CMU 15-251 Fall 2015

MIDTERM 1 PRACTICE

## 1 Short

- 1. How many elements does the set  $\{a, b, c\}^3$  have?
- 2. Let  $\Sigma = \{0,1\}$  and let  $L = \{w \in \{0,1\}^* : |w| \text{ is even}\}$ . Define the decision problem corresponding to L.
- 3. For the DFA below, write down its transition function.



- 4. Let L be a language. Write the definition of "L is decidable".
- 5. Find a counter-example to the following claim: Given any two functions f(n) and g(n), either f(n) = O(g(n)) or g(n) = O(f(n)).
- 6. Prove that if f(n) = O(g(n)) then  $g(n) = \Omega(f(n))$ .
- 7. Let U be the set of all languages over the alphabet  $\Sigma = \{1\}$ . Circle the correct statements, and cross out the incorrect ones:

U is finite U is countable U is uncountable

8. Consider the following DFA called M:



"aaba  $\in L(M)$ ":

True or False?

"L(M) contains a string of length 100":

True or False?

- 9. What is the Church–Turing thesis?
- 10. For a language L, we define  $L^* = \{x_1x_2 \dots x_k : k \geq 0, \forall i \ x_i \in L\}$ . Consider the following claim: If  $L_1$  and  $L_2$  are languages over the alphabet  $\{a,b\}$  then  $(L_1 \cap L_2)^* = L_1^* \cap L_2^*$ . Is this claim True or False? If False, you need to provide a counterexample. If True, no justification is required.

## 2 Medium to Long Answer

- 1. Prove that  $n^3$  is not  $O(n^2)$ .
- 2. Let  $\Sigma = \{0, 1\}$ , and let L be the set of all words that contain 100 or 110 as a substring. Draw the state diagram of a DFA that decides L.
- 3. Let  $\Sigma = \{a, b\}$ . Draw the state diagram of a DFA that decides the language

$$L = \{a^n b^m : n, m \in \mathbb{N}^+, \ n \equiv m \mod 3\}.$$

4. Let  $\Sigma = \{a, b\}$ . Draw the state diagram of a TM that decides the language

 $L = \{w : w \text{ contains the same number of } a$ 's and b's $\}$ .

Clearly define the tape alphabet you are using.

- 5. Suppose that  $L_1, L_2 \subseteq \{0, 1\}^*$  are decidable languages. Show that  $L_1 \cdot L_2$  is also decidable. (Recall that  $L_1 \cdot L_2$  is the language of all strings of the form xy, where  $x \in L_1$  and  $y \in L_2$ .) You may use pseudocode when justifying your solution. If you feel your pseudocode is "obviously" correct, you may assert this (but make sure it's definitely correct!).
- 6. Assume the languages  $L_1$  and  $L_2$  are in P. Prove or give a counter-example:  $L_1 \cap L_2$  is in P.
- 7. Let Let  $\Sigma = \{a, b\}$ . Show that the language  $L = \{www : w \in \{a, b\}^*\}$  is not regular.
- 8. Show that the set of all finite subsets of  $\{0,1\}^*$  is countable.
- 9. Draw a circuit that computes the 3-variable function MAJ:  $\{0,1\}^3 \to \{0,1\}$ , which is defined as MAJ $(x_1, x_2, x_n) = 1$  iff  $x_1 + x_2 + x_3 \ge 2$ . For full credit, the size of your circuit must be at most 9.
- 10. For which  $n \in \mathbb{N}^+$  is it possible to have an *n*-vertex graph G in which all vertices have distinct degrees?
- 11. Show that in the cake cutting problem, if an allocation is envy-free, then it is proportional.
- 12. Let  $L \subseteq \{0,1\}^*$  be a a finite language (i.e., L contains only finitely many strings). Prove that L is regular.
- 13. Prove Cantor's theorem: for any non-empty set A,  $|\mathcal{P}(A)| > |A|$ .
- 14. Recall that a set A is called *countably infinite* if it is infinite and  $|A| \leq |\mathbb{N}|$ . Show that A is countably infinite if and only if  $|A| = |\mathbb{N}|$ .

15. Suppose we define the language

 $G = \{\langle M \rangle : M \text{ is a TM such that the number of strings } M \text{ accepts is exactly one} \}.$ 

Show that G is undecidable.

16. Consider the following piece of pseudocode M, which takes a natural number n as input:

```
M(n):
Let t=0.

While n \neq 1:
Let t=t+1.

If n is even then let n=n/2, else let n=3n+1.

End While.

If t is even then ACCEPT, else REJECT.
```

You have a burning desire to know whether M halts when run on n = 63728127. We strongly expect you will not be able to prove this one way or the other during the exam.

**However**, suppose that you are allowed to send one email to Prof. Ada, containing some pseudocode  $M_{AA}$  for a function that takes no inputs and either ACCEPTS or REJECTS (or loops forever, of course). And Prof. Ada will reply telling you correctly whether or not  $M_{AA}$  ACCEPTS. You can also send one email to Prof. Procaccia, containing some pseudocode  $M_{AP}$  for a function that takes no inputs and either ACCEPTS or REJECTS (or loops forever, of course). He will also reply telling you whether or not  $M_{AP}$  ACCEPTS.

Explain how you can easily determine whether M(63728127) halts or not.

- 17. Show that if a graph G = (V, E) is acyclic and satisfies |E| = |V| 1, then it is connected.
- 18. Let T(n) satisfy the following recurrence relation:

$$T(1) = 0$$
,  $T(n) = 4 \cdot T(n/4) + 3 \cdot n^2$  for  $n > 1$ ,

You can assume n is power of 4, i.e.  $n = 4^t$  for some  $t \in \mathbb{N}$ .

- (a) Consider the recursion tree corresponding to the above recursive relation. Determine the total number of nodes in the tree, in terms of n, using the  $\Theta(\cdot)$  notation.
- (b) Determine T(n) using the  $\Theta(\cdot)$  notation.
- 19. Let  $\Sigma = \{0,1\}$  and  $L = \{w \in \{0,1\}^* : w \text{ contains no 1's}\}$ . Show that the circuit complexity of L is  $\Omega(n)$ .
- 20. Design a cake cutting algorithm for a set of players  $N = \{1, ..., n\}$  that finds an allocation A such that for all i = 1, ..., n-1 (all players except n),  $0 < V_i(A_i) \le \epsilon$  (at most  $\epsilon$ ), for a given  $\epsilon > 0$ . Analyze the complexity of your algorithm in the Robertson-Webb model. You may assume that for any two distinct points  $x, y \in [0, 1]$ , and any player  $i \in N$ ,  $V_i([x, y]) > 0$ , that is, each player has a strictly positive value for any interval that is not a single point.