T B, if it is possible to decide A assuming a decider TM for B exists. In
other words, if a decider TM MB for B exists, then one can construct a decider TM
MA for A which uses MB as a subroutine.

�

Remark. Observe that if A ≤T B and B is decidable, then A is also decidable. Equiv-
alently, taking the contrapositive, if A ≤T B and A is undecidable, then B is also
undecidable. So when A ≤T B, we think of B as being at least as hard as A with
respect to decidability.

Exercise 5.5.

(a) Let A, B and C be languages. Show that if A ≤T B and B ≤T C, then A ≤T C.

(b) Give a counter-example for the following claim: if A ≤T B then B ≤T A.

Definition 5.6. We define the following languages:

ACCEPTS = {〈M,x〉 : M is a TM that accepts the input x},

EMPTY = {〈M〉 : M is a TM with L(M) = ∅},

EQ = {〈M1,M2〉 : M1 and M2 are TMs with L(M1) = L(M2)}.

�

Theorem 5.7. The language ACCEPTS is undecidable.

Proof. Since HALT is undecidable (Theorem 5.3), by the definition of a Turing reduc-
tion, it suffices to show HALT ≤T ACCEPTS. To show the reduction, we assume
that the language ACCEPTS is decidable, and then show how to decide HALT. Let
MACCEPTS be a decider for ACCEPTS. Here is our decider for HALT:

17

1. "On input <M,x>:

2. run M_ACCEPTS(<M,x>).

3. if it accepts, accept.

4.

5. Construct TM M’ by flipping the accept and reject states of M.

6.

7. run M_ACCEPTS(<M’,x>).

8. if it accepts, accept.

9. if it rejects, reject.

10. "

We now argue that this machine indeed decides HALT. To do this, we’ll show that
no matter what input is given to our machine, it always gives the correct answer.

First let’s assume we get any input 〈M,x〉 such that 〈M,x〉 ∈ HALT. In this case
our machine is supposed to accept. Since M(x) halts, we know that M(x) either ends up
in the accepting state, or it ends up in the rejecting state. If it ends up in the accepting
state, then MACCEPTS(〈M,x〉) accepts (on line 2 of our machine’s description), and
so our program accepts and gives the correct answer. If on the other hand, M(x)
ends up in the rejecting state, then M ′(x) ends up in the accepting state. Therefore
MACCEPTS(〈M ′, x〉) accepts (on line 7 of our machine’s description), and so our program
accepts and gives the correct answer.

Now let’s assume we get any input 〈M,x〉 such that 〈M,x〉 6∈ HALT. In this case our
machine is supposed to reject. Since M(x) does not halt, it never reaches the accepting
or the rejecting state. By the construction of M ′, this also implies that M ′(x) never
reaches the accepting or the rejecting state. Therefore first MACCEPTS(〈M,x〉) (on line
2 of our machine’s description) will reject. And then MACCEPTS(〈M ′, x〉) (on line 7 of
our machine’s description) will reject. Thus our program will reject as well, and give
the correct answer.

We have shown that no matter what the input is, our machine gives the correct
answer and decides HALT. This completes the proof.

Theorem 5.8. The language EMPTY is undecidable.

Proof. Since ACCEPTS is undecidable (Theorem 5.7), it suffices to show ACCEPTS ≤T

EMPTY. So let’s assume that MEMPTY is a decider for the language EMPTY. We con-
struct a TM that decides ACCEPTS as follows.

18

1. "On input <M,x>:

2. Construct the following TM M’.

3. "On input y:

4. if y != x, reject.

5. run M(y).

6. if it accepts, accept.

7. if it rejects, reject.

8. "

9.

10. run M_EMPTY(<M’>).

11. if it accepts, reject.

12. if it rejects, accept.

13. "

We now argue that this machine indeed decides ACCEPTS. To do this, we’ll show
that no matter what input is given to our machine, it always gives the correct answer.

First let’s assume we get an input 〈M,x〉 such that 〈M,x〉 ∈ ACCEPTS, i.e. x ∈
L(M). Then observe that L(M ′) = {x}, because M ′ first eliminates/rejects every
string not equal to x, and then behaves exactly the same as M . So since x ∈ L(M),
L(M ′) = {x}. When we run MEMPTY(〈M ′〉) on line 10, it rejects, and so our machine
accepts and gives the correct answer.

Now assume that we get an input 〈M,x〉 such that 〈M,x〉 6∈ ACCEPTS, i.e.
x 6∈ L(M). Then M ′ does not accept any string, so L(M ′) = ∅. When we run
MEMPTY(〈M ′〉) on line 10, it accepts, and so our machine rejects and gives the correct
answer.

Our machine always gives the correct answer, so we are done.

Theorem 5.9. The language EQ is undecidable.

Proof. Since EMPTY is undecidable (Theorem 5.8), it suffices to show that EMPTY ≤T

EQ. So let’s assume that MEQ is a decider for the language EQ. We construct a TM
that decides EMPTY as follows.

1. "On input <M>:

2. Construct TM M’ that rejects every input.

3.

4. run M_EQ(<M, M’>).

5. if it accepts, accept.

6. if it rejects, reject.

7. "

19

It is not difficult to see that this machine indeed decides EMPTY. Notice that
L(M ′) = ∅. So when we run MEQ(〈M,M ′〉) on line 4, we are deciding whether L(M) =
L(M ′), i.e. whether L(M) = ∅.

Theorem 5.10. HALT ≤T EMPTY.

Proof. This can be considered as an alternative proof of Theorem 5.8. Assume that
MEMPTY is a decider for the language EMPTY. We construct a TM that decides HALT
as follows.

1. "On input <M,x>:

2. Construct the following TM M’.

3. "On input y:

4. run M(x).

5. ignore the output and accept.

6. "

7.

8. run M_EMPTY(<M’>).

9. if it accepts, reject.

10. if it rejects, accept.

11. "

We now argue that this machine indeed decides HALT. First consider an input
〈M,x〉 such that 〈M,x〉 ∈ HALT. Then L(M ′) = Σ∗ since in this case M ′ accepts
every string. So when we run MEMPTY(〈M ′〉) on line 8, it rejects, and our machine
accepts and gives the correct answer.

Now consider an input 〈M,x〉 such that 〈M,x〉 6∈ HALT. Then notice that whatever
input is given to M ′, it gets stuck in an infinite loop when it runs M(x). Therefore
L(M ′) = ∅. So when we run MEMPTY(〈M ′〉) on line 8, it accepts, and our machine
rejects and gives the correct answer.

Theorem 5.11. HALT ≤T EQ.

Proof. This can be considered as an alternative proof of Theorem 5.9. Assume that
MEQ is a decider for the language EQ. We construct a TM that decides HALT as follows.

20

1. "On input <M,x>:

2. Construct TM M’ that rejects every input.

3.

4. Construct the following TM M’’.

5. "On input y:

6. run M(x).

7. ignore the output and accept.

8. "

9.

10. run M_EQ(<M’, M’’>).

11. if it accepts, reject.

12. if it rejects, accept.

13. "

We now argue that this machine indeed decides HALT. Notice that no matter what
the input is, L(M ′) = ∅. Let’s first consider an input 〈M,x〉 such that 〈M,x〉 ∈ HALT.
Then M ′′ accepts every input, so L(M ′) = Σ∗. In this case, MEQ(〈M ′,M ′′〉) rejects,
and so our machine accepts as desired. Next, consider an input 〈M,x〉 such that
〈M,x〉 6∈ HALT. Then whatever input is given to M ′′, it gets stuck in an infinite loop
when it runs M(x). So L(M ′′) = ∅. In this case MEQ(〈M ′,M ′′〉) accepts, and so our
machine rejects, as it should. Thus we have a correct decider for HALT.

Exercise 5.12. Show that the following languages are undecidable.

(a) REGULAR = {〈M〉 : M is a TM such that L(M) is regular.}

(b) FINITE = {〈M〉 : M is a TM that accepts finitely many strings.}

21

6 Time Complexity

Definition 6.1 (Worst-case running time of an algorithm). 11

The worst-case running time of an algorithm A is a function TA : N→ N defined by

TA(n) = max
instances/inputs I

of size n

number of steps A takes on input I.

We drop the subscript A and just write T (n) when A is clear from the context. �

Definition 6.2 (Big-Oh).
For f : R+ → R+ and g : R+ → R+, we write f(n) = O(g(n)) if there exists constants
C > 0 and n0 > 0 such that for all n ≥ n0,

f(n) ≤ Cg(n).

In this case, we say that f(n) is big-oh of g(n). �

Definition 6.3 (Big-Omega).
For f : R+ → R+ and g : R+ → R+, we write f(n) = Ω(g(n)) if there exists constants
c > 0 and n0 > 0 such that for all n ≥ n0,

f(n) ≥ cg(n).

In this case, we say that f(n) is big-omega of g(n). �

Definition 6.4 (Theta).
For f : R+ → R+ and g : R+ → R+, we write f(n) = Θ(g(n)) if

f(n) = O(g(n)) and f(n) = Ω(g(n)).

This is equivalent to saying that there exists constants c, C, n0 > 0 such that for all
n ≥ n0,

cg(n) ≤ f(n) ≤ Cg(n).

In this case, we say that f(n) is theta of g(n).12 �

Proposition 6.5. For any constant b > 1,

logb n = Θ(log n).

11To make this definition more concrete, one should make explicit the specific computational model
being considered. If we leave the exact model unspecified, then we’ll work with our intuitive notion of
an algorithm and our intuitive understanding of what constitutes a step in the algorithm.

12The reason we don’t call it big-theta is that there is no separate notion of little-theta, whereas
little-oh o(·) and little-omega ω(·) have meanings separate from big-oh and big-omega. We don’t cover
little-oh and little-omega in this course.

22

Proof. It is well known that logb n = loga n
loga b

. In particular logb n = log2 n
log2 b

. Then taking

c = C = 1
log2 b

and n0 = 1, we see that c log2 n ≤ logb n ≤ C log2 n for all n ≥ n0.

Therefore logb n = Θ(log2 n).

Remark. Since the base of a logarithm only changes the value of the log function
by a constant factor, it is usually not relevant in big-oh, big-omega or theta notation.
So most of the time, when you see a log function present inside O(·), Ω(·), or Θ(·),
the base will be ignored. E.g. instead of writing lnn = Θ(log2 n), we actually write
lnn = Θ(log n). That being said, if the log appears in the exponent, the base matters.
For example, nlog2 5 is asymptotically different from nlog3 5.

Proposition 6.6.
log2 n! = Θ(n log n).

Proof. We first show log2 n! = O(n log n). Observe that

n! = n · (n− 1) · (n− 2) · · · · · 2 · 1 ≤ n · n · n · · · · · n︸ ︷︷ ︸
n times

= nn.

Taking the log of both sides gives us log2 n! ≤ log2 n
n = n log2 n (here, we are using

the fact that log ab = b log a). Therefore taking n0 = C = 1 satisfies the definition of
big-oh, and log2 n! = O(n log n).

Now we show log2 n! = Ω(n log n). Assume without loss of generality that n is even.
In the definition of n!, we’ll use the first n/2 terms in the product to lower bound it:

n! = n · (n− 1) · (n− 2) · · · · · 2 · 1 ≥ n

2
· n

2
· · · · · n

2︸ ︷︷ ︸
n/2 times

=
(n

2

)n
2
.

Taking the log of both sides gives us log2 n! ≥ n
2

log2
n
2
.

Claim: For n ≥ 4, n
2

log2
n
2
≥ n

4
log2 n.

The proof of the claim is a simple exercise which we omit. Using the claim, we know
that for n ≥ 4, log2 n! ≥ n

4
log2 n. Therefore, taking n0 = 4 and c = 1/4 satisfies the

definition of big-omega, and log2 n! = Ω(n log n).

Exercise 6.7. Show that n!2 is Ω(nn) but n!2 is not O(nn).

Definition 6.8 (Names for common growth rates).

Constant time: T (n) = O(1).

Logarithmic time: T (n) = O(log n).

Linear time: T (n) = O(n).

Quadratic time: T (n) = O(n2).

Polynomial time: T (n) = O(nk) for some constant k > 0.

Exponential time: T (n) = O(2nk) for some constant k > 0.

�

23

Exercise 6.9. Consider the following computational problem: Given as input a positive
integer N , output N !. Show that this problem cannot be computed in polynomial-time,
i.e. O(nk) time for some constant k, where n denotes the number of bits in the binary
representation of the input.

24

7 Cake Cutting

Definition 7.1 (Cake cutting problem).
We refer to the interval [0, 1] ⊂ R as the cake, and the set N = {1, 2, . . . , n} as the
set of players. A piece of cake is any set X ⊆ [0, 1] which is a finite union of disjoint
intervals. Let X denote the set of all possible pieces of cake. Each player i ∈ N has a
valuation function Vi : X → R that satisfies the following 4 properties.

• Normalized: Vi([0, 1]) = 1.

• Non-negative: For any X ∈ X , Vi(X) ≥ 0.

• Additive: For X, Y ∈ X with X ∩ Y = ∅, Vi(X ∪ Y) = Vi(X) + Vi(Y).

• Divisible: For every interval I ⊆ [0, 1] and 0 ≤ λ ≤ 1, there exists a subinterval
I ′ ⊆ I such that Vi(I

′) = λVi(I).

The goal is to find an allocation A1, A2, . . . , An, where each Ai is a piece of cake allocated
to player i. The allocation is assumed to be a partition of the cake [0, 1], i.e., the Ai’s
are disjoint and their union is [0, 1]. There are 2 properties desired about the allocation:

• Proportionality: For all i ∈ N , Vi(Ai) ≥ 1/n.

• Envy-Freeness: For all i, j ∈ N , Vi(Ai) ≥ Vi(Aj).

�

Proposition 7.2 (Envy-freeness implies proportionality). If an allocation is envy-free,
then it is proportional.

Proof. Let’s assume we have an allocation A1, . . . , An that is envy-free. Recall that
the Ai’s form a partition of [0, 1]. Fix some player i. Notice that the additivity and
normality properties imply that

∑
j∈N Vi(Aj) = 1. Therefore, there must be k ∈ N

such that Vi(Ak) ≥ 1/n (otherwise the sum could not be 1). The envy-freeness property
implies that Vi(Ai) ≥ Vi(Ak), and so Vi(Ai) ≥ 1/n. This is true for all players i, so the
allocation must be proportional.

Definition 7.3 (The Robertson-Webb model for measuring time complexity).
We measure the time complexity of an algorithm that solves the cake cutting problem
using the Robertson-Webb model. In this model, the input size is considered to be the
number of players n. There is a referee who is allowed to make two types of queries to
the players:

• Evali(x, y), which returns Vi([x, y]),

• Cuti(x, α), which returns y such that Vi([x, y]) = α.
(If no such y exists, it returns “None”.)

25

The referee follows an algorithm/strategy and chooses the queries that she wants to
make. Afterwards, she must decide on an allocation A1, A2, . . . , An. The time complex-
ity of the algorithm is the number of queries she makes for n players and the worst
possible Vi’s. So

T (n) = max
(V1,...,Vn)

number of queries when the valuations are (V1, . . . , Vn).

�

Proposition 7.4 (Cut and Choose algorithm for 2 players). When n = 2, there is
always an allocation that is proportional and envy-free.

Proof. The idea is easy to describe in the following way. The first player marks a point
y in the cake so that V1([0, y]) = V1([y, 1]) = 1/2 (this can be done because of the
divisibility property). Then player 2 chooses the piece (among [0, y] and [y, 1]) that he
values more. The remaining piece is what player 1 gets. In the Robertson-Webb model,
this algorithm corresponds to the following. The referee first queries Cut1(0, 1/2).
Say this returns the value y. Then the referee queries Eval2(0, y) and Eval2(y, 1).13

Whichever gives the larger value, referee assigns that piece to player 2. The remaining
piece is assigned to player 1.

This algorithm is envy-free: From player 1’s perspective, both players get a piece
of the cake of value 1/2. Therefore V1(A1) ≥ V1(A2) is satisfied. From player 2’s
perspective, since he gets to choose the piece of larger value to him, V2(A2) ≥ V2(A1)
is satisfied.

It is also pretty clear that the algorithm is proportional since each player gets a
piece of value at least 1/2.

Theorem 7.5 (Dubins-Spanier algorithm). There is an algorithm of time complexity
Θ(n2) that produces an allocation for the cake cutting problem that satisfies the propor-
tionality property.

Proof. The algorithm is as follows. The referee first makes n queries: Cuti(0, 1/n) for
all i. She computes the minimum among these values, which we’ll denote by y. Let’s
assume j is the player that corresponds to the minimum value. Then the referee assigns
Aj = [0, y]. So player j gets a piece that she values at 1/n. After this, we remove player
j, and repeat the process on the remaining cake. So then the referee makes n−1 queries,
Cuti(y, 1/n) for i 6= j, figures out the player corresponding to the minimum value, and
assigns her the corresponding piece of the cake, which she values at 1/n. This repeats
until there is one player left. The last player gets the piece that is left.

We have to show that the algorithm’s time complexity is Θ(n2) and that it produces
a proportional allocation. First we show that the allocation is proportional. Notice that
if the queries that the referee makes never return “None”, then at each iteration, until
one player is left, the player j who is removed is assigned Aj such that Vj(Aj) = 1/n.
So it suffices to argue that:

13In fact, just querying Eval2(0, y) is enough.

26

(i) the queries never return “None”,

(ii) the last player, call it `, gets A` such that V`(A`) ≥ 1/n.

To show (i), assume we have just completed iteration k, where k ∈ {1, 2, . . . , n−1}. Let
j be one of the players who has not been removed yet. Observe that all the pieces that
have been removed so far have value at most 1/n to player j. So the cake remaining
after iteration k has value at least 1− (k/n) ≥ 1/n for player j. This argument holds
for any k ∈ {1, 2, . . . , n − 1} and any player j that remains after iteration k. So the
queries never return “None”. Part (ii) actually follows from the same argument. The
cake remaining after iteration n− 1 has value at least 1− (n− 1)/n = 1/n for the last
player. This completes the proof that the allocation is proportional.

Now we show that the time complexity is Θ(n2). To do this, we’ll first argue that
the number of queries is O(n2), and then argue that it is Ω(n2). Note that the algorithm
has n iterations, and at iteration i, it makes n+ 1− i queries. There is one exception,
which is the last iteration when only one player is left. In that case, we don’t make any
queries. So the total number of queries is

n+ (n− 1) + (n− 2) + · · ·+ 2.

We can upper bound this as follows:

n+ (n− 1) + (n− 2) + · · ·+ 2 ≤ n+ n+ · · ·+ n︸ ︷︷ ︸
n times

= n2.

This implies that the number of queries is O(n2). We can also lower bound the number
of queries by lower bounding the first n/2 terms in the sum by n/2:

n+ (n− 1) + (n− 2) + · · ·+ 2 ≥ n

2
+
n

2
+ · · ·+ n

2︸ ︷︷ ︸
n/2 times

=
n2

4
.

This implies that the number of queries is Ω(n2). Hence, the number of queries is
Θ(n2).

Exercise 7.6. Design a cake cutting algorithm for a set of players N = {1, . . . , n} that
finds an allocation A with the property that there exists a permutation πA : N → N
such that for all i ∈ N, Vi(Ai) ≥ 1

2π(i)
. In words, there is an order on the players such

that the first player has value at least 1/2 for her piece, the second player has value at
least 1/4, and so on. The complexity of your algorithm in the Robertson-Webb model
should be O(n2).

Theorem 7.7 (Even-Paz algorithm). Assume n is a power of 2, i.e., n = 2t for some
t ∈ N. There is an algorithm of time complexity Θ(n log n) that produces an allocation
for the cake cutting problem that satisfies the proportionality property.

27

Proof. Our algorithm will be recursive, so we give some flexibility for the input by allow-
ing it to consist of an interval [y, z] ⊆ [0, 1] and a subset of players S ⊆ {1, 2, . . . , n}. Our
algorithm’s name is EP, and we would initially call it with the input ([0, 1], {1, 2, . . . , n}).
Below is the description of EP. A verbal explanation of what the algorithm does follows
its description.

1. EP on input ([x, y], S) where |S| = k:
2.

3. If S = {i} for some i, then assign [x, y] to Ai.
4.

5. Else:
6. For i ∈ S, let zi = Cuti(x,Evali(x, y)/2).
7. Sort the zi so that zi1 ≤ zi2 ≤ · · · ≤ zik . Let z∗ = zik/2 .
8. Run EP([x, z∗], {i1, . . . , ik/2}).
9. Run EP([z∗, y], {ik/2+1, . . . , ik}).

The base case of the algorithm is when there is only one player. In this case we
give the whole piece [x, y] to that player. Otherwise, each player i makes a mark zi
such that Vi([x, zi]) = 1

2
Vi([x, y]). Let z∗ denote the n/2 mark from the left. We first

recurse on [x, z∗] and the left n/2 players, and then we recurse on [z∗, y] and the right
n/2 players.

We have to show that the algorithm’s time complexity is Θ(n log n) and that it
produces a proportional allocation. First we show that the time complexity T (n) is
Θ(n log n). Observe that the recursive relation that T (n) satisfies is

T (1) = 0, T (n) = 2n+ 2T (n/2) for n > 1.

The base case corresponds to line 3 of the algorithm, and in this case, we don’t make
any queries. In T (n) = 2n+2T (n/2), the 2n comes from line 6 where we make 2 queries
for each player. The 2T (n/2) comes from the two recursive calls on lines 8 and 9. To
solve the recursion, i.e., to figure out the formula for T (n), we draw the associated
recursion tree.

28

The root (top) of the tree corresponds to the input S = {1, 2, . . . , n} and is therefore
labeled with an n. This branches off into two nodes, one corresponding to each recursive
call. These nodes are labeled with n/2 since they correspond to recursive calls in which
|S| = n/2. Those nodes further branch off into two nodes, and so on, until at the very
bottom, we end up with nodes corresponding to inputs S with |S| = 1. The number of
queries made for each node of the tree is provided with a label on top of the node. For
example, at the root (top), we make 2n queries before we do our recursive calls. This
is why we put a 2n on top of that node. Similarly, every other node can be labeled.
We can divide the nodes of the tree into levels according to how far a node is from the
root. So the root corresponds to level 0, the nodes it branches off to correspond to level
1, and so on. Observe that level j has exactly 2j nodes. The nodes that are at level
j make 2n/2j queries. Therefore, the total number of queries made for level j is 2n.
The only exception is the last level. The nodes at the last level correspond to the base
case and don’t make any queries. In total, there are exactly 1 + log2 n levels (since we
are counting the root as well). Thus, the total number of queries, and hence the time
complexity, is exactly 2n log2 n, which is Θ(n log n).

We now prove that the allocation obtained by the algorithm is proportional. Observe
that when we make the recursive call on [x, z∗] and the left n/2 players, all these players
value [x, z∗] at least at 1/2. Similarly, when we make the recursive call on [z∗, y] and
the right n/2 players, all these players value [z∗, y] at least at 1/2. This property is
preserved at each level of the recursion in the following way. At level ` of the recursion,
the players are divided into groups of size n/2`. If each player values the corresponding
interval at least at 1/2`, then at level ` + 1, the players will value the interval that
they are “assigned to” at least at 1/2`+1. In particular, when ` = log2 n, each group
is a singleton, and each player gets assigned a piece of cake that she values at least at
1/2log2 n = 1/n. This shows that the allocation is proportional.

Theorem 7.8 (Edmonds-Pruhs, 2006). Any algorithm that produces an allocation sat-
isfying the proportionality property must have time complexity Ω(n log n).

29

8 Boolean Circuits

Notation 8.1. For a finite alphabet Σ, Σn denotes all words in Σ∗ with length (i.e.
number of symbols) exactly n. Let f : {0, 1}∗ → {0, 1} be a decision problem. We
denote by fn : {0, 1}n → {0, 1} the restriction of f to words of length n. So f can be
thought of as a collection of functions (f 0, f 1, f 2, . . .). We’ll write f = (f 0, f 1, f 2, . . .)
as a shorthand for this.

Notation 8.2. We denote by ¬ the unary NOT operation, by ∧ the binary AND
operation, and by ∨ the binary OR operation. In particular, we can write the truth
tables of these operations as follows:

x ¬x
0 1
1 0

x y x ∧ y
0 0 0
0 1 0
1 0 0
1 1 1

x y x ∨ y
0 0 0
0 1 1
1 0 1
1 1 1

Definition 8.3 (Boolean circuit).
A Boolean circuit with n-input variables is a finite collection of 4 types of gates : AND
gates, OR gates, NOT gates, and input gates. There are n input gates, one correspond-
ing to each input variable. The AND gate corresponds to the binary AND operation ∧,
the OR gate corresponds to the binary OR operation ∨, and the NOT gate corresponds
to the unary NOT operation ¬. The gates are linked together as follows. Each binary
gate is connected to two other gates, which are considered to be the inputs for the gate.
A NOT gate is connected to one other gate, which is considered to be the input for the
NOT gate. One of the gates in the circuit is labeled as the output gate. The circuit
is not allowed to have any cycles in the following sense: there cannot be a sequence
of gates g1, g2, . . . , gk, gk+1 such that g1 = gk+1 and for each i ∈ {1, 2, . . . , k}, gi is an
input to gi+1. Below is an example of how we draw a circuit (n = 4).

30

For each 0/1 assignment to the input variables, the Boolean circuit produces a one-
bit output. The output of the circuit is the output of the gate that is labeled as the
output gate (in the picture, it is the one at the very top with an arrow that links to
nothing). The output is calculated naturally using the truth tables of the operations
corresponding to the gates. The input-output behavior of the circuit defines a function
f : {0, 1}n → {0, 1} and in this case, we say that the circuit computes this function.
The circuit in the above example computes the parity of the input bits, i.e., it computes
(x1 + x2 + x3 + x4) mod 2. �

Exercise 8.4. Draw a circuit that computes the following functions.

(a) The parity function PAR : {0, 1}2 → {0, 1} on 2 variables, which is defined as
PAR(x1, x2) = 1 iff x1 + x2 is odd.

(b) The majority function MAJ : {0, 1}3 → {0, 1} on 3 variables, which is defined as
MAJ(x1, x2, x3) = 1 iff x1 + x2 + x3 ≥ 2.

Exercise 8.5. Define a NAND gate as NAND(x, y) = ¬(x∧ y). Show that any circuit
with AND, OR and NOT gates can be converted into an equivalent circuit (i.e. a
circuit computing the same function) that uses only NAND gates. The size of this
circuit should be at most a constant times the size of the original circuit.

Definition 8.6 (Circuit family).
A circuit family C is a collection of circuits, (C0, C1, C2, . . .), such that each Cn is a
circuit with n input gates. �

Definition 8.7 (A circuit family deciding/computing a decision problem).
Let f : {0, 1}∗ → {0, 1} be a decision problem and let fn : {0, 1}n → {0, 1} be the
restriction of f to words of length n. We say that a circuit family C = (C0, C1, C2, . . .)
decides/computes f if Cn computes fn for every n. �

Definition 8.8 (Circuit size and complexity).
The size of a circuit is defined to be the number of gates in the circuit. The size of
a circuit family C = (C0, C1, C2, . . .) is a function S(·) such that S(n) is the size of
Cn. The circuit complexity of a decision problem f = (f 0, f 1, f 2, . . .) is the size of the
minimal circuit family that decides f . In other words, the circuit complexity of f is
defined to be a function S(·) such that S(n) is the minimum size of a circuit computing
fn. �

Exercise 8.9. Let L ⊆ {0, 1}∗ be the set of words which contain an odd number of
1’s. Show that the circuit complexity of L is Θ(n).

Theorem 8.10. Any language L ⊆ {0, 1}∗ can be computed by a circuit family of size
O(2n).

31

Proof. Let

S(n) = max
f :{0,1}n→{0,1}

size of the smallest circuit computing f.

Observe that the theorem follows once we show that S(n) = O(2n). Take any function
f : {0, 1}n → {0, 1}. Notice that we can write

f(x1, x2, . . . , xn) = (x1 ∧ f(1, x2, . . . , xn)) ∨ (¬x1 ∧ f(0, x2, . . . , xn)).

Let C1 be the smallest size circuit that computes f(1, x2, . . . , xn) and let C2 be the
smallest size circuit that computes f(0, x2, . . . , xn). We can then construct a circuit for
f(x1, x2, . . . , xn) as shown in the picture below.

The circuits C1 and C2 compute functions on n−1 variables, so their size is bounded
by S(n−1) each. Then the size of the above circuit is bounded above by 2S(n−1) + 5.
So we can conclude that S(n) ≤ 2S(n − 1) + 5. In the base case, when there is just
one variable, there are four different functions: f(x) = x, which requires only 1 gate,
f(x) = ¬x, which requires only 2 gates, f(x) = 1, which requires only 3 gates, and
f(x) = 0, which requires only 3 gates. Therefore S(1) ≤ 3. It is then easy to solve the
recurrence and verify that S(n) = O(2n) (we omit this part of the proof).

Proposition 8.11. The set of all functions of the form f : {0, 1}n → {0, 1} has size
22n.

Proof. A function of the form f : {0, 1}n → {0, 1} has 2n possible inputs. For each
input, we have 2 choices for the output, either 0 or 1. Therefore we have 22n different
functions.

Theorem 8.12. There exists a language L ⊆ {0, 1}∗ such that any circuit family
computing L must have size at least 2n/4n.

32

Proof. Observe that the theorem follows once we show that there is some function
f : {0, 1}n → {0, 1} which cannot be computed by a circuit of size less than 2n/4n.
We’ll do this by showing that the number of circuits of size less than 2n/4n is strictly
less than the total number of functions f : {0, 1}n → {0, 1}. Since one circuit computes
one function, this implies that there are not enough circuits of size less than 2n/4n to
compute every possible function. So there exists at least one function which cannot be
computed by a circuit of size less than 2n/4n.

From the previous proposition, we know that the total number of functions f :
{0, 1}n → {0, 1} is 22n . In the next lemma (Lemma 8.13), we show that the number of
possible circuits of size at most s is less than or equal to 24s log s. It is an easy exercise
(which we leave to the reader) to confirm that for s ≤ 2n/4n, 24s log s < 22n . In other
words, for s ≤ 2n/4n, there are more functions than circuits, and the result follows.

Lemma 8.13. The number of possible circuits of size at most s is less than or equal to
24s log s.

Proof. Let A be the set of circuits of size at most s, and let B = {0, 1}4s log s. Recall
that |A| ≤ |B| if and only if there is a surjection from B to A. Since |B| = 24s log s,
we are done once we show there is a surjection from B to A. To show that there is a
surjection, we show how to encode a circuit of size at most s with a binary string of
length 4s log s. The encoding is as follows. Number the gates of the circuit 1, 2, . . . , s.
Note that it takes log2 s bits to write down the number of a gate. We’ll assume that
the first gate corresponds to the output gate. For each gate of the circuit, write down
in binary:

(i) type of the gate (input, OR, AND, NOT),

(ii) from which gates the inputs are coming from.

Once we know (i) and (ii) for every gate, we have all the information to reconstruct
the circuit. Note that (i) takes 2 bits to specify, and (ii) takes 2 log s bits. Since we do
this for each gate in the circuit, the total number of bits is s(2 + 2 log s), which can be
upper bounded by 4s log s.

Theorem 8.14. Let L ⊆ {0, 1}∗ be a language which can be decided in O(T (n)) time.
Then L can be computed by a circuit family of size O(T (n)2).

Proof Sketch. 14 Warning: This is only a sketch of the proof. You will not be responsible
for this proof sketch.

Let L be decided by a TM M in O(T (n)) time. For simplicity, we will assume that
M ’s tape is infinite in one direction (to the right). In fact, often the tape of a TM is
defined to be one-way infinite rather than two-way infinite.

14The diagrams in this proof are redrawings of the ones in https://lucatrevisan.wordpress.

com/2010/04/25/cs254-lecture-3-boolean-circuits/.

33

https://lucatrevisan.wordpress.com/2010/04/25/cs254-lecture-3-boolean-circuits/
https://lucatrevisan.wordpress.com/2010/04/25/cs254-lecture-3-boolean-circuits/

Fix the input length n. We want to design a circuit on n input bits such that for
the inputs accepted by M , the circuit will output 1, and for the inputs rejected by M ,
the circuit will output 0. The size of our circuit will be O(T (n)2).

Let’s denote the input by x1, x2, . . . , xn. We know that when M runs on this input,
it goes through configurations (see Definition 3.3) c1, c2, . . . , ct, where each configuration
ci is of the form uqv for u, v ∈ Γ∗, q ∈ Q. Here the number of steps M takes is t so
t = O(T (n)). Consider a t× t table where row i corresponds to ci.

Each cell contains two pieces of information: (i) a state name or NONE (if no state
is given), (ii) a symbol from Γ. Let’s call this table A. In the table above, NONE is
represented with a box 2, and the input is assumed to be the all-1 string. Observe that
the contents of a cell of the table Ai,j are determined by the contents of Ai−1,j−1, Ai−1,j

and Ai−1,j+1.

The transition function of M governs this transformation. Assume each cell encodes k
bits of information. Note that k is a constant because |Q| and |Γ| are constant. So the
transition function of the form {0, 1}3k → {0, 1}k, which determines the contents of a
cell based on the contents of the three cells above it, can be implemented by a circuit
of constant size (we can allow our circuit to have multiple output gates, one for each
output bit of the function). Let’s call this circuit C. Now we can build a circuit that
computes the answer given by M as shown in the picture below.

34

The size of the circuit is at most ct2 for some constant c.

Definition 8.15 (Complexity class P).
We denote by P the set of all languages that can be decided in polynomial-time, i.e., in
time O(nk) for some constant k > 0. �

Corollary 8.16. If L ∈ P, then L can be computed by a circuit family of polynomial
size. Equivalently, if L cannot be computed by a circuit family of polynomial size, then
L 6∈ P.

35

9 Graphs I: The Basics

Definition 9.1 (Undirected graph).
An undirected graph15 G is a pair (V,E), where

• V is a finite set called the set of vertices (or nodes),

• E is a finite set called the set of edges, and every element of E is of the form
{u, v} for distinct u, v ∈ V .

Usually, the size of V is denoted by n and the size of E is denoted by m. Below is an
example a graph with n = 6 and m = 5. We usually draw the vertices as dots, and
edges as lines connecting two dots.

We’ll assume that a graph is represented/encoded using a matrix called the adja-
cency matrix.16 Suppose v1, v2, . . . , vn is some arbitrary ordering of the vertices. In the
adjacency matrix representation, a graph is represented by a n× n matrix A such that

A[i, j] =

{
1 if {vi, vj} ∈ E,

0 otherwise.

�

Exercise 9.2. In an n-vertex graph, what is the maximum possible value for the number
of edges in terms of n?

Definition 9.3 (Neighborhood of a vertex).
Let G = (V,E) be a graph, and e = {u, v} ∈ E be an edge in the graph. In this case,
we say that u and v are neighbors or adjacent. We also say that u and v are incident to
e. For v ∈ V , we define the neighborhood of v, denoted N(v), as the set of all neighbors
of v, i.e. N(v) = {u : {v, u} ∈ E}. The size of the neighborhood, |N(v)|, is called the
degree of v, and is denoted by deg(v). �

Definition 9.4 (d-regular graphs).
A graph G = (V,E) is called d-regular if every vertex v ∈ V satisfies deg(v) = d. A
1-regular graph is called a perfect matching. �

15Often the word “undirected” is omitted.
16This is not always the best representation of a graph. In particular, it is wasteful if the graph has

very few edges. For such graphs, it can be preferable to use the adjacency list representation. In the
adjacency list representation, you are given an array of size n and the i’th entry of the array contains
a pointer to a linked list of vertex i’s neighbors.

36

Theorem 9.5. Let G = (V,E) be a graph. Then∑
v∈V

deg(v) = 2m.

Proof. For each vertex v ∈ V , put a “token” on all the edges it is incident to. Every
vertex v is incident to deg(v) edges, so the total number of tokens put is

∑
v∈V deg(v).

Now observe that each edge {u, v} in the graph will get two tokens, one from vertex u
and one from vertex v. So the total number of tokens put is 2m. Therefore it must be
that

∑
v∈V deg(v) = 2m. 17

Definition 9.6 (Paths and cycles).
Let G = (V,E) be a graph. A path of length k in G is a sequence of distinct vertices

v0, v1, . . . , vk

such that {vi−1, vi} ∈ E for all i ∈ {1, 2, . . . , k}. In this case, we say that the path is
from vertex v0 to vertex vk.
A cycle of length k (also known as a k-cycle) in G is a sequence of vertices

v0, v1, . . . , vk−1, v0

such that v0, v1, . . . , vk−1 is a path, and {v0, vk−1} ∈ E. In other words, a cycle is just
a “closed” path. The starting vertex in the cycle is not important. So for example,

v1, v2, . . . , vk−1, v0, v1

would be considered the same cycle. Also, if we list the vertices in reverse order, we
consider it to be the same cycle. For example,

v0, vk−1, vk−2 . . . , v1, v0

represents the same cycle as before.
A graph that contains no cycles is called acyclic. �

Definition 9.7 (Connected graph, connected component).
Let G = (V,E) be a graph. We say that two vertices in G are connected if there is a
path between those two vertices. We say that G is connected if every pair of vertices
in G is connected.
A subset S ⊆ V is called a connected component of G if G restricted to S, i.e. the graph
G′ = (S,E ′ = {{u, v} ∈ E : u, v ∈ S}), is a connected graph, and S is disconnected
from the rest of the graph (i.e. {u, v} 6∈ E when u ∈ S and v 6∈ S). Note that a
connected graph is a graph with only one connected component. �

17This kind of an argument is called a double counting argument. We count a certain set of objects
in two different ways to prove an identity.

37

Theorem 9.8. Let G = (V,E) be a connected graph with n vertices and m edges. Then
m ≥ n− 1 and

m = n− 1 ⇐⇒ G is acyclic.

Proof. Take G and remove all its edges. This graph consists of isolated vertices and
therefore contains n connected components. Let’s now imagine a process in which we
put back the edges of G one by one. The order in which we do this does not matter.
At the end of this process, we must end up with just one connected component since
G is connected. When we put back an edge, there are two options. Either

(i) we connect two different connected components by putting an edge between two
vertices that are not already connected, or

(ii) we put an edge between two vertices that are already connected, and therefore
create a cycle.

Observe that if (i) happens, then the number of connected components goes down by 1.
If (ii) happens, the number of connected components remains the same. So every time
we put back an edge, the number of connected components in the graph can go down
by at most 1. Since we start with n connected components and end with 1 connected
component, (i) must happen at least n− 1 times, and hence m ≥ n− 1. We now prove
m = n− 1⇐⇒ G is acyclic.

m = n − 1 =⇒ G is acyclic: If m = n − 1, then (i) must have happened at each
step since otherwise, we could not have ended up with one connected component. Note
that (i) cannot create a cycle, so in this case, our original graph must be acyclic.

G is acyclic =⇒ m = n − 1: To prove this direction (using the contrapositive),
assume m > n − 1. We know that (i) can happen at most n − 1 times. So in at least
one of the steps, (ii) must happen. This implies G contains a cycle.

Exercise 9.9. Show that if a graph is acyclic and satisfies m = n − 1, then it is
connected.

Definition 9.10 (Tree, leaf of a tree).
A connected acyclic graph is called a tree.18 A vertex of degree 1 in a tree is called a
leaf. �

Exercise 9.11. Let T be a tree with at least 2 vertices. Show that T must have at
least 2 leaves.

Definition 9.12 (Hamiltonian cycle).
Let G = (V,E) be a graph. A Hamiltonian cycle in G is a cycle that visits every vertex
v ∈ V exactly once. In other words, a Hamiltonian cycle is a cycle of length n. �

18In fact, a graph having 2 of the following 3 properties is a tree: (i) connected, (ii) m = n− 1, (iii)
acyclic.

38

Theorem 9.13 (Ore’s Theorem). Let G = (V,E) be a graph on n ≥ 3 vertices. Suppose
deg(u) + deg(v) ≥ n for every pair of non-adjacent vertices u, v ∈ V . Then G contains
a Hamiltonian cycle.

Proof. Consider a sequence of vertices

v1, v2, . . . , vn, vn+1

where vn+1 = v1, and the number of i such that {vi, vi+1} ∈ E is maximized. That is,
there is no other way of ordering the vertices so that more pairs of consecutive vertices
form an edge. Note that G has an Hamiltonian cycle if and only if every consecutive
pair of vertices in this sequence forms an edge.

The proof is by contradiction, so assume G does not have a Hamiltonian cycle.
Without loss of generality, assume the first pair of vertices don’t form an edge, i.e.
{v1, v2} 6∈ E. We will derive a contradiction by constructing another sequence of
vertices that contains more edges and thus contradicting the maximality of the original
sequence.

We define the set S to be the set of successors of N(v1). That is, if N(v1) =
{vi1 , vi2 , . . . , vik}, then S = {vi1+1, vi2+1, . . . , vik+1}. We know the following are true:

(a) deg(v1) + deg(v2) ≥ n since {v1, v2} 6∈ E,

(b) |S| = |N(v1)|,

(c) v2 6∈ S since the predecessor of v2 is v1, but v1 6∈ N(v1).

These observations allow us to show that:

deg(v2) ≥ n− deg(v1) (using (a))

= |V | − |N(v1)|
= |V | − |S| (using (b))

> |V \(S ∪ {v2})|. (using (c))

So deg(v2) > |V \(S ∪ {v2})|, which implies N(v2) must intersect with S ∪ {v2}. The
intersection cannot be v2, so let’s assume it is vj for some j 6∈ {1, 2}. So vj ∈ N(v2)∩S.
Thus,

• since vj ∈ N(v2), we know {vj, v2} ∈ E,

• since vj ∈ S, we know {vj−1, v1} ∈ E.

Now consider the sequence:

v2, v3, . . . , vj−1, v1, vn, vn−1, . . . , vj, v2.

Let’s compare this sequence with our original sequence. The portions v2, v3, . . . , vj−1

and v1, vn, vn−1, . . . , vj are shared by both sequences (even though the latter is in reverse

39

order). The above sequence has the edges {vj−1, v1} ∈ E and {vj, v2} ∈ E that the
original sequence does not have. The original sequence has {v1, v2} 6∈ E and {vj−1, vj}
(which may or may not be in E) that the above sequence does not have. So as desired,
the above sequence has more edges than the original sequence, which contradicts the
maximality of the original sequence.

40

10 Graphs II

10.1 Depth-first search

Definition 10.1 (Depth-first search (DFS) algorithm).
The depth-first search algorithm, denoted DFS, is the following algorithm.

DFS on input G = (V,E) and u ∈ V :

• Mark u as “visited”.

• For each v ∈ N(u):

– If v is not marked “visited”, then run DFS(G, v).

�

Exercise 10.2. Show that the running time of DFS is O(m) where m is the number
of edges of the input graph.

Remark. Note that DFS(G, u) visits all the vertices in the connected component that
u is a part of. If we want to traverse all the vertices in the graph, and the graph has
multiple connected components, then we can do:

• For each vertex v that is not marked as “visited”:

– Run DFS(G, v).

The running time of this algorithm is O(n+m).

Definition 10.3 (Directed graph).
A directed graph G is a pair (V,A), where

• V is a finite set called the set of vertices (or nodes),

• A is a finite set called the set of directed edges (or arcs), and every element of A
is a tuple (u, v) for u, v ∈ V . If (u, v) ∈ A, we say that there is a directed edge
from u to v. Note that (u, v) 6= (v, u) unless u = v.

Below is an example of how we draw a directed graph:

41

�

Definition 10.4 (Neighborhood, out-degree, in-degree, sink, source).
Let G = (V,A) be a directed graph. For u ∈ V , we define the neighborhood of u, N(u),
as the set {v ∈ V : (u, v) ∈ A}. The out-degree of u, denoted degout(u), is |N(u)|. The
in-degree of u, denoted degin(u), is the size of the set {v ∈ V : (v, u) ∈ A}. A vertex
with out-degree 0 is called a sink. A vertex with in-degree 0 is called a source. �

Remark. The notions of paths and cycles naturally extend to directed graphs. For
example, we say that there is a path from u to v if there is a sequence of distinct vertices
u = v0, v1, . . . , vk = v such that (vi−1, vi) ∈ A for all i ∈ {1, 2, . . . , k}. Also note that
the DFS algorithm can be applied to directed graphs as well.

Definition 10.5 (Topological order of a directed graph).
A topological order of an n-vertex directed graph G = (V,A) is a bijection f : V →
{1, 2, . . . , n} such that if (u, v) ∈ A, then f(u) < f(v). Below is an example:

Here, f(e) = 1, f(d) = 2, f(a) = 3, f(b) = 4, and f(c) = 5. �

Exercise 10.6. Show that if a directed graph has a cycle, then it does not have a
topological order.

Definition 10.7 (Topological sorting problem).
In the topological sorting problem, the input is a directed acyclic graph, and the output
is a topological order of the graph. �

Lemma 10.8. If a directed graph is acyclic, then it has a sink vertex.

Proof. By contrapositive: If a directed graph has no sink vertices, then it means that
every vertex has an outgoing edge. Start with any vertex, and follow an outgoing edge
to arrive at a new vertex. Repeat this process. At some point, you have to visit a
vertex that you have visited before. This forms a cycle.

42

Proposition 10.9 (Topological sort - näıve algorithm). The following algorithm solves
the topological sorting problem in polynomial time.

On input an n-vertex directed acyclic graph G = (V,A):

• Let p = n.

• While p ≥ 1:

– Find a sink vertex v and remove it from the graph G.

– Let f(v) = p.

– Let p = p− 1.

• Output f .

Exercise 10.10. Show the algorithm correctly solves the topological sorting problem,
i.e., show that for (u, v) ∈ A, f(u) < f(v). What is the running time of this algorithm?

Theorem 10.11 (Topological sort via DFS). There is a O(n+m)-time algorithm that
solves the topological sorting problem.

Proof. The algorithm is a slight variation of DFS.

On input an n-vertex directed acyclic graph G = (V,A):

• Let p = n

• For each vertex v that is not marked as “visited”:

– Run DFS(G, v).

DFS on input G = (V,A) and v ∈ V :

– Mark v as “visited”.

– For each u ∈ N(v):

∗ If u is not marked “visited”, then run DFS(G, u).

– Let f(v) = p.

– Let p = p− 1.

• Output f .

The running time is the same as DFS. To show the correctness of the algorithm, all
we need to show is that for (u, v) ∈ A, f(u) < f(v). There are two cases to consider.

43

• Case 1: u is visited before v. In this case observe that DFS(G, v) will finish
before DFS(G, u). Therefore f(v) will be assigned a value before f(u), and so
f(u) < f(v).

• Case 2: v is visited before u. Notice that we cannot visit u from DFS(G, v)
because that would imply that there is a cycle. Therefore DFS(G, u) is called
after DFS(G, v) is completed. As before, f(v) will be assigned a value before
f(u), and so f(u) < f(v).

10.2 Minimum spanning tree

Definition 10.12 (Minimum spanning tree (MST) problem).
In the minimum spanning tree problem, the input is a connected undirected graph
G = (V,E) together with a cost function c : E → R+. The output is a a subset of
the edges of minimum total cost such that, in the graph restricted to these edges, all
the vertices of G are connected.19 For convenience, we’ll assume that the edges have
unique edge costs, i.e. e 6= e′ =⇒ c(e) 6= c(e′). �

Exercise 10.13. With unique edge costs, show that the minimum spanning tree is
unique.

Theorem 10.14 (MST cut property). Suppose we are given an instance of the MST
problem. For any V ′ ⊆ V , let e = {u,w} be the cheapest edge with the property that
u ∈ V ′ and w ∈ V \V ′. Then e must be in the minimum spanning tree.

Proof. Let T be the minimum spanning tree. The proof is by contradiction, so assume
that e = {u,w} is not in T . Since T spans the whole graph, there must a path from
u to w in T . Let e′ = {u′, w′} be the first edge on this path such that u′ ∈ V ′ and
w′ ∈ V \V ′. Let Te−e′ = (T\{e′}) ∪ {e}. If Te−e′ is a spanning tree, then we reach a
contradiction because Te−e′ has lower cost than T (since c(e) < c(e′)).

19Obviously this subset of edges would not contain a cycle since if it did, we could remove any edge
on the cycle, preserve the connectivity property, and obtain a cheaper set. Therefore, this set forms a
tree.

44

Te−e′ is a spanning tree: Clearly Te−e′ has n− 1 edges (since T has n− 1 edges). So
if we can show that Te−e′ is connected, this would imply that Te−e′ is a tree and touches
every vertex of the graph, i.e., Te−e′ is a spanning tree. Consider any two vertices
s, t ∈ V . There is a unique path from s to t in T . If this path does not use the edge
e′ = {u′, w′}, then the same path exists in Te−e′ , so s and t are connected in Te−e′ . If
the path does use e′ = {u′, w′}, then instead of taking the edge {u′, w′}, we can take
the following path: take the path from u′ to u, then take the edge e = {u,w}, then
take the path from w to w′. So replacing {u′, w′} with this path allows us to construct
a sequence of vertices starting from s and ending at t, such that each consecutive pair
of vertices is an edge. Therefore s and t are connected.

Theorem 10.15 (Jarńık-Prim algorithm for MST). There is an algorithm that solves
the MST problem in O(n2) time, where n is the number of vertices of the input graph.

Proof. We first present the algorithm which is due to Jarńık and Prim. Given an undi-
rected graph G = (V,E) and a cost function c : E → R+:

• Let V ′ = {u} for some arbitrary u ∈ V , and let E ′ = ∅.

• While V ′ 6= V do:

– Let {u, v} be the minimum cost edge such that u ∈ V ′ but v 6∈ V ′.
– Add {u, v} to E ′.

– Add v to V ′.

• Output E ′.

By the MST cut property (Theorem 10.14), the algorithm always adds an edge that
must be in the MST. The number of iterations is n − 1, so all the edges of the MST
are added to E ′. Therefore the algorithm correctly outputs the unique MST.

The running time of the algorithm is O(n2) because there are O(n) iterations, and
the body of the loop can be done in O(n) time.

Exercise 10.16. Suppose an instance of the Minimum Spanning Tree problem is al-
lowed to have negative costs for the edges. Explain whether the Jarńık-Prim algorithm
would work in this case as well.

Exercise 10.17. Consider the problem of computing the maximum spanning tree,
i.e., a spanning tree that maximizes the sum of the edge costs. Explain whether the
Jarńık-Prim algorithm solves this problem if we modify it so that at each iteration, the
algorithm chooses the edge between V ′ and V \V ′ with the maximum cost.

Exercise 10.18. Consider the following algorithm for the MST problem (which is
known as Kruskal’s algorithm). Start with MST being the empty set. Go through

45

all the edges of the graph one by one from the cheapest to the most expensive. Add
the edge to the MST if it does not create a cycle. Show that this algorithm correctly
outputs the MST.

46

11 Graphs III

11.1 Maximum matching

Definition 11.1 (Matching – maximum, maximal, perfect).
A matching in a graph G = (V,E) is a subset of the edges that do not share an endpoint.
A maximum matching in G is a matching with the maximum number of edges among
all possible matchings. A maximal matching is a matching with the property that if we
add any other edge to the matching, it is no longer a matching. Note that a maximal
matching is not necessarily a maximum matching, but a maximum matching is always
a maximal matching. A perfect matching is a matching that covers all the vertices of
the graph. �

Exercise 11.2. Let n be even, and let G be the complete graph on n vertices. How
many different perfect matchings does G contain?

Definition 11.3 (Maximum matching problem).
In the maximum matching problem the input is an undirected graph G = (V,E) and
the output is a maximum matching in G. �

Definition 11.4 (Augmenting path).
Let G = (V,E) be a graph and let M ⊆ E be a matching in G. An augmenting path
in G with respect to M is a path such that

(i) the edges in the path alternate between being in M and not in M
(a single edge which is not in M satisfies this property),

(ii) the first and last vertices in the path are not a part of the matching M .

Note that an augmenting path does not need to contain all the edges in M . �

Theorem 11.5. Let G = (V,E) be a graph. A matching M ⊆ E is maximum if and
only if there is no augmenting path in G with respect to M .

Proof. First, suppose there is an augmenting path in G with respect to M . Then we
want to show that M is not maximum. Let the augmenting path be v1, v2, . . . , vk:

The highlighted edges represent edges in M . By the definition of an augmenting path,
we know that v1 and vk are not matched by M . On this path, the number of edges in
the matching is one less than the number of edges not in the matching. To see that M
is not a maximum matching, observe that we can obtain a bigger matching by flipping
the matched and unmatched edges on the augmenting path. In other words, if an edge
on the path is in the matching, we remove it from the matching, and if an edge on the

47

path is not in the matching, we put it in the matching. This gives us a matching with
one more edge than M , so M is not maximum.

We now prove the other direction. In particular, we want to show that if M is not
a maximum matching, then we can find an augmenting path in G with respect to M .
Let M∗ denote a maximum matching in G. Since M is not maximum, we know that
|M | < |M∗|. We define the set S to be the set of edges contained in M∗ or M , but not
both. That is, S = (M∗ ∪M)\(M∗ ∩M). If we color the edges in M with blue, and
the edges in M∗ with red, then S consists of edges that are colored either blue or red,
but not both. Below is an example:

(Horizontal edges correspond to the red edges. The rest is blue.) Our goal is to find an
augmenting path with respect to M in S. Observe that each vertex that is a part of S
has degree 1 or 2 because it can be incident to at most one edge in M and at most one
edge in M∗. If the degree was more than 2, M and M∗ would not be matchings. We
make two claims:

(i) Because every vertex has degree 1 or 2, S consists of disjoint paths and cycles.

(ii) The edges in these paths and cycles alternate between blue and red.

Given the first claim, the second claim is clearly true. The proof of the first claim is
omitted and is left as an exercise for the reader.

Since M∗ is a bigger matching than M , we know that S has more red edges than
blue edges. Observe that the cycles in S must have even length, because otherwise
the edges cannot alternate between blue and red. Therefore the cycles have an equal
number of red and blue edges. This implies that there must be a path in S with more
red edges than blue edges. In particular, this path starts and ends with a red edge. This
path is an augmenting path with respect to M , since it is clearly alternating between
edges in M and edges not in M , and the endpoints are unmatched with respect to M .
So using the assumption that M is not maximum, we were able to find an augmenting
path with respect to M . This completes the proof.

Exercise 11.6. Let G = (V,E) be a graph such that all vertices have degree 1 or 2.
Then prove that G consists of disjoint paths and cycles.

Definition 11.7 (Bipartite graph).
A graph G = (V,E) is called bipartite if there is a partition20 of V into sets X and Y
such that all the edges in E have one endpoint in X and the other in Y . Sometimes

20Recall that a partition of V into X and Y means that X and Y are disjoint and X ∪ Y = V .

48

the bipartition is given explicitly and the graph is denoted by G = (X, Y,E). Below is
an example of a bipartite graph.

�

Exercise 11.8.

(a) Show that a graph is bipartite if and only if it contains no odd-length cycles.

(b) Give a polynomial-time algorithm that determines whether an input graph is
bipartite or not.

Exercise 11.9. Given as input a bipartite graph G = (X, Y,E), find a polynomial-time
algorithm that outputs a maximum matching in G.
(Hint: Use Theorem 11.5.)

11.2 Stable matching

Definition 11.10 (Complete graph).
A graph G = (V,E) is called complete if E contains all the possible edges, i.e., {u, v} ∈
E for any distinct u, v ∈ V . A bipartite graph G = (X, Y,E) is called complete if E
contains all the possible edges between X vertices and Y vertices. �

Definition 11.11 (Stable matching problem).
An instance of the stable matching problem is a complete bipartite graph G = (X, Y,E)
with |X| = |Y |, and a preference list for each node of the graph. A preference list for a
node in X is an ordering of the Y vertices, and a preference list for a node in Y is an
ordering of the X vertices. Below is an example of an instance of the stable matching
problem:

49

The output of the stable matching problem is a stable matching, which is defined as a
matching that satisfies two properties:

(i) The matching is a perfect matching.

(ii) The matching does not contain any unstable pairs. A pair of vertices (x, y) where
x ∈ X and y ∈ Y is called unstable if they are not matched to each other, but
they both prefer each other to the partners they are matched to.

�

Theorem 11.12 (Gale-Shapley proposal algorithm). There is a polynomial time algo-
rithm which, given an instance of the stable matching problem, always returns a stable
matching.

Proof. We first describe the algorithm (which is called the Gale-Shapley algorithm).
For the sake of clear exposition, we refer to the elements of X as men, and the elements
of Y as women.

• While there is a man m who is not matched:

– Let w be the highest ranked woman on m’s preference list
to whom m has not “proposed” yet.

– Let m “propose” to w.

– If w is unmatched or w prefers m over her current partner,
match m and w.
(The previous partner of w, if there was any, is now unmatched.)

The theorem will follow once we show the following 3 things:

(a) the number of iterations in the algorithm is at most n2, where n = |X| = |Y |,

(b) the algorithm always outputs a perfect matching,

(c) this matching contains no unstable pairs.

Part (a) implies that the algorithm is polynomial time. Parts (b) and (c) imply that
the matching returned by the algorithm is a stable matching.

Proof of (a): Notice that the number of iterations in the algorithm is equal to the
total number of proposals made. No man proposes to a woman more than once, so
each man makes at most n proposals. There are n men in total, so the total number of
proposals is at most n2.

50

Proof of (b): The proof is by contradiction, so suppose the algorithm does not
output a perfect matching. This means that some man, call it m, is not matched to
any woman. The proof can be broken down as follows:

m is not matched at the end =⇒ all women must be matched at the end

=⇒ all men must be matched at the end.

This obviously leads to the desired contradiction. The second implication is quite
simple: since there are an equal number of men and women, the only way all the
women can be matched at the end is if all the men are matched. To show the first
implication, notice that since m is not matched at the end, he got rejected by all the
women he proposed to. Either he got rejected because the woman preferred her current
partner, or he got rejected by a woman that he was already matched with. Either way,
all the women that m proposed to must have been matched to someone at some point in
the algorithm. But once a woman is matched, she never goes back to being unmatched.
So at the end of the algorithm, all the women must be matched.

Proof of (c): We first make a crucial observation. As the algorithm proceeds, a man
can only go down in his preference list, and a woman can only go up in her preference
list. Now consider any pair (m,w) where m ∈ X, w ∈ Y , and m and w are not matched
by the algorithm. We want to show that this pair is not unstable. Let w′ be the woman
that m is matched to, and let m′ be the man that w is matched to.

There are two cases to consider:

(i) m proposed to w at some point in the algorithm,

(ii) m never proposed to w.

If (i) happened, then w must have rejected m at some point, which implies w must
prefer m′ over m (recall w can only go up in her preference list). This implies w does
not prefer m over her current partner, and so (m,w) is not unstable. If (ii) happened,
then w′ must be higher on the preference list of m than w (recall m can only go down
in his preference list). This implies m does not prefer w over his current partner, and
so (m,w) is not unstable. So in either case, (m,w) is stable, and we are done.

Definition 11.13 (Best and worst valid partners).
Consider an instance of the stable matching problem. We say that m ∈ X is a valid
partner of w ∈ Y (or w is a valid partner of m) if there is some stable matching in
which m and w are matched. For u ∈ X ∪ Y , we define the best valid partner of u,
denoted best(u), to be the highest ranked valid partner of u. Similarly, we define the
worst valid partner of u, denoted worst(u), to be the lowest ranked valid partner of
u. �

51

Theorem 11.14. The Gale-Shapley algorithm always matches a male m ∈ X with its
best valid partner, i.e., it returns {(m, best(m)) : m ∈ X}. It also always matches a
female w ∈ Y with its worst valid partner, i.e., it returns {(worst(w), w) : w ∈ Y }.

Remark. Note that it is not a priori clear at all that {(m, best(m)) : m ∈ X} would
be a matching, not to mention a stable matching.

Exercise 11.15. Give a polynomial time algorithm that determines if a given instance
of the stable matching problem has a unique solution or not.
(Hint: Use Theorem 11.14)

Exercise 11.16. Consider the following variant of the stable matching problem. The
input is a complete graph on n vertices, where n is even. Each vertex has a preference
list over every other vertex in the graph. The goal is to find a stable matching. Give
an example to show that a stable matching does not always exist.

52

12 Polynomial-time Reductions

We start by defining several important and well-known decision problems.

Definition 12.1 (k-Coloring problem).
Let G = (V,E) be a graph. Let k ∈ N+. A k-coloring of V is just a map χ : V → C
where C is a set of cardinality k. (Usually the elements of C are called colors. If k = 3
then C = {red, green, blue} is a popular choice. If k is large, we often just call the
“colors” 1, 2, . . . , k.) A k-coloring is said to be legal (or valid) for G if every edge in
E is bichromatic, meaning that its two endpoints have different colors. (I.e., for all
{u, v} ∈ E it is required that χ(u) 6= χ(v).) Finally, we say that G is k-colorable if it
has a legal k-coloring. Note that a graph is 2-colorable if and only if it is bipartite.

In the k-coloring problem, the input is an undirected graph G = (V,E), and the
output is True if and only if the graph is k-colorable. We denote this problem by
kCOL. �

Definition 12.2 (Clique problem).
Let G = (V,E) be an undirected graph. A subset of the vertices is called a clique if
there is an edge between any two vertices in the subset. We say that G contains a
k-clique if there is a subset of the vertices of size k that forms a clique.

In the clique problem, the input is an undirected graph G = (V,E) and a number
k ∈ N+, and the output is True if and only if the graph contains a k-clique. We denote
this problem by CLIQUE. �

Definition 12.3 (Independent set problem).
Let G = (V,E) be an undirected graph. A subset of the vertices is called an independent
set if there is no edge between any two vertices in the subset. We say that G contains
an independent set of size k if there is a subset of the vertices of size k that forms an
independent set.

In the independent set problem, the input is an undirected graph G = (V,E) and a
number k ∈ N+, and the output is True if and only if the graph contains an independent
set of size at least k. We denote this problem by IS. �

Definition 12.4 (Circuit satisfiability problem).
In the circuit satisfiability problem, the input is a Boolean circuit, and the output is
True if and only if there is an assignment to the input gates that makes the circuit
output 1. We denote this problem by CIRCUIT-SAT. �

Definition 12.5 (Boolean satisfiability problem).
Let x1, . . . , xn be Boolean variables, i.e., variables that can be assigned True or False.
A literal refers to a Boolean variable or its negation. A clause is an “OR” of literals.
For example, x1 ∨ ¬x3 ∨ x4 is a clause. A Boolean formula in conjunctive normal form
(CNF) is an “AND” of clauses. For example,

(x1 ∨ ¬x3 ∨ x4) ∧ (x2 ∨ x2 ∨ x4) ∧ (x1 ∨ ¬x1 ∨ ¬x5)

53

is a CNF formula. We say that a Boolean formula is satisfiable if there is a truth
assignment to the Boolean variables that makes the formula evaluate to True.

In the CNF satisfiability problem, the input is a CNF formula, and the output is
True if and only if the formula is satisfiable. We denote this problem by SAT. In a
variation of SAT, we restrict the input formula such that every clause has exactly 3
literals. This variation of the problem is denoted by 3SAT. �

Exercise 12.6. Find exponential-time algorithms to solve the problems listed above.

Definition 12.7 (Polynomial-time Turing reduction (Cook reduction)).
Fix some alphabet Σ. Let A and B be two languages. We say that A polynomial-time
reduces to B, written A ≤P

T B, if it is possible to decide A in polynomial time assuming
a polynomial-time decider for B exists. Polynomial-time reductions are also known as
Cook reductions, named after Stephen Cook. �

Remark. Observe that if A ≤P
T B and B ∈ P, then A ∈ P. Equivalently, taking the

contrapositive, if A ≤P
T B and A 6∈ P, then B 6∈ P. So when A ≤P

T B, we think of B as
being at least as hard as A with respect to polynomial-time decidability.

Exercise 12.8. Show that if A ≤P
T B and B ≤P

T C, then A ≤P
T C.

Theorem 12.9. CLIQUE ≤P
T IS.

Proof. Suppose MIS is a polynomial-time decider for IS. Our goal is to show that there
is a polynomial-time decider for the CLIQUE problem. Before we describe the decider
for CLIQUE, we make a definition. Let G = (V,E) be a graph. The complement of
G is the graph G∗ = (V,E∗) such that E∗ = {{u, v} : {u, v} 6∈ E}. The decider for
CLIQUE is as follows.

"On input <G,k>:

Construct G*.

Run M_IS(<G*,k>).

If it accepts, accept.

If it rejects, reject.

"

First of all, this machine runs in polynomial time because the construction of G∗ takes
polynomial time and MIS runs in polynomial time. To see that the decider works
correctly, it suffices to show that 〈G, k〉 ∈ CLIQUE if and only if 〈G∗, k〉 ∈ IS. To
see that this is true, just observe that if S is a clique in G of size k, then {u, v} ∈ E
for all distinct u, v ∈ S, which means {u, v} 6∈ E∗ for all distinct u, v ∈ S. So S
is an independent set of size k in G∗. Similarly, any independent set in G∗ of size k
corresponds to a clique of size k in G. This implies that 〈G, k〉 ∈ CLIQUE if and only
if 〈G∗, k〉 ∈ IS, as desired.

54

Exercise 12.10. How can you modify the above reduction to show that IS ≤P
T CLIQUE?

Definition 12.11 (Many-one reduction (Karp reduction)).
Let A and B be two languages. Suppose that there is a polynomial-time algorithm (also
called a polynomial-time transformation) f that maps instances of A to instances of B
such that x ∈ A if and only if f(x) ∈ B. Then we say that there is a polynomial-time
many-one reduction (or a Karp reduction, named after Richard Karp) from A to B.
A many-one reduction is a Turing reduction, however not all Turing reductions are a
many-one reduction.

�

Remark. The reduction presented in the proof of Theorem 12.9 is a Karp reduction.
In fact, almost all of the reductions that we present will be Karp reductions.

Theorem 12.12. CIRCUIT-SAT ≤P
T 3COL.

Proof. To prove the theorem, we will present a Karp reduction from CIRCUIT-SAT
to 3COL. In particular, given a CIRCUIT-SAT instance C, we will construct a 3COL
instance G such that C is a satisfiable Boolean circuit if and only if G is 3-colorable.
Furthermore, the construction will be done in polynomial time.

First, using Exercise 8.5, we know that any Boolean circuit with AND, OR, and
NOT gates can be converted into an equivalent circuit that only has NAND gates (in
addition to the input gates). This transformation can easily be done in polynomial
time. So without loss of generality, we assume that our circuit C is a circuit with
NAND and input gates. We construct G by converting each NAND gate into a set of
13 vertices and 23 edges. The construction is given below.

55

The vertices labeled with x and y correspond to the inputs of the NAND gate. The
vertex labeled with ¬(x ∧ y) corresponds to the output of the gate. We construct such
a graph for each NAND gate of the circuit, however, we make sure that if, say, gate
g1 is an input to gate g2, then the vertex corresponding to the output of g1 coincides
with (is the same as) the vertex corresponding to one of the inputs of g2. Furthermore,
the vertices labeled with 0, 1 and n are the same for each gate. In other words, in the
whole graph, there is only one vertex labeled with 0, one vertex labeled with 1, and
one vertex labeled with n. Lastly, we put an edge between the vertex corresponding to
the output vertex of the output gate and the vertex labeled with 0. This completes the
construction of the graph G. Before we prove that the reduction is correct, we make
some preliminary observations.

Let’s call the 3 colors we use to color the graph 0, 1 and n (we think of n as “none”).
Any valid coloring of G must assign different colors to 3 vertices that form a triangle
(e.g. vertices labeled with 0, 1 and n). If G is 3-colorable, we can assume without loss
generality that the vertex labeled 0 is colored with the color 0, the vertex labeled 1
is colored with color 1, and the vertex labeled n is colored with the color n. This is
without loss of generality because if there is a valid coloring of G, any permutation of
the colors corresponds to a valid coloring as well. Therefore we can permute the colors
so that the labels of those vertices coincide with the colors they are colored with.

Notice that since the vertices corresponding to the inputs of a gate (i.e. the x and
y vertices) are connected to vertex n, they will be assigned the colors 0 or 1. Let’s
consider two cases:

• If x and y are assigned the same color (i.e. either they are both 0 or they are
both 1), the vertex labeled with x ∧ y will have to be colored with that same
color. That is, the vertex labeled with x ∧ y must get the color corresponding to
the evaluation of x ∧ y. To see this, just notice that the vertices labeled s1 and

56

s2 must be colored with the two colors that x and y are not colored with. This
forces the vertex x ∧ y to be colored with the same color as x and y.

• If x and y are assigned different colors (i.e. one is colored with 0 and the other
with 1), the vertex labeled with x ∧ y will have to be colored with 0. That is, as
in the first case, the vertex labeled with x ∧ y must get the color corresponding
to the evaluation of x∧ y. To see this, just notice that one of the vertices labeled
d1 or d2 must be colored with 1. This forces the vertex x ∧ y to be colored with
0 since it is already connected to vertex n.

In either case, the color of the vertex x∧ y must correspond to the evaluation of x∧ y.
It is then easy to see that the color of the vertex ¬(x ∧ y) must correspond to the
evaluation of ¬(x ∧ y).

We are now ready to argue that circuit C is satisfiable if and only if G is 3-colorable.
Let’s first assume that the circuit we have is satisfiable. We want to show that the graph
G we constructed is 3-colorable. Since the circuit is satisfiable, there is a 0/1 assignment
to the input variables that makes the circuit evaluate to 1. We claim that we can use
this 0/1 assignment to validly color the vertices of G. We start by coloring each vertex
that corresponds to an input variable: In the satisfying truth assignment, if an input
variable is set to 0, we color the corresponding vertex with the color 0, and if an input
variable is set to 1, we color the corresponding vertex with the color 1. As we have
argued earlier, a vertex that corresponds to the output of a gate (the vertex at the very
bottom of the picture above) is forced to be colored with the color that corresponds to
the value that the gate outputs. It is easy to see that the other vertices, i.e., the ones
labeled s1, s2, d1, d2 and the unlabeled vertices can be assigned valid colors. Once we
color the vertices in this manner, the vertices corresponding to the inputs and output of
a gate will be consistently colored with the values that it takes as input and the value
it outputs. Recall that in the construction of G, we connected the output vertex of the
output gate with the vertex labeled with 0, which forces it to be assigned the color 1.
We know this will indeed happen since the 0/1 assignment we started with makes the
circuit output 1. This shows that we can obtain a valid 3-coloring of the graph G.

The other direction is very similar. Assume that the constructed graph G has a
valid 3-coloring. As we have argued before, we can assume without loss of generality
that the vertices labeled 0, 1, and n are assigned the colors 0, 1, and n respectively. We
know that the vertices corresponding to the inputs of a gate must be assigned the colors
0 or 1 (since they are connected to the vertex labeled n). Again, as argued before, given
the colors of the input vertices of a gate, the output vertex of the gate is forced to be
colored with the value that the gate would output in the circuit. The fact that we can
3-color the graph means that the output vertex of the output gate is colored with 1
(since it is connected to vertex 0 and vertex n by construction). This implies that the
colors of the vertices corresponding to the input variables form a 0/1 assignment that
makes the circuit output a 1, i.e. the circuit is satisfiable.

To finish the proof, we must argue that the construction of graph G, given circuit
C, can be done in polynomial time. This is easy to see since for each gate of the circuit,

57

we create at most a constant number of vertices and a constant number of edges. So if
the circuit has s gates, the construction can be done in O(s) steps.

Definition 12.13 (C-hard, C-complete).
Let C be a set of languages.

• We say that L is C-hard (with respect to polynomial-time reductions) if for all
languages K ∈ C, K ≤P

T L.
(With respect to polynomial time decidability, a C-hard language is at least as
“hard” as any language in C.)

• We say that L is C-complete if L is C-hard and L ∈ C.
(A C-complete language represents the “hardest” language in C with respect to
polynomial time decidability.)

�

Remark. Notice that if L is C-hard and L ∈ P, then C ⊆ P.

58

13 Non-Deterministic Polynomial Time

13.1 The complexity class NP

Definition 13.1 (Non-deterministic polynomial time, complexity class NP).
Fix some alphabet Σ. We say that a language L can be decided in non-deterministic
polynomial time if there exists

(i) a polynomial time decider TM V that takes two strings as input, and

(ii) a constant k,

such that for all x ∈ Σ∗:

• if x ∈ L, then there exists u ∈ Σ∗ with |u| ≤ |x|k such that V (x, u) accepts,

• if x 6∈ L, then for all u ∈ Σ∗, V (x, u) rejects.

If x ∈ L, a u that makes V (x, u) accept is called a proof (or certificate) of x being in
L. The TM V is called a verifier.

We denote by NP the set of all languages which can be decided in non-deterministic
polynomial time. �

Proposition 13.2. 3COL ∈ NP.

Proof. To show 3COL is in NP, we need to show that there is a polynomial-time veri-
fier TM V with the properties stated in Definition 13.1. Recall that an instance of the
3COL problem is an undirected graph G. The description of V is as follows.

"On input <G,u>:

If u is not a valid encoding of a 3 coloring of the vertices, reject.

If there is an edge {v,w} where v and w have same color, reject.

Else, accept.

"

This machine is polynomial-time: To check whether u is a valid encoding of a 3-coloring
of the vertices takes polynomial time (you just need to check that you are given |V |
colors, each being one of 3 colors). To check that it is indeed a valid 3-coloring is
polynomial time as well (you just need to go through every edge once). We now verify
that V satisfies the two conditions stated in Definition 13.1. If 〈G〉 is in the language,
that means there must be some valid 3-coloring of the vertices. When u is this valid
3-coloring, |u| = O(|V |), and the verifier accepts. On the other hand, if 〈G〉 is not in
the language, this means that there is no valid 3-coloring of G, so no matter what u is
given to the verifier, it rejects. This shows 3COL is in NP.

Proposition 13.3. CIRCUIT-SAT ∈ NP.

59

Proof. To show CIRCUIT-SAT is in NP, we need to show that there is a polynomial-
time verifier V with the properties stated in Definition 13.1. Recall that an instance of
the CIRCUIT-SAT problem is a circuit C. The description of V is as follows.

"On input <C,u>:

If u doesn’t correspond to a 0/1 assignment to input gates, reject.

Given the 0/1 assignment to input gates,

compute the output of the circuit.

If the output is 1, accept.

Else, reject.

"

Let n be the total number of gates in C. This machine is polynomial-time since checking
that u is a valid 0/1-assignment to the input-gates takes at most O(n) steps, and
computing the output of the circuit takes at most O(n) steps (it takes constant number
of steps to compute each gate). We now check that V satisfies the two conditions
stated in Definition 13.1. If 〈C〉 is in the language, that means there must be some
0/1-assignment to the input gates that makes the circuit output 1. When u is this
0/1-assignment, then |u| = O(n), and the verifier accepts. On the other hand, if 〈C〉 is
not in the language, this means that there is no 0/1-assignment to the input gates that
makes the circuit output 1, so no matter what u is given to the verifier, it rejects. This
shows CIRCUIT-SAT is in NP.

Exercise 13.4. Show that CLIQUE ∈ NP.

Exercise 13.5. Show that IS ∈ NP.

Proposition 13.6. P ⊆ NP.

Proof. Given a language L ∈ P, we want to show that L ∈ NP. Since L is in P, we
know that there is a polynomial-time decider M that decides L. To show that L ∈ NP,
we need to describe a polynomial-time verifier V that have the properties described in
Definition 13.1. The description of V is as follows.

"On input <x,u>:

run M(x).

if it accepts, accept.

if it rejects, reject.

"

First, note that since M is a polynomial time decider, the line “run M(x)” takes
polynomial time, and so V is polynomial-time. We now check that V satisfies the two
conditions stated in Definition 13.1. If x ∈ L, then M(x) accepts, so for any u, V (x, u)
accepts. For example, V (x, ε) accepts, and clearly |ε| = 0 ≤ |x|. If x 6∈ L, then M(x)
rejects, so no matter what u is, V (x, u) rejects, as desired. This shows that L ∈ NP.

60

Definition 13.7 (Complexity class EXP).
We denote by EXP the set of all languages that can be decided in at most exponential-
time, i.e., in time O(2nk) for some constant k > 0. �

Exercise 13.8. Show that NP ⊆ EXP.

13.2 NP-complete problems

Theorem 13.9 (Cook 1971, Levin 1973). CIRCUIT-SAT is NP-complete.

Proof Sketch. Warning: This is only a proof sketch. You will not be responsible for
this proof.

To prove this theorem, we have to show that CIRCUIT-SAT is in NP and that it is
NP-hard. We have already shown that CIRCUIT-SAT is in NP in Proposition 13.3. So
it remains to show that CIRCUIT-SAT is NP-hard, i.e., L ≤P

T CIRCUIT-SAT for every
language L ∈ NP.

Let MCS denote a polynomial-time decider for CIRCUIT-SAT. Let L be an arbitrary
language in NP. Our task is to show that we can decide L in polynomial time using
MCS as a subroutine. Since L is in NP, there is a polynomial-time verifier TM V that
satisfies the conditions stated in Definition 13.1. Note that V is just a good old decider
TM. In the Boolean Circuits section, we have seen that every TM can be efficiently
simulated by a Boolean circuit family (Theorem 8.14). So using that theorem, we know
that there exists a polynomial size circuit family that simulates V . In order to decide
L, we’ll use this fact and feed MCS an appropriate circuit. Then the output of MCS

will be the output of our decider for L.
In more detail, the polynomial-time decider for L will work as follows. Let x be

the input. By Theorem 8.14, there exists a polynomial size circuit CV that simulates
V (note that the circuits take x-variables and u-variables as input). Furthermore, this
circuit can be constructed in polynomial time (details omitted). Let CV,x denote CV

with the x-variables fixed to the specific input x we are given (so the input gates of CV,x

correspond to the u-variables only). Then observe that x ∈ L if and only if CV,x is a
Yes instance of CIRCUIT-SAT (i.e. CV,x is satisfiable). So to decide whether x ∈ L, we
simply feed CV,x into MCS, the polynomial-time decider for CIRCUIT-SAT, and give
the same answer as MCS(〈CV,x〉).

Remark. To show that a language L is NP-hard, by the transitivity of polynomial-
time reductions (Exercise 12.8), it suffices to show that K ≤P

T L for some language K
which is known to be NP-hard. In particular, using Theorem 13.9, it suffices to show
that CIRCUIT-SAT ≤P

T L.

Theorem 13.10. 3COL is NP-complete.

Proof. We have already done all the work to prove that 3COL is NP-complete. First
of all, in Proposition 13.2, we have shown that 3COL ∈ NP. To show that 3COL is
NP-hard, by the transitivity of reductions, it suffices to show that CIRCUIT-SAT ≤P

T

3COL, which we have done in Theorem 12.12.

61

Theorem 13.11. 3SAT is NP-complete.

Proof Sketch. To show that 3SAT is NP-complete, we have to show that it is in NP
and it is NP-hard. To see that it is in NP, we can take the proof string u to be a
satisfying truth assignment to the variables. If the input formula is indeed satisfiable,
then once such a proof string is given, it is easy to check in polynomial time that u
is indeed a satisfying assignment by evaluating the truth value of each clause one by
one, and checking that every one of them evaluates to True. If the input formula is not
satisfiable, then no matter what u is given, it will never be the case that u makes each
clause evaluate to True. So the verifier will reject as desired.

To show that 3SAT is NP-hard, by the transitivity of reductions, it suffices to show
that CIRCUIT-SAT ≤P

T 3SAT. Our reduction will be a Karp reduction. Given an
instance of CIRCUIT-SAT, i.e. a Boolean circuit C, we will construct an instance
of 3SAT, i.e. a Boolean CNF formula ϕ in which every clause has exactly 3 literals.
The reduction will be polynomial-time and will be such that C is a Yes instance of
CIRCUIT-SAT (i.e. C is satisfiable) if and only if ϕ is a Yes instance of 3SAT (i.e. ϕ
is satisfiable).

The construction is as follows. A circuit C has three types of gates (excluding the
input-gates): NOT, OR, AND.

We will convert each such gate of the circuit C into a 3SAT formula. It is easy to verify
that

yi = ¬xi ⇐⇒ (xi ∨ yi) ∧ (¬xi ∨ ¬yi),
yk = xi ∨ xj ⇐⇒ (yk ∨ ¬xi) ∧ (yk ∨ ¬xj) ∧ (¬yk ∨ xi ∨ xj),
yk = xi ∧ xj ⇐⇒ (¬yk ∨ xi) ∧ (¬yk ∨ xj) ∧ (yk ∨ ¬xi ∨ ¬xj).

So the behavior of each gate can be represented using a Boolean formula. As an
example, consider the circuit below.

62

In this case, we would let

Clause1 = (x1 ∨ y1) ∧ (¬x1 ∨ ¬y1)

Clause2 = (¬y2 ∨ x2) ∧ (¬y2 ∨ x3) ∧ (y2 ∨ ¬x2 ∨ ¬x3)

Clause3 = (y3 ∨ ¬y1) ∧ (y3 ∨ ¬y2) ∧ (¬y3 ∨ y1 ∨ y2),

and the Boolean formula equivalent to the circuit would be

ϕ = Clause1 ∧ Clause2 ∧ Clause3 ∧ y3.

This is not quite a 3SAT formula since each clause does not necessarily have exactly 3
literals. However, each clause has at most 3 literals, and every clause in the formula can
be converted into a clause with exactly 3 literals by duplicating a literal in the clause
if necessary.

This completes the description of how we construct a 3SAT formula from a Boolean
circuit. We leave it as an exercise to the reader to verify that C is satisfiable if and only
if ϕ is satisfiable, and that the reduction can be carried out in polynomial time.

Theorem 13.12. CLIQUE is NP-complete.

Proof. To show that CLIQUE is NP-complete, we have to show that it is in NP and
it is NP-hard. Exercise 13.4 asks you to show that CLIQUE is in NP, so we will show
that CLIQUE is NP-hard by presenting a reduction from 3SAT to CLIQUE.

Our reduction will be a Karp reduction. Given an instance of 3SAT, i.e. a Boolean
formula ϕ, we will construct an instance of CLIQUE, 〈G, k〉 where G is a graph and
k is a number, such that ϕ is a Yes instance of 3SAT (i.e. ϕ is satisfiable) if and only
if 〈G, k〉 is a Yes instance of CLIQUE (i.e. G contains a k-clique). Furthermore, this
construction will be done in polynomial time.

Let
ϕ = (a1 ∨ b1 ∨ c1) ∧ (a2 ∨ b2 ∨ c2) ∧ · · · (am ∨ bm ∨ cm),

where each ai, bi and ci is a literal, be an arbitrary 3SAT formula. Notice that ϕ is
satisfiable if and only if there is a truth assignment to the variables so that each clause
has at least one literal set to True. From this formula, we build a graph G as follows.
For each clause, we create 3 vertices corresponding to the literals of that clause. So in

63

total the graph has 3m vertices. We now specify which vertices are connected to each
other with an edge. We do not put an edge between two vertices if they correspond to
the same clause. We do not put an edge between xi and ¬xi for any i. Every other pair
of vertices is connected with an edge. This completes the construction of the graph.
We still need to specify k. We set k = m.

As an example, if ϕ = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x1 ∨ ¬x1), then the
corresponding graph is as follows:

We now prove that ϕ is satisfiable if and only if G has a clique of size m. If ϕ is
satisfiable, then there is an assignment to the variables such that in each clause, there
is at least one literal set to True. We claim that the vertices that correspond to these
literals form a clique of size m in G. It is clear that the number of such vertices is m. To
see that they form a clique, notice that the only way two of these vertices do not share
an edge is if they correspond to xi and ¬xi for some i. But a satisfying assignment
cannot assign True to both xi and ¬xi.

For the other direction, suppose that the constructed graph G has a clique K of
size m. Since there are no edges between two literals if they are in the same clause,
there must be exactly one vertex from each clause in K. We claim that we can set the
literals corresponding to these vertices to True and therefore show that ϕ is satisfiable.
This claim is easy to see. The only way we could not simultaneously set these literals
to True is if two of these literals correspond to xi and ¬xi for some i. But there is no
edge between such literals, so they cannot both be in the same clique.

This completes the correctness of the reduction. We still have to argue that it can
be done in polynomial time. This is rather straightforward. Creating the vertex set of
G is clearly polynomial-time since there is just one vertex for each literal of the Boolean
formula. Similarly, the edges can be easily added in polynomial time as there are at
most O(m2) many of them.

Theorem 13.13. IS is NP-complete.

Proof. To show that IS is NP-complete, we have to show that it is in NP and it is NP-
hard. Exercise 13.4 asks you to show that IS is in NP, so we show that IS is NP-hard.
By Theorem 13.12, we know that CLIQUE is NP-hard, and by Theorem 12.9 we know
that CLIQUE ≤P

T IS. By the transitivity of reductions, we conclude that IS is also
NP-hard.

64

Remark. The collection of reductions that we have shown can be represented as fol-
lows:

Definition 13.14 (Vertex-cover problem).
Let G = (V,E) be an undirected graph. A subset S of the vertices is called a vertex
cover if for every edge of the graph, there is a vertex in S that is incident to that edge.
In other words, every edge of the graph has at least one end-point in S.

In the vertex-cover problem, the input is an undirected graph G = (V,E) and a
number k ∈ N+, and the output is True if and only if the graph contains a vertex cover
of size at most k. We denote this problem by VERTEX-COVER. �

Exercise 13.15. Show that VERTEX-COVER is NP-complete.

Exercise 13.16. Let 2SAT denote the restriction of SAT in which every clause has
exactly 2 literals. Show that 2SAT ∈ P.

65

14 Computational Social Choice Theory

Definition 14.1 (Election, voters, alternatives, preference profile, voting rule).
An election is specified by 4 objects:

• Voters: a set of n voters N = {1, 2, . . . , n};

• Alternatives: a set of m alternatives denoted by A;

• Preference profile: for each voter, a ranking over the alternatives from rank 1
to rank m;

• Voting rule: a function that maps a preference profile to an alternative.

The output of the voting rule is called the winner of the election. �

Definition 14.2 (Pairwise election).
In a pairwise election m = 2 and an alternative x wins if the majority of voters prefer
x over the other alternative. �

Definition 14.3 (Condorcet winner).
We say that an alternative is a Condorcet winner if it beats every other alternative in
a pairwise election. �

Definition 14.4 (Various voting rules).
The following are definitions of various voting rules. 21

• Plurality: Each voter awards one point to their top-ranked alternative. The
alternative with the most points is declared the winner.

• Borda count: Each voter awards m− k points to their k’th ranked alternative.
The alternative with the most points is declared the winner.

• Plurality with runoff: There are 2 rounds. In the first round, a plurality rule
is applied to identify the top two alternatives. In the second round, a pairwise
election is done to determine the winner.

• Single transferable vote (STV): There are m − 1 rounds. In each round a
plurality rule is applied to identify and eliminate the alternative with the lowest
points. The alternative that survives every round is selected as the winner.

• Copeland: An alternative’s score is the number of alternatives it would beat in
a pairwise election. The winner of the election is the alternative with the highest
score.

21We’ll assume that ties are broken deterministically according to some order on the alternatives.

66

• Dodgson: Given a preference profile, define the Dodgson score of an alternative
x as the number of swaps between adjacent alternatives needed in the preference
profile in order to make x a Condorcet winner. In Dodgson voting rule, the winner
is an alternative with the minimum Dodgson score.

�

Theorem 14.5 (Bartholdi-Tovey-Trick 1989). Consider the following computational
problem. Given as input an election, an alternative x in the election, and a number k,
the output is True if and only if the Dodgson score of x is at most k. This problem is
NP-complete.

Definition 14.6 (Types of voting rules).
We call a voting rule

• majority consistent if given a preference profile such that a majority of the
voters rank an alternative x first, then x is the winner of the election;

• Condorcet consistent if given a preference profile such that there is an alter-
native x that beats every other alternative in a pairwise election, then x is the
winner of the election;

• onto if for any alternative, there is a preference profile such that the alternative
wins;

• dictatorial if there is a voter v such that no matter what the preference profile
is, the winner is v’s most preferred alternative;

• constant if no matter what the preference profile is, the same alternative is the
winner.

The first 3 are considered to be desirable types of voting rules, whereas the last 2 are
considered undesirable. �

Exercise 14.7. Determine whether plurality and Borda count voting rules are Con-
dorcet consistent or not.

Exercise 14.8. What is the relationship between majority consistency and Condorcet
consistency, i.e., does one imply the other?

Definition 14.9 (Manipulation, strategy-proof (SP) voting rule).
Consider an election in which alternative x wins. We say that a voter can manipulate
the voting rule of the election if by changing his preference list, he changes the winner
of the election to an alternative y that the voter ranks higher than x. A voting rule is
called strategy-proof if no voter can manipulate the voting rule. �

Exercise 14.10. What is the largest value of m for which plurality voting rule is
strategy-proof?

67

Exercise 14.11. Are constant and dictatorial voting rules strategy-proof?

Theorem 14.12 (Gibbard-Satterthwaite). If m ≥ 3 then any voting rule that is
strategy-proof and onto is dictatorial. Equivalently, any voting rule that is onto and
nondictatorial is manipulable.

Definition 14.13 (r-Manipulation problem).
Let r be some voting rule. In the r-Manipulation problem, the input is an election, a
voter (called the manipulator), and an alternative (called the preferred candidate). The
output is True if there exists a ranking over the alternatives for the manipulator that
makes the preferred candidate a unique winner of the election. �

Remark. Below is a greedy algorithm that can be used to solve the r-Manipulation
problem, however, it is not always guaranteed to give the correct answer. The algorithm
works by trying to build a ranking of the alternatives for the manipulator, starting with
the highest rank and moving down to the lowest rank one by one.

Given as input an election, a manipulator m, and a preferred candidate p:

• Rank p in the first place for m.

• While there are unranked alternatives:

– If there is an alternative that can be placed in the next spot
without preventing p from winning, place this alternative.

– Otherwise, output False.

• Output True.

Theorem 14.14. The greedy algorithm above is a polynomial-time algorithm that cor-
rectly solves the r-Manipulation problem for

r ∈ {plurality, Borda count, plurality with runoff, Copeland}.

Theorem 14.15 (Bartholdi-Orlin 1991). The r-Manipulation problem is NP-complete
for r being the single transferable voting (STV) rule.

68

15 Approximation Algorithms

Definition 15.1 (Optimization problem).
A minimization optimization problem is a function f : Σ∗ × Σ∗ → R≥0 ∪ {no}. If
f(x, y) = α ∈ R≥0, we say that y is a solution to x with value α. If f(x, y) = no, then y
is not a solution to x. We let OPTf (x) denote the minimum f(x, y) among all solutions
y to x.22 We drop the subscript f , and just write OPT(x), when f is clear from the
context.

In a maximization optimization problem, OPTf (x) is defined using a maximum.
We say that an optimization problem is computable if there is an algorithm such

that given as input x ∈ Σ∗, it produces as output a solution y to x such that f(x, y) =
OPT(x). We often describe an optimization problem by describing the input and a
corresponding output (i.e. a solution y such that f(x, y) = OPT(x)). �

Definition 15.2 (Optimization version of the Vertex-cover problem).
The decision version of the vertex-cover problem was defined in Definition 13.14. In
the optimization version, we are given as input an undirected graph G = (V,E), and
the output is a vertex cover of minimum size. We refer to the optimization version of
the problem as MIN-VC.

Using the notation in Definition 15.1, the corresponding function f is defined as
follows. Let x = 〈G〉 for some graph G. If y represents a vertex cover in G, then f(x, y)
is defined to be the size of the set that y represents. Otherwise f(x, y) = no. �

Remark. Each decision problem that we have defined in the beginning of Section 12
has a natural optimization version.

Remark. The complexity class NP is a set of decision problems. Similarly, the set
of NP-hard problems is a set of decision problems. Given an optimization problem f ,
suppose it is the case that if f can be computed in polynomial time, then every language
in NP can be decided in polynomial time. In this case, we will abuse the definition of
NP-hard and say that f is NP-hard.

Definition 15.3 (Approximation algorithm).

• Let f be a minimization optimization problem and let α > 1 be some parameter.
We say that an algorithm A is an α-approximation algorithm for f if for all
instances x, f(x,A(x)) ≤ α ·OPT(x).

• Let f be a maximization optimization problem and let 0 < β < 1 be some
parameter. We say that an algorithm A is a β-approximation algorithm for f if
for all instances x, f(x,A(x)) ≥ β ·OPT(x).

�
22There are a few technicalities. We will assume that f is such that every x has at least one solution

y, and that the minimum always exists.

69

Remark. Note that when showing that a certain minimization problem has an α-
approximation algorithm, you need to first present an algorithm, and then argue that
for any input, the value of the output produced by the algorithm is within a factor α of
the optimum. For the latter, it is usually hard to know exactly what the optimum value
would be. So a good strategy is to find a convenient lower bound on the optimum, and
then argue that the output of the algorithm is within a factor α of this lower bound.
For example, for the MIN-VC problem, we will use Lemma 15.4 below to say that the
optimum (the size of the minimum size vertex cover) is at least the size of a matching.

The same principle of course applies to maximization problems as well. For maxi-
mization problems, we want to find a convenient upper bound on the optimum.

Lemma 15.4. Given a graph G = (V,E), let M ⊆ E be a matching in G, and let
S ⊂ V be a vertex cover in G. Then, |S| ≥ |M |.

Proof. Observe that in a vertex cover, one vertex cannot be incident to more than one
edge of a matching. Therefore, a vertex cover must have at least |M | vertices in order
to touch every edge of M .

Theorem 15.5. There is a polynomial-time 2-approximation algorithm for the opti-
mization problem MIN-VC.

Proof. We start by presenting the algorithm:

On input an undirected graph G = (V,E):

• Let M = ∅.

• For each edge e ∈ E do:

– If M ∪ {e} is a matching, let M = M ∪ {e}.

• Let S be the set of vertices incident to an edge in M .

• Output S.

We need to argue that the algorithm runs in polynomial time and that it is a 2-
approximation algorithm. It is easy to see that the running-time is polynomial. We
have a loop that repeats |E| times, and in each iteration, we do at most O(|E|) steps.
So the total cost of the loop is O(|E|2). The construction of S takes O(|V |) steps, so
in total, the algorithm runs in polynomial time.

Now we argue that the algorithm is a 2-approximation algorithm. To do this, we
need to argue that

(i) S is indeed a valid vertex-cover,

(ii) if S∗ is a vertex cover of minimum size, then |S| ≤ 2|S∗|.

70

For (i), notice that the M constructed by the algorithm is a maximal matching, i.e.,
there is no edge e ∈ E such that M ∪ {e} is a matching. This implies that the set S is
indeed a valid vertex-cover, i.e., it touches every edge in the graph. For (ii), a convenient
lower bound on |S∗| is given by Lemma 15.4: for any matching M , |S∗| ≥ |M |. Observe
that |S| = 2|M |. Putting the two together, we get |S| ≤ 2|S∗| as desired.

Definition 15.6 (Max-cut problem).
Let G = (V,E) be a graph. Given a 2-coloring of the vertices, we say that an edge
e = {u, v} is cut if u and v are colored differently. In the max-cut problem, the input
is a graph G, and the output is a 2-coloring of the vertices that maximizes the number
of cut edges. We denote this problem by MAX-CUT. �

Theorem 15.7. There is a polynomial-time 1
2
-approximation algorithm for the opti-

mization problem MAX-CUT.

Proof. Here is the algorithm:

On input an undirected graph G = (V,E):

• Color every vertex with the same color. Let c = 0.
(c stores the number of cut edges.)

• Repeat:

– If there is a vertex such that changing its color increases
the number of cut edges, change the color of that vertex.
Update c.

– Else, output the current coloring of the vertices.

We first argue that the algorithm runs in polynomial time. Note that the maximum
number of cut edges possible is |E|. Therefore the loop repeats at most |E| times. In
each iteration, the number of steps we need to take is at most O(|V |2) since we can
just go through every vertex once, and for each one of them, we can check all the edges
incident to it. So in total, the number of steps is polynomial in the input length.

We now show that the algorithm is a 1
2
-approximation algorithm. It is clear that

the algorithm returns a valid coloring of the vertices. Therefore, if c is the number of
cut edges returned by the algorithm, all we need to show is that c ≥ 1

2
OPT(〈G〉). We

will use the trivial upper bound of m (the total number of edges) on OPT(〈G〉), i.e.
OPT(〈G〉) ≤ m. So our goal will be to show that c ≥ 1

2
m.

Observe that in the coloring that the algorithm returns, for each v ∈ V , at least
deg(v)/2 edges incident to v are cut edges. To see this, notice that if there was a vertex
such that this was not true, then we could change the color of the vertex to obtain a
solution that has strictly more cut edges, so our algorithm would have changed the color
of this vertex. From Theorem 9.5, we know that when we count the number of edges
of a graph by adding up the degrees of all the vertices, we count every edge exactly

71

twice, i.e. 2m =
∑

v deg(v). In a similar way we can count the number of cut edges,
which implies 2c ≥

∑
v deg(v)/2. The RHS of this inequality is equal to m, so we have

c ≥ 1
2
m, as desired.

Definition 15.8 (Traveling salesperson problem (TSP)).
In the Traveling salesperson problem, the input is a connected graphG = (V,E) together
with edge costs c : E → N. The output is a Hamiltonian cycle that minimizes the total
cost of the edges in the cycle, if one exists.

A popular variation of this problem is called Metric-TSP. In this version of the prob-
lem, instead of outputting a Hamiltonian cycle of minimum cost, we output a “tour”
that starts and ends at the same vertex and visits every vertex of the graph at least once
(so the tour is allowed to visit a vertex more than once). In other words, the output is a
sequence of vertices vi1 , vi2 , . . . , vik , vi1 such that the vertices are not necessarily unique,
all the vertices of the graph appear in the sequence, any two consecutive vertices in the
sequence form an edge, and the total cost of the edges is minimized. �

Theorem 15.9. There is a polynomial-time 2-approximation algorithm for the opti-
mization problem Metric-TSP.

Proof. The algorithm first computes a minimum spanning tree, and then does a depth-
first search on the tree starting from an arbitrary vertex. More precisely:

On input a connected graph G = (V,E) together with edge costs c : E → N:

• Compute a MST T of G.

• Let v be an arbitrary vertex in V .

• Let S be an empty sequence.

• Run DFS(T , v).

DFS on input G = (V,E) and v ∈ V :

– Mark v as “visited”.

– Add v to S.

– For each u ∈ N(v):

∗ If u is not marked “visited”, then run DFS(G, u).

∗ Add v to S.

• Output S.

This is clearly a polynomial-time algorithm since computing a minimum spanning tree
(Theorem 10.15) and doing a depth-first search (Exercise 10.2) both take polynomial
time.

72

To see that the algorithm outputs a valid tour, note that it visits every vertex (since
T is a spanning tree), and it starts and ends at the same vertex v.

Let c(S) denote the total cost of the tour that the algorithm outputs. Let S∗ be a
optimal solution so that c(S∗) = OPT(〈G, c〉). Our goal is to show that c(S) ≤ 2c(S∗).
The graph induced by S∗ is a connected graph on all of the vertices. Let T ∗ be a
spanning tree within this induced graph. It is clear that c(S∗) ≥ c(T ∗) and this will
be the convenient lower bound we use on the optimum. In other words, we’ll show
c(S) ≤ 2c(T ∗). Clearly c(S) = 2c(T) since the tour uses every edge of T exactly
twice. Furthermore, since T is a minimum spanning tree, c(T) ≤ c(T ∗). Putting these
together, we have c(S) ≤ 2c(T ∗), as desired.

73

16 Online Algorithms

Definition 16.1 (Online problem, online algorithm, c-competitiveness).
An online problem is a collection of 3 objects:

• a set R called requests ;

• a set A called actions ;

• a function cost : I → R+ ∪ {∞} where I =
⋃

n≥1R
n × An.

For a request sequence r ∈ Rn, we let OPT(r) = mina∈An cost(r, a).23

An online algorithm ALG is determined by a function f : R → A where R =⋃
n≥1R

n. Given as input some request sequence r ∈ Rn, the algorithm produces the
action sequence f(r1), f(r1r2), . . . , f(r1r2 . . . rn), which we’ll denote by ALG(r). The
cost of the output is cost(r,ALG(r)).

Let c > 1. We say that ALG is a c-competitive algorithm if cost(r,ALG(r)) ≤
c ·OPT(r) for every r. �

Definition 16.2 (Ski rental problem).
In the ski rental online problem, you are on a ski trip, and each sunny day, you have to
decide whether to rent skis for $1 or buy skis for $B dollars (which you can then use
for the remaining of the trip). The trip ends when there is a non-sunny day. The total
cost of the trip is the number of days you rent skis plus B if you end up buying skis.
The goal is to minimize the cost of the trip.

Using the notation in Definition 16.1, we can define the ski rental problem as follows.
Let R = {go skiing} and A = {rent, buy, use bought skis}. Let (r, a) be an input to
the problem which contains i “rent” actions and j “buy” actions. Then we define
cost(r, a) = i+Bj. If “use bought skis” appears before any “buy” action, we’ll assume
the cost is ∞.

We’ll denote this problem by SKI(B). �

Theorem 16.3. There is a c-competitive algorithm for SKI(B) where c = (2B− 1)/B.
Furthermore, this c is the best possible, i.e., there is no c′-competitive algorithm for
SKI(B) with c′ < c.

Proof. Observe that an optimum (offline) solution must be of the form “rent for t days,
and then buy on day t+1” for some value t. In particular, let s be the number of sunny
days. Then if s < B, the optimum solution would rent every day and the cost would
be s. If s > B, the optimum solution would buy on the first day and the cost would be
B. If s = B, both renting every day or buying the first day results in cost B, therefore
both choices are equally good.

Now consider the following online algorithm: rent for B − 1 days, and then buy on
day B. There are two cases to consider: (i) s ≤ B − 1, (ii) s ≥ B. In case (i), the cost

23One can also define a maximization version of an online algorithm. We’ll restrict ourselves to the
minimization version in these notes.

74

incurred by this algorithm is equal to the optimum cost. In case (ii), the cost incurred
by the algorithm is (B − 1) + B, whereas the optimum solution has cost B. The ratio
is (2B − 1)/B, therefore the algorithm is c-competitive where c = (2B − 1)/B.

It remains to show that this ratio is best possible. As before, the best online
algorithm must be of the form “rent for t days, and then buy on day t + 1” for some
value t. The algorithm may choose a t such that t ≤ B − 2, t ≥ B, or t = B − 1. The
case of t = B − 1 is analyzed above, and achieves c = (2B − 1)/B. We’ll argue that in
the remaining cases, c cannot be better than 2, which is worse than (2B − 1)/B.

First consider the case where t ≤ B−2. Suppose we are given the instance s = t+1.
Since s < B, the optimum (offline) solution has cost s = t+ 1. However, the optimum
online solution has cost t+B ≥ t+(t+2) ≥ 2t+2. So the cost ratio is at least 2. Let’s
now consider the case t ≥ B. Again, we look at the instance s = t + 1. The optimum
(offline) solution has cost B, whereas the optimum online solution has cost t+B ≥ 2B.
So the cost ratio is at least 2 in this case as well.

Definition 16.4 (Paging problem).
In the paging problem, we have a hard drive that can hold N pages. We’ll denote
the set of pages as {1, 2, . . . , N}. We also have a memory which holds k pages. We’ll
assume that the memory initially contains the pages 1, 2, . . . , k. The request sequence
is a sequence of pages p1, p2, . . . , pn. If a page is already in the memory, we have a hit,
otherwise we have a miss. If we have a miss, we have to add the page to the memory
and evict a page that was in the memory. The goal is to minimize the number of misses.
We’ll denote this problem by PAGE(N, k). �

Exercise 16.5. Express PAGE(N, k) using the notation in Definition 16.1.

Theorem 16.6. There is a k-competitive algorithm for PAGE(N, k). Furthermore,
this is the best possible, i.e., there is no c-competitive algorithm for PAGE(N, k) with
c < k.

Proof. Consider the following online algorithm for PAGE(N, k): given a page, if it is a
miss, we evict from memory a page that is least recently requested. This algorithm is
called least recently used (LRU). We will first show that LRU is k-competitive.

We ignore all the requests until the first one that is a miss. We divide the request
sequence into phases. The phases partition the request sequence, and each phase con-
sists of a subsequence of consecutive requests. Phase 1 starts with the first request
(which we assume is a miss). Each phase has the property that it is the longest possible
subsequence with at most k requests of distinct pages. In other words, within a phase,
if we get a request for a (k + 1)’st distinct page, we have to end that phase and start
the next phase. Below is an example with k = 3.

75

Let m be the number of phases, and denote by pij the j’th distinct page in phase i.

Note that pi1, p
i
2, . . . , p

i
k, p

i+1
1 are all distinct pages. So if there are no misses on requests

pi2, p
i
3, . . . , p

i
k, there will be a miss on pi+1

1 . This implies that each phase must contain
at least one miss. This also includes the first phase since by definition, p1

1 is a miss.
Therefore, in an optimal solution, the number of misses is at least m. On the other
hand, it is not hard to see that LRU misses at most once on each distinct page in a
phase, so in total the number of misses is at most km (we leave the verification of this
observation as an exercise to the reader). Thus, the ratio between LRU and an optimal
solution is at most k, as desired.

We now show that this ratio is the best possible. Fix some online algorithm. Con-
sider an instance in which the request sequence is such that each requested page is in
{1, 2, . . . , k, k + 1}, and each request produces a miss for that algorithm. So for any
n, we can make the algorithm miss n times on some request sequence of length n. On
the other hand, in an optimal (offline) solution, once there is a miss, we can make sure
that there won’t be a miss in the next k − 1 requests. To accomplish this, once there
is a miss, the solution evicts the page i with the property that every other page in the
memory will be requested before i. Since there is at most one miss in every k requests,
the ratio between the cost of the best online algorithm and the best offline algorithm
is at least k.

Exercise 16.7. Consider the following online algorithm for PAGE(N, k): given a page,
if it is a miss, we evict from memory a page that has been in the memory for the longest
time since the last time it was inserted into memory. This algorithm is called first in
first out (FIFO). Show that FIFO is a k-competitive online algorithm for PAGE(N, k).

Exercise 16.8. Consider the following online algorithm for PAGE(N, k): given a page,
if it is a miss, we evict from memory a page that has been in the memory for the shortest
time since the last time it was inserted into memory. This algorithm is called last in
first out (LIFO). Show that there is no c such that LIFO is c-competitive? If we applied
the analysis for LRU to LIFO, where does it break down, i.e., why doesn’t it show that
LIFO is k-competitive?

Exercise 16.9. Consider the following online algorithm for PAGE(N, k): given a page,
if it is a miss, we evict from memory a page that is least frequently requested. This
algorithm is called least frequently used (LFU). Show that there is no c such that LFU
is c-competitive? If we applied the analysis for LRU to LFU, where does it break down,
i.e., why doesn’t it show that LFU is k-competitive?

Definition 16.10 (List update problem).
In the list update problem, we have a list of n items. There are n requests: “access x”
for each item x. The cost of accessing x is the position of x in the list. For a request
“access x”, there are i valid actions a1, . . . , ai, where i is the position of x in the list.
Action aj corresponds to moving x to position j in the list. The goal is to minimize
the total cost. �

76

Exercise 16.11. Here are 3 algorithms for the list update problem.

• Transpose: Given the request “access x”, move x one position down (if it is not
in the first position).

• Move to front: Given the request “access x”, move x to the first position.

• Frequency counter: Keep track of how many times an element is requested. Given
the request “access x”, move x past elements that were requested less frequently.

One of these algorithms is c-competitive for some constant c. Determine which one it
is. (Hint: Find it by eliminating two of the options.)

77

17 Probability I: The Basics

Definition 17.1 (Finite probability space, sample space, probability distribution).
A finite probability space is a tuple (Ω,Pr), where

• Ω is a non-empty finite set called the sample space;

• Pr : Ω→ [0, 1] is a function, called the probability distribution, with the property
that

∑
`∈Ω Pr[`] = 1.

�

Remark. In this course, we’ll usually restrict ourselves to finite sample spaces. In
cases where we need an infinite Ω, the above definition generalizes naturally.

Exercise 17.2. How would you model a roll of a single 6-sided die using Definition 17.1?
How about roll of two dice? How about roll of a die and a coin toss together?

Definition 17.3 (Uniform distribution).
If a probability distribution Pr : Ω → [0, 1] is such that Pr[`] = 1/|Ω| for all ` ∈ Ω,
then we call it a uniform distribution. �

Definition 17.4 (Event).
Let (Ω,Pr) be a probability space. Any subset E ⊆ Ω is called an event. We abuse
notation and write Pr[E] to denote

∑
`∈E Pr[`]. Using this notation, Pr[∅] = 0 and

Pr[Ω] = 1. We use the notation Ē to denote the event Ω\E. �

Exercise 17.5. Suppose we roll two 6-sided dice. How many different events are there?
Write down the event corresponding to “we roll a double” and determine its probability.

Exercise 17.6. Suppose we roll a 3-sided die and see the number d. We then roll a
d-sided die. How many different events are there? Write down the event corresponding
to “the second roll is a 2” and determine its probability.

Exercise 17.7. Let A and B be two events. Prove the following.

• If A ⊆ B, then Pr[A] ≤ Pr[B].

• Pr[Ā] = 1−Pr[A].

• Pr[A ∪B] = Pr[A] + Pr[B]−Pr[A ∩B].

Definition 17.8 (Disjoint events).
We say that two events A and B are disjoint if A ∩B = ∅. �

Exercise 17.9 (Union bound). Let A1, A2, . . . , An be events. Then

Pr[A1 ∪ A2 ∪ . . . ∪ An] ≤ Pr[A1] + Pr[A2] + . . .+ Pr[An].

We get equality if and only if the Ai’s are pairwise disjoint.

78

Definition 17.10 (Conditional probability).
Let A and B be two events such that Pr[B] 6= 0. The conditional probability of A given
B, denoted Pr[A | B], is defined as

Pr[A | B] =
Pr[A ∩B]

Pr[B]
.

�

Exercise 17.11. Suppose we roll a 3-sided die and see the number d. We then roll a
d-sided die. We are interested in the probability that the first roll was a 1 given that
the second roll was a 1. First express this probability using the notation of conditional
probability and then determine what the probability is.

Proposition 17.12 (Chain rule). Let n ≥ 2 and let A1, A2, . . . , An be events. Then

Pr[A1∩. . .∩An] = Pr[A1]·Pr[A2 | A1]·Pr[A3 | A1∩A2] · · ·Pr[An | A1∩A2∩. . .∩An−1].

Proof. We prove the proposition by induction on n. The base case with two events
follows directly from the definition of conditional probability. Let A = An and B =
A1 ∩ . . . ∩ An−1. Then

Pr[A1 ∩ . . . ∩ An] = Pr[A ∩B]

= Pr[B] ·Pr[A | B]

= Pr[A1 ∩ . . . ∩ An−1] ·Pr[An | A1 ∩ . . . ∩ An−1],

where we used the definition of conditional probability for the second equality. Applying
the induction hypothesis to Pr[A1 ∩ . . . ∩ An−1] gives the desired result.

Proposition 17.13 (Bayes’ rule). Let A and B be events. Then,

Pr[A | B] =
Pr[A] ·Pr[B | A]

Pr[B]
.

Proof. Since by definition Pr[B | A] = Pr[A ∩ B]/Pr[A], the RHS of the equality
above simplifies to Pr[A ∩B]/Pr[B]. This, by definition, is Pr[A | B].

Proposition 17.14 (Law of total probability). Let A1, A2, . . . , An, B be events such
that the Ai’s form a partition of the sample space Ω. Then

Pr[B] = Pr[B ∩ A1] + Pr[B ∩ A2] + · · ·+ Pr[B ∩ An].

Equivalently,

Pr[B] = Pr[A1] ·Pr[B | A1] + Pr[A2] ·Pr[B | A2] + · · ·+ Pr[An] ·Pr[B | An].

Exercise 17.15. Prove the above proposition.

79

Exercise 17.16. There are 2 bins. Bin 1 contains 6 red balls and 4 blue balls. Bin 2
contains 3 red balls and 7 blue balls. We choose a bin uniformly at random, and then
choose one of the balls in that bin uniformly at random. Calculate the probability that
the chosen ball is red using Proposition 17.14.

Definition 17.17 (Independent events).

• Let A and B be two events. We say that A and B are independent if Pr[A∩B] =
Pr[A] · Pr[B]. Note that if Pr[B] 6= 0, then this is equivalent to Pr[A | B] =
Pr[A]. If Pr[A] 6= 0, it is also equivalent to Pr[B | A] = Pr[B].

• Let A1, A2, . . . , An be events with non-zero probabilities. We say that A1, . . . , An

are independent if for any subset S ⊆ {1, 2, . . . , n},

Pr

[⋂
i∈S

Ai

]
=
∏
i∈S

Pr[Ai].

�

80

18 Probability II: Random Variables

18.1 Basics of random variables

Definition 18.1 (Random variable).
A random variable is a function X : Ω→ R. �

Remark. Note that a random variable is just a labeling of the elements in Ω with some
numbers. One can think of this as a transformation of the original sample space into
one that contains only numbers. If the probability distribution Pr[·] is known, then
this allows us, for example, to take a weighted average of the elements in Ω, where the
weights correspond to the probabilities of the elements (if the distribution is uniform,
the weighted average is just the regular average). This is called the expectation of the
random variable and is formally defined in Definition 18.6.

Notation 18.2. Let X be a random variable and x ∈ R be some real value. We use

X = x to denote the event {` ∈ Ω : X(`) = x},
X ≤ x to denote the event {` ∈ Ω : X(`) ≤ x},
X ≥ x to denote the event {` ∈ Ω : X(`) ≥ x},
X < x to denote the event {` ∈ Ω : X(`) < x},
X > x to denote the event {` ∈ Ω : X(`) > x}.

For example, Pr[X = x] denotes Pr[{` ∈ Ω : X(`) = x}]. More generally, for S ⊆ R,
we use

X ∈ S to denote the event {` ∈ Ω : X(`) ∈ S}.

Exercise 18.3. Suppose we roll two 6-sided dice. Let X be the random variable that
denotes the sum of the numbers we see. Explicitly write down the input-output pairs
for the function X. Calculate Pr[X ≥ 7].

Remark. Given some probability space (Ω,Pr) and a random variable X : Ω → R,
we often forget about the original sample space and consider the sample space to be
the range of X, range(X) = {X(`) : ` ∈ Ω}.

Definition 18.4 (Probability mass function of a random variable).
Let X : Ω→ R be a random variable. The probability mass function of X is a function
pX : R→ [0, 1] such that for any x ∈ R, pX(x) = Pr[X = x]. �

Exercise 18.5. Verify the following:

•
∑

x∈range(X) pX(x) = 1,

• for S ⊆ R, Pr[X ∈ S] =
∑

x∈S pX(x).

81

Remark. Related to the previous remark, we sometimes “define” a random variable
by just specifying its probability mass function. In particular we make no mention of
the underlying sample space.

Definition 18.6 (Expected value of a random variable).
Let X be a random variable. The expected value of X, denoted E[X], is defined as
follows:

E[X] =
∑
`∈Ω

Pr[`] ·X(`).

Equivalently,

E[X] =
∑

x∈range(X)

Pr[X = x] · x,

where range(X) = {X(`) : ` ∈ Ω}. �

Exercise 18.7. Prove that the above two expressions for E[X] are equivalent.

Exercise 18.8. Suppose we roll two 6-sided dice. Let X be the random variable that
denotes the sum of the numbers we see. Calculate E[X].

Proposition 18.9 (Linearity of expectation). Let X and Y be two random variables,
and let c1, c2 ∈ R be some constants. Then E[c1X + c2Y] = c1 E[X] + c2 E[Y].

Proof. Define the random variable Z as Z = c1X + c2Y . Then using the definition of
expected value, we have

E[c1X + c2Y] = E[Z]

=
∑
`∈Ω

Pr[`] · Z(`)

=
∑
`∈Ω

Pr[`] · (c1X(`) + c2Y (`))

=
∑
`∈Ω

Pr[`] · c1X(`) + Pr[`] · c2Y (`)

=

(∑
`∈Ω

Pr[`] · c1X(`)

)
+

(∑
`∈Ω

Pr[`] · c2Y (`)

)

= c1

(∑
`∈Ω

Pr[`] ·X(`)

)
+ c2

(∑
`∈Ω

Pr[`] · Y (`)

)
= c1 E[X] + c2 E[Y],

as desired.

82

Corollary 18.10. Let X1, X2, . . . , Xn be random variables, and c1, c2, . . . , cn ∈ R be
some constants. Then

E[c1X1 + c2X2 + . . .+ cnXn] = c1 E[X1] + c2 E[X2] + . . .+ cn E[Xn].

In particular, when all the ci’s are 1, we get

E[X1 +X2 + . . .+Xn] = E[X1] + E[X2] + . . .+ E[Xn].

Exercise 18.11. Suppose we roll three 10-sided dice. Let X be the sum of the three
values we see. Calculate E[X].

Exercise 18.12. Let X and Y be random variables. Is it always true that E[XY] =
E[X] E[Y]?

Definition 18.13 (Indicator random variable).
Let E ⊆ Ω be some event. The indicator random variable with respect to E is denoted
by IE and is defined as

IE(`) =

{
1 if ` ∈ E,

0 otherwise.

�

Proposition 18.14. Let E be an event. Then E[IE] = Pr[E].

Proof. By the definition of expected value,

E[IE] = Pr[IE = 1] · 1 + Pr[IE = 0] · 0
= Pr[IE = 1]

= Pr[{` ∈ Ω : IE(`) = 1}]
= Pr[{` ∈ Ω : ` ∈ E}]
= Pr[E].

Remark. Suppose that you are interested in computing E[X] for some random variable
X. If you can write X as a sum of indicator random variables, i.e., if X =

∑
j IEj where

IEj are indicator random variables, then by linearity of expectation,

E[X] = E

[∑
j

IEj

]
=
∑
j

E[IEj].

Furthermore, by Proposition 18.14, we know E[IEj] = Pr[Ej]. Therefore E[X] =∑
j Pr[Ej]. This often provides an extremely convenient way of computing E[X]. This

combination of indicator random variables together with linearity expecta-
tion is one of the most useful tricks in probability theory.

83

Exercise 18.15. There are n balls and n bins. For each ball, you pick one of the bins
uniformly at random and drop the ball in that bin. What is the expected number of
balls in bin 1? What is the expected number of empty bins?

Exercise 18.16. Suppose you randomly color the vertices of the complete graph on n
vertices one of k colors. What is the expected number of paths of length c (where we
assume c ≥ 3) such that no two adjacent vertices on the path have the same color?

Definition 18.17 (Conditional expectation).
Let X be a random variable and E be an event. The conditional expectation of X given
the event E, denoted by E[X | E], is defined as

E[X | E] =
∑

x∈range(X)

x ·Pr[X = x | E].

�

Proposition 18.18 (Law of total expectation). Let X be a random variable and
A1, A2, . . . , An be events that partition the sample space Ω. Then

E[X] = E[X | A1] ·Pr[A1] + E[X | A2] ·Pr[A2] + · · ·+ E[X | An] ·Pr[An].

Exercise 18.19. Prove the above proposition.

Exercise 18.20. We first roll a 4-sided die. If we see the value d, we then roll a d-sided
die. Let X be the sum of the two values we see. Calculate E[X].

Definition 18.21 (Independent random variables).
Two random variables X and Y are independent if for all x, y ∈ R, the events X = x
and Y = y are independent. �

Exercise 18.22. Show that if X1, X2, . . . , Xn are independent random variables, then

E[X1X2 · · ·Xn] = E[X1] · E[X2] · · ·E[Xn].

18.2 Three popular random variables

Definition 18.23 (Bernoulli random variable).
Let 0 < p < 1 be some parameter. If X is a random variable with probability mass
function pX(1) = p and pX(0) = 1− p, then we say that X has a Bernoulli distribution
with parameter p (we also say that X is a Bernoulli random variable). We write X ∼
Bernoulli(p) to denote this. The parameter p is often called the success probability. �

Remark. Note that E[X] = p.

84

Definition 18.24 (Binomial random variable).
Let X = X1 + X2 + . . . + Xn, where the Xi’s are independent and for all i, Xi ∼
Bernoulli(p). Then we say that X has a binomial distribution with parameters n and p
(we also say that X is a binomial random variable). We write X ∼ Bin(n, p) to denote
this. �

Remark. Note that a Bernoulli random variable is a special kind of binomial random
variable where n = 1.

Exercise 18.25. Let X be a random variable with X ∼ Bin(n, p). Determine E[X]
(use linearity of expectation). Also determine X’s probability mass function.

Exercise 18.26. We toss a coin 5 times. What is the probability that we see at least
4 heads?

Definition 18.27 (Geometric random variable).
Let X be a random variable with probability mass function pX such that for n ∈
{1, 2, . . .}, pX(n) = (1 − p)n−1p. Then we say that X has a geometric distribution
with parameter p (we also say that X is a geometric random variable). We write
X ∼ Geometric(p) to denote this. �

Exercise 18.28. Let X be a geometric random variable. Verify that
∑∞

n=1 pX(n) = 1.

Exercise 18.29. Suppose we repeatedly flip a coin until we see a heads for the first
time. Determine the probability that we flip the coin n times. Determine the expected
number of coin flips (hint: use Proposition 18.18).

Exercise 18.30. Let X be a random variable with X ∼ Geometric(p). Determine
E[X].

18.3 Some general tips

Remark. Here are some general tips on probability calculations (this is not meant to
be an exhaustive list).

• If you are trying to upper bound Pr[A], you can try to find B with A ⊆ B, and
then bound Pr[B]. Note that if an event A implies an event B, then this means
A ⊆ B. Similarly, if you are trying to lower bound Pr[A], you can try to find B
with B ⊆ A, and then bound Pr[B].

• If you are trying to upper bound Pr[A], you can try to lower bound Pr[Ā] since
Pr[A] = 1 − Pr[Ā]. Similarly, if you are trying to lower bound Pr[A], you can
try to upper bound Pr[Ā].

• In some situations, law of total probability can be very useful in calculating (or
bounding) Pr[A].

85

• If you need to calculate Pr[A1 ∩ . . . ∩ An], try the chain rule. If the events are
independent, then this probability is equal to the product Pr[A1] · · ·Pr[An]. Note
that the event “for all i ∈ {1, . . . , n}, Ai” is the same as A1 ∩ . . . ∩ An.

• If you need to upper bound Pr[A1∪ . . .∪An], you can try to use the union bound.
Note that the event “there exists an i ∈ {1, . . . , n} such that Ai” is the same as
A1 ∪ . . . ∪ An.

• When trying to calculate E[X], try:

(i) directly using the definition of expectation;

(ii) writing X as a sum of indicator random variables, and then using linearity
of expectation;

(iii) using law of total expectation.

86

19 Randomized Algorithms

Remark. Informally, we’ll say that an algorithm is randomized if it has access to a
randomness source. In this course, we’ll assume that a randomized algorithm is allowed
to call RandInt(m), which returns a uniformly random element of {1, 2, . . . ,m}, and
Bernoulli(p), which returns 1 with probability p and returns 0 with probability 1 − p.
We assume that both RandInt and Bernoulli take O(1) time to execute. The notion of
a randomized algorithm can be formally defined using probabilistic Turing machines,
but we will not do so here.

Definition 19.1 (Monte Carlo algorithm).
Let f : Σ∗ → Σ∗ be a computational problem. Let 0 ≤ ε < 1 be some parameter and
T : N→ N be some function. Suppose A is a randomized algorithm such that

• for all x ∈ Σ∗, Pr[A(x) 6= f(x)] ≤ ε, where the probability is over the random
choices made by A;

• for all x ∈ Σ∗, the number of steps A(x) takes is at most T (|x|) no matter what
the random choices of A are.

Then we say that A is a T (n)-time Monte Carlo algorithm that computes f with ε
probability of error. �

Definition 19.2 (Las Vegas algorithm).
Let f : Σ∗ → Σ∗ be a computational problem. Let T : N → N be some function.
Suppose A is a randomized algorithm such that

• for all x ∈ Σ∗, Pr[A(x) = f(x)] = 1, where the probability is over the random
choices made by A;

• for all x ∈ Σ∗, E[number of steps A(x) takes] ≤ T (|x|).

Then we say that A is a T (n)-time Las Vegas algorithm that computes f . �

Remark. One can also define the notions of Monte Carlo algorithms and Las Vegas
algorithms that compute optimization problems (Definition 15.1).

Exercise 19.3. Let P be some problem, and suppose you are given a Monte Carlo
algorithm A that runs in worst-case O(T1(n)) time and solves P with success probability
at least p (i.e., for every input, the algorithm gives the correct answer with probability
at least p and takes at most O(T1(n)) steps.). Suppose it is possible to check in O(T2(n))
time whether the output produced by A is correct or not. Show how to convert A into
a Las Vegas algorithm that runs in expected time O((T1(n) + T2(n))/p).

87

Definition 19.4 (Minimum cut problem).
In the minimum cut problem, the input is an undirected graph G, and the output
is a 2-coloring of the vertices such that the number of cut edges is minimized. (See
Definition 15.6 for the definition of a cut edge.) Equivalently, we want to output a
subset S ⊆ V such that the number of edges between S and V \S is minimized. We
denote this problem by MIN-CUT. �

Definition 19.5 (Multi-graph).
A multi-graph G = (V,E) is an undirected graph in which E is allowed to be a multi-set.
In other words, a multi-graph can have multiple edges between two vertices.24 �

Definition 19.6 (Contraction of two vertices in a graph).
Let G = (V,E) be a multi-graph and let u, v ∈ V be two vertices in the graph. Con-
traction of u and v produces a new multi-graph G′ = (V ′, E ′). Informally, in G′, we
collapse/contract the vertices u and v into one vertex and preserve the edges between
these two vertices and the other vertices in the graph. Formally, we remove the vertices
u and v, and create a new vertex called uv, i.e. V ′ = V \{u, v} ∪ {uv}. The multi-set
of edges E ′ is defined as follows:

• for each {u,w} ∈ E with w 6= v, we add {uv, w} to E ′;

• for each {v, w} ∈ E with w 6= u, we add {uv, w} to E ′;

• for each {w,w′} ∈ E with w,w′ 6∈ {u, v}, we add {w,w′} to E ′.

Below is an example:

�

Theorem 19.7 (Contraction algorithm). There is a polynomial-time Monte-Carlo al-
gorithm that solves the MIN-CUT problem with error probability at most 1/en, where
n is the number of vertices in the input graph.

Proof. The algorithm has two phases. The description of the first phase is as follows.

24Note that this definition does not allow for self-loops.

88

On input an undirected graph G = (V,E):

• Repeat until two vertices remain:

– Select an edge {u, v} uniformly at random.

– Contract u and v to obtain a new graph.

• Two vertices remain, which corresponds to a partition of V into V1 and V2.
Output V1.

First it is easy to see that this algorithm runs in polynomial time. We leave the
details to the reader. Our goal now is to show that the success probability of the first
phase, i.e., the probability that the above algorithm outputs a minimum cut, is at least

2

n(n− 1)
≥ 1

n2
.

In the second phase, we’ll boost the success probability to the desired 1 − 1/en. Let
F ⊆ E correspond to an optimum solution, i.e., a minimum size set of cut edges. We
will show

Pr[algorithm finds F] ≥ 2

n(n− 1)
.

Observe that if the algorithm picks an edge in F to contract, its output cannot corre-
spond to F . If the algorithm never contracts an edge in F , then its output corresponds
to F . In other words, the algorithm’s output corresponds to F if and only if it never
contracts an edge of F . Let Ei be the event that at iteration i of the algorithm, an
edge in F is contracted. Note that there are n − 2 iterations in total as we go from n
vertices down to 2 vertices, and in each iteration, the number of vertices goes down by
exactly 1. Therefore

Pr[algorithm finds F] = Pr[Ē1 ∩ Ē2 ∩ . . . ∩ Ēn−2].

Using the chain rule (Proposition 17.12), we have

Pr[Ē1 ∩ Ē2 ∩ . . . ∩ Ēn−2] =

Pr[Ē1] ·Pr[Ē2 | Ē1] ·Pr[Ē3 | Ē1 ∩ Ē2] · · ·Pr[Ēn−2 | Ē1 ∩ Ē2 ∩ . . . ∩ Ēn−3]. (1)

To lower bound the success probability of the algorithm, we’ll find a lower bound for
each term of the RHS of the above equation. We start with Pr[Ē1]. It is easy to see
that Pr[E1] = |F |/m. However, it will be more convenient to have a bound on Pr[E1]
in terms of |F | and n rather than m. Observe that

∀v ∈ V, |F | ≤ deg(v).

If this was not true, i.e. there was some v with |F | > deg(v), then there would be a cut,
namely S = {v}, with smaller number of cut edges than |F |. And this would contradict

89

the minimality of F . Using this observation, we have

2m =
∑
v∈V

deg(v) ≥ |F | · n, (2)

or equivalently, |F | ≤ 2m/n. Therefore,

Pr[E1] =
|F |
m
≤ 2

n
,

or equivalently, Pr[Ē1] ≥ 1− 2/n. At this point, going back to Equality (1) above, we
can write

Pr[algorithm finds F] ≥(
1− 2

n

)
·Pr[Ē2 | Ē1] ·Pr[Ē3 | Ē1 ∩ Ē2] · · ·Pr[Ēn−2 | Ē1 ∩ Ē2 ∩ . . . ∩ Ēn−3].

We move onto the second term Pr[Ē2 | Ē1]. Let `1 be the number of edges remaining
after the first iteration of the algorithm. Then

Pr[Ē2 | Ē1] = 1−Pr[E2 | Ē1] = 1− |F |
`1

.

As before, we can argue that, at any iteration in the algorithm, for any v ∈ V ,
|F | ≤ deg(v). If not, we can find a min-cut with less than |F | edges, which is not
possible. Therefore, similar to Inequality (2) above, we have 2`1 ≥ |F |(n − 1). Using
this inequality,

Pr[Ē2 | Ē1] = 1− |F |
`1

≥ 1− 2|F |
|F |(n− 1)

= 1− 2

n− 1
.

Thus

Pr[algorithm finds F] ≥(
1− 2

n

)
·
(

1− 2

n− 1

)
·Pr[Ē3 | Ē1 ∩ Ē2] · · ·Pr[Ēn−2 | Ē1 ∩ Ē2 ∩ . . . ∩ Ēn−3].

The same argument allows us to give a lower bound for each term in the product above,
so

Pr[algorithm finds F] ≥(
1− 2

n

)
·
(

1− 2

n− 1

)
·
(

1− 2

n− 2

)
· · ·
(

1− 2

n− (n− 3)

)
=(

n− 2

n

)
·
(
n− 3

n− 1

)
·
(
n− 4

n− 2

)
· · ·
(

1

3

)
.

90

After cancellations between the numerators and denominators of the fractions, the first
two denominators and the last two numerators survive, and the above simplifies to
2/n(n− 1). So we have reached our goal for the first phase and have shown that

Pr[algorithm finds F] ≥ 2

n(n− 1)
≥ 1

n2
.

This implies

Pr[algorithm finds a min-cut] ≥ 1

n2
.

In the second phase of the algorithm, we boost the success probability by repeating
the first phase t times using completely new and independent random choices. The
output of the second phase is a subset S ⊆ V that gives rise to the least number of cut
edges. Our analysis will show that t = n3 is a good choice.

Let Ai be the event that our algorithm does not find a min-cut at repetition i.
Note that the Ai’s are independent since our algorithm uses fresh random bits for each
repetition. Also, each Ai has the same probability, i.e. Pr[Ai] = Pr[Aj] for all i and j.
Therefore

Pr[our algorithm fails to find a min-cut] = Pr[A1 ∩ . . . ∩ At]

= Pr[A1] · · ·Pr[At]

= Pr[A1]t.

From the analysis of the first phase, we know that

Pr[A1] ≤ 1− 1

n2
.

So

Pr[our algorithm fails to find a min-cut] ≤
(

1− 1

n2

)t

.

To upper bound this, we’ll use an extremely useful inequality:

∀x ∈ R, 1 + x ≤ ex.

We will not prove this inequality, but we provide a plot of the two functions below.

91

Notice that the inequality is close to being tight for values of x close to 0. Letting
x = −1/n2, we see that

Pr[our algorithm fails to find a min-cut] ≤ (1 + x)t ≤ ext = e−t/n
2

.

For t = n3, this probability is upper bounded by 1/en, as desired.

Exercise 19.8. Using the analysis of the randomized minimum cut algorithm seen in
class, show that a graph can have at most n(n− 1)/2 distinct minimum cuts.

Exercise 19.9. Suppose we modify the min-cut algorithm seen in class so that rather
than picking an edge uniformly at random, we pick 2 vertices uniformly at random
and contract them into a single vertex. True or False: The success probability of the
algorithm (excluding the part that boosts the success probability) is 1/nk for some
constant k, where n is the number of vertices. Justify your answer.

Exercise 19.10. Let P be a decision problem, and let A be a Monte Carlo algorithm
for A such that if x is a YES instance, then A always gives the correct answer, and
if x is a NO instance, then A gives the correct answer with probability at least 1/2.
Suppose A runs in worst-case O(T (n)) time. Design a new Monte Carlo algorithm A′

for P that runs in O(nT (n)) time and has error probability at most 1/2n.

92

20 Modular Arithmetic

Definition 20.1 (A divides B).
Let A,B ∈ Z. We say that A divides B (or A is a divisor of B), denoted A|B, if there
is a number C ∈ Z such that B = AC. �

Definition 20.2 (Prime number).
Let P ∈ N. We say that P is a prime number if P ≥ 2 and the only divisors of P are
1 and P . �

Definition 20.3 (Congruence modulo N).
We denote by A mod N the remainder you get when you divide A by N . Note that
A mod N ∈ {0, 1, 2, · · · , N − 1}. We say that A and B are congruent modulo N ,
denoted A ≡N B (or A ≡ B mod N), if A mod N = B mod N . �

Exercise 20.4. Show that A ≡N B if and only if N |(A−B).

Notation 20.5. We write gcd(A,B) to denote the greatest common divisor of A and
B. Note that for any A, gcd(A, 1) = 1 and gcd(A, 0) = A.

Definition 20.6 (Relatively prime).
We say that A and B are relatively prime if gcd(A,B) = 1. �

20.1 Basic modular operations

20.1.1 Addition and subtraction

Notation 20.7. We let ZN denote the set {0, 1, 2, . . . , N − 1}.

Definition 20.8 (Addition in ZN).
For A,B ∈ ZN , we define the addition of A and B, denoted A+NB, as (A+B) mod N .
(When N is clear from the context, we drop the subscript N from +N and write +.) For
example, for N = 5, we can represent the addition operation in Z5 using the following
table.

In ZN , the element 0 is called the additive identity. It has the property that for any
A ∈ ZN , A+ 0 = 0 + A = A. �

93

Exercise 20.9. Show that if A ≡N B and A′ ≡N B′, then A+ A′ ≡N B +B′.

Exercise 20.10. Show that for any A,B ∈ Z,

(A+B) mod N = (A mod N) +N (B mod N).

Definition 20.11 (Additive inverse).
Let A ∈ ZN . The additive inverse of A, denoted −A, is defined to be an element in ZN

such that A+ (−A) = 0. �

Exercise 20.12. Show that every element of ZN has a unique additive inverse.

Definition 20.13 (Subtraction in ZN).
For A,B ∈ ZN , we define the subtraction of B from A, denoted A−B, as A+(−B). �

Exercise 20.14. Show that in the addition table of ZN , every row and column is a
permutation of the elements ZN .

20.1.2 Multiplication and division

Definition 20.15 (Multiplication in ZN).
For A,B ∈ ZN , we define the multiplication of A and B, denoted A ·NB, as AB mod N .
(When N is clear from the context, we drop the subscript N from ·N and write ·.) �

Exercise 20.16. Show that if A ≡N B and A′ ≡N B′, then AA′ ≡N BB′.

Exercise 20.17. Show that for any A,B ∈ Z,

AB mod N = (A mod N) ·N (B mod N).

Definition 20.18 (Multiplicative inverse).
Let A ∈ ZN . The multiplicative inverse of A, denoted A−1, is defined to be an element
in ZN such that A · A−1 = 1. �

Proposition 20.19. Let A,N ∈ N. The multiplicative inverse of A in ZN exists if and
only if gcd(A,N) = 1.

Definition 20.20 (Division in ZN).
Let A,B ∈ ZN , where B has a multiplicative inverse B−1. Then we define the division
of A by B, denoted A/B, as A ·B−1. �

Notation 20.21. We let Z∗N denote the set {A ∈ ZN : gcd(A,N) = 1}. In other words,
Z∗N is the set of all elements of ZN that have a multiplicative inverse.

Exercise 20.22. Show that Z∗N is closed under multiplication, i.e., A,B ∈ Z∗N =⇒
A ·B ∈ Z∗N .

Remark. Similar to an addition table for ZN , one can consider a multiplication table
for Z∗N . For example, Z∗8 = {1, 3, 5, 7}, and the multiplication table is as below:

94

Exercise 20.23. Show that in the multiplication table of Z∗N , every row and column
is a permutation of the elements Z∗N .

Definition 20.24 (Euler totient function).
The Euler totient function ϕ : N → N is defined as ϕ(N) = |Z∗N |. By convention,
ϕ(0) = 0. �

Exercise 20.25. Show that for P a prime number, ϕ(P) = P − 1. Also show that for
P and Q distinct prime numbers, ϕ(PQ) = (P − 1)(Q− 1).

20.1.3 Exponentiation

Definition 20.26 (Exponentiation in ZN).
Let A ∈ ZN and E ∈ Z. We write AE to denote

A · A · · · · · A︸ ︷︷ ︸
E times

.

�

Theorem 20.27 (Euler’s Theorem). For any A ∈ Z∗N , Aϕ(N) = 1. Equivalently, for
any A,N ∈ Z with gcd(A,N) = 1, Aϕ(N) ≡N 1.

Proof. Take an arbitrary A ∈ Z∗N . Let B1, B2, . . . , Bk be the elements of Z∗N , where
k = ϕ(N). By Exercise 20.23, {AB1, AB2, . . . , ABk} = Z∗N . The product of all the
elements in the first set can be written as (AB1)(AB2) · · · (ABk). This must be equal
to the product B1B2 · · ·Bk, i.e.

(AB1)(AB2) · · · (ABk) = B1B2 · · ·Bk.

Dividing both sides by B1B2 · · ·Bk (i.e. multiplying both sides by the inverse of
B1B2 · · ·Bk), we get Ak = 1, as desired.

Remark. When N is a prime number, then Euler’s Theorem is known as Fermat’s
Little Theorem.

Exercise 20.28. Let A ∈ Z∗N and E ∈ Z. Show that AE ≡N AE mod ϕ(N). Show that
this is not always true if A ∈ ZN\Z∗N .

95

Remark. What the previous exercise implies is that if we are exponentiating an ele-
ment A ∈ Z∗N , then we can effectively think of the exponent as living in the set Zϕ(N).

Definition 20.29 (Generator).
Let A ∈ Z∗N . We say that A is a generator if

{AE : E ∈ Zϕ(N)} = Z∗N .

�

Theorem 20.30. If N is a prime number, then Z∗N contains a generator.

20.2 Computational complexity of basic modular operations

In this section, we will look at the computational complexities of doing the basic mod-
ular operations discussed in the previous section. We will use the fact that addition,
subtraction, multiplication and division operations can be computed efficiently in Z.
Note that A mod N is easy to compute by dividing A by N and seeing what the re-
mainder is.

20.2.1 Addition and subtraction

In order to compute A+B in ZN , we can simply add A and B in Z and then take the
sum modulo N . To compute A − B, we can do A + (N − B) in Z and then take the
result modulo N .

20.2.2 Multiplication and division

In order to compute A · B in ZN , we can multiply A and B in Z and then take the
product modulo N . To compute A/B = AB−1, we first need to figure out whether B
has a multiplicative inverse. Recall that B−1 exists if and only if B and N are relatively
prime, i.e. gcd(B,N) = 1. The following algorithm, known as Euclid’s Algorithm, effi-
ciently computes the greatest common divisor of two numbers.

gcd(A,B):

• If B = 0, then return A.

• Else return gcd(B,A mod B).

Exercise 20.31. Show that if A ≥ B, gcd(A,B) = gcd(A−B,B). Use this to show that
Euclid’s Algorithm correctly computes the greatest common divisor of two numbers.

Exercise 20.32. Suppose A and B can be represented with at most n bits each. Give
an upper bound on the number of recursive calls Euclid’s Algorithm makes in terms of
n.

96

Using Euclid’s Algorithm, we can check if gcd(B,N) = 1 and determine if B has a
multiplicative inverse. It turns out that a slight modification of Euclid’s Algorithm also
allows us to compute B−1 if it exists. In order to show this, we first need a definition.

Definition 20.33 (Miix).
Let A,B,C ∈ N. We say that C is a miix of A and B if

C = kA+ `B

for some k, ` ∈ Z. �

Exercise 20.34. Let A,B,C ∈ N. Show that if C is a miix of A and B then C is a
multiple of gcd(A,B).

Exercise 20.35. Let A,B,C ∈ N. Show that if C is any multiple of gcd(A,B), then
C is a miix of A and B.
Hint: Show how to modify Euclid’s algorithm so that it outputs k and ` such that
gcd(A,B) = kA+ `B.

Suppose B has a multiplicative inverse modulo N , i.e. gcd(B,N) = 1. Then by
the previous exercise, we can obtain k and ` such that 1 = kB + `N . If we take this
equation modulo N , we get that kB ≡N 1. Therefore k is the multiplicative inverse of
B.

To sum up, if we want to compute A/B = A · B−1, we can first compute B−1 and
then compute A ·B−1.

Exercise 20.36. Prove Proposition 20.19 using the previous two exercises.

20.2.3 Exponentiation

Given A ∈ ZN and E ∈ Z, we can compute AE mod N efficiently. Assume that A,E
and N can be represented using at most n bits each. The algorithm below is known as
fast modular exponentiation. To understand how the algorithm works, see the example
following the algorithm.

FME(A,E,N):

• Repeatedly square A to obtain
A2 mod N , A4 mod N , A8 mod N , . . ., A2n mod N .

• Multiply together (modulo N) the powers of A so that the product is AE.
To figure out which powers to multiply, look at the binary representation of E.

97

Consider the example of computing 233753 mod 100. The first step of the algorithm
computes

23372 mod 100

23374 mod 100

23378 mod 100

233716 mod 100

233732 mod 100

by squaring 2337 modulo 100 5 times. The binary representation of 53 is 110101. This
implies that

53 = 1 + 4 + 16 + 32.

Therefore to calculate 233753 mod 100, the second step of the algorithm does:

(2337 mod 100) · (23374 mod 100) · (233716 mod 100) · (233732 mod 100).

Exercise 20.37. Suppose A,E and N are integers that can be represented using at
most n bits. Give an upper bound on the running time of the above algorithm in terms
of n.

98

21 Cryptography

There are no technical definitions or proofs for this section. Make sure you know how
the following work:

• One-time pad secret-key cryptographic system,

• Diffie-Hellman secret-key exchange protocol,

• RSA public-key cryptographic system.

99

	Pancake Sorting Problem
	Deterministic Finite Automata
	Turing Machines
	Countable and Uncountable Sets
	Countable sets
	Uncountable sets

	Undecidable Languages
	Time Complexity
	Cake Cutting
	Boolean Circuits
	Graphs I: The Basics
	Graphs II
	Depth-first search
	Minimum spanning tree

	Graphs III
	Maximum matching
	Stable matching

	Polynomial-time Reductions
	Non-Deterministic Polynomial Time
	The complexity class NP
	NP-complete problems

	Computational Social Choice Theory
	Approximation Algorithms
	Online Algorithms
	Probability I: The Basics
	Probability II: Random Variables
	Basics of random variables
	Three popular random variables
	Some general tips

	Randomized Algorithms
	Modular Arithmetic
	Basic modular operations
	Addition and subtraction
	Multiplication and division
	Exponentiation

	Computational complexity of basic modular operations
	Addition and subtraction
	Multiplication and division
	Exponentiation

	Cryptography

