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Computational 
Social Choice: The 
First Four Centuries

In the last two decades computer 
scientists have become interested in 
social choice, leading to the rise of a 
new field called computational social 
choice. This article is meant to serve as 
an (extremely biased) introduction to 
the field. It would be a shame though 
to tell the story of computational social 
choice without recounting some of the 
delightful history of social choice theo-
ry itself, which spans several centuries 
(some would say millennia). In fact, as 
we shall see, some of the prominent 
figures of social choice theory were 
very colorful indeed! 

THE 18TH CENTURY
Marie Jean Antoine Nicolas de Caritat, 
Marquis de Condorcet, is sometimes re-
ferred to as the founder of social choice 
theory, at least in its modern form. He 
was born in 1743 as the only heir to a 
family of French nobility. Condorcet 
was an exceptional mathematician who 
published ground-breaking work in 
fields such as integral calculus; one of 
his books was praised by the illustrious 

mathematician Lagrange as “filled with 
sublime ideas.” At the recommendation 
of another famous French mathemati-
cian, D’Alembert, Condorcet was elect-
ed to the French Academy of Sciences, 
and later became its president. 
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In addition to being a first-rate 
mathematician, Condorcet was also 
an accomplished writer, and in general 
was considered one of France’s most 
prominent intellectuals. He supported 
many a liberal cause, including eco-
nomic freedom, abolition of slavery, 
equality, and women’s rights. 

Because Condorcet was a nobleman, 
some people mistakenly believe that 
he was executed during the French rev-
olution. In fact, he became one of the 
leaders of the revolution. However, a 
few years later he was declared a traitor 
due to a disagreement over a draft of 
the constitution. Fleeing the law, Con-
dorcet remained in hiding for several 
months. When he was finally forced to 
leave his hiding place, he took refuge in 
an inn, disguised as a commoner. Sad-
ly, his deception was uncovered when 
he asked for an omelet with an “aristo-
cratic amount of eggs, believed to have 
been 12” [1]. He was thrown in jail, but 
was found mysteriously dead two days 
later. One theory asserts that he took 
his own life with a vial of poison once 
given to him by a friend in case he ever 
faced an encounter with the dreaded 
guillotine.

Today Condorcet’s greatest legacy 
is perhaps his 1785 book titled Essay 
on the Application of Probability Analy-
sis to Majority Decisions. Among other 
important contributions, the book 
presents a discovery about the very na-
ture of majority decisions, which at the 
time was nothing less than shocking.

S ocial choice theory is an area of economics that 
studies the foundations of collective decision making. 
We frequently participate in collective decisions in 
our day-to-day lives when we vote in an election, select 

students for admission to a graduate program, or even (taking 
a more nostalgic point of view) share a cake with our siblings. 
Social choice theory provides mathematical models that 
capture these situations and others, as well formal guidelines 
for making the “right” choices.  

Nicolas de Caritat’s “Condorcet Method” 
is designed to simulate pairwise  
elections between all candidates.
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Suppose that the preferences of vot-
ers can be represented (and expressed) 
as a ranking of the candidates. If the 
majority of voters rank candidate x 
above candidate y, that is, prefer x to 
y, then x is clearly a better candidate 
than y; I say that x beats y in a pairwise 
comparison. Now consider the follow-
ing scenario. Voter 1 prefers a to b to c 
(I denote this ranking as a > b > c); vot-
er 2 has the ranking b > c > a; and the 
preferences of voter 3 are represented 
by the ranking c > a > b. In this setting, 
a beats b in a pairwise comparison, b 
beats c, and c beats a—there is a cycle 
in the preferences of the majority! This 
troubling phenomenon is known today 
as the “Condorcet Paradox.”

Nevertheless, some fortuitous vot-
ing scenarios give rise to a candidate 
who beats every other candidate in a 
pairwise comparison. Condorcet ar-
gued that any voting rule, which se-
lects a candidate given the preferences 
of all voters, must select such a strong 
candidate if it is given preferences 
where one exists. Therefore, a candi-
date who beats every other candidate 
in a pairwise comparison is known as 
a Condorcet winner. A voting rule that 
satisfies Condorcet’s criterion is said 
to be Condorcet consistent. Condorcet 
consistency is still one of the main 
yardsticks by which social choice theo-
rists judge different voting rules. As an 
exercise, the reader is invited to verify 
that plurality, the voting rule most of 
us use in political elections—where 
each voter awards one point to his top-
ranked candidate and the candidate 
with most points wins—is not Con-
dorcet consistent.

So far computer science has not 
played a role in our story, but as we 
shall see much of the work described 
within can be traced (directly or indi-
rectly) back to Condorcet.

THE 19TH CENTURY
Our next protagonist is Charles 
Lutwidge Dodgson. Dodgson was born 
in 1832 as the third of 11 children. He 
grew up to be a professor of mathemat-
ics at Oxford University. He is actually 
not considered a great mathematician, 
but he was a Renaissance man with a 
passion for photography (which was 
just beginning to emerge) and writing. 
As a writer he preferred to use a pseud-

onym, which he obtained by deleting 
his last name, swapping his first and 
middle names, and then altering them 
slightly. That is how Dodgson came up 
with the name Lewis Carroll, readily 
recognized as the author of Alice’s Ad-
ventures in Wonderland.

In his first pamphlet on voting—“A 
Discussion of the Various Methods of 
Procedure in Conducting Elections”—
Dodgson seemingly plagiarized many 
of the ideas of his predecessors, includ-
ing Condorcet. Fortunately, there is 
evidence that indicates Dodgson inde-
pendently came up with these ideas. In 
particular, Condorcet’s book was not in 
the collection of the library of the Col-
lege of Christ’s Church, the Oxford col-
lege that employed Dodgson. That book 
was actually available in Oxford’s main 
library, but some of the pages in the rel-
evant section were uncut (at the time 
books were printed and bound by print-
ing several pages on a large sheet of pa-
per that was then folded and bound into 
the book, therefore it was necessary to 
cut pages in order to read). It is unlikely 
that Dodgson obtained the book any-
where else, and therefore we can con-
clude that he did not read it.

Two pamphlets later, Dodgson was 
already innovating on top of his prede-
cessors’ work. A third pamphlet, written 
in 1876, introduced a new voting rule that 
still draws interest today. Dodgson, like 
Condorcet, argued in favor of selecting 
what is now known as a Condorcet win-
ner when one exists in the given prefer-
ences. The question is what to do when 
given preferences do not give rise to a 

Condorcet winner. Dodgson suggested 
a simple solution: Choose a candidate 
that is “closest” to being a Condorcet 
winner. In fact, he implicitly supplied 
a concrete notion of distance to being a 
Condorcet winner. Imagine that we are 
allowed to swap adjacent candidates in 
the given preferences of the voters. For 
example, if a voter has the ranking a > 
b > c, we may swap b and c to obtain the 
ranking a > c > b. The distance of a can-
didate from being a Condorcet winner 
is then the minimum number of swaps 
one must perform in the given prefer-
ences to make that candidate a Con-
dorcet winner.

As another example, say that the pref-
erences of voter 1 are represented by the 
ranking a > b > c, those of voter 2 are b 
> a > c, and voter 3 has the ranking a > 
c > b. Here a is a Condorcet winner and 
so his distance according to Dodgson 
is 0. A single swap between a and b in 
the preferences of voter 1 is sufficient to 
make b a Condorcet winner. Candidate 
c is weaker and requires three swaps, 
e.g., to push him to the top of the prefer-
ences of voters 1 and 3.

It is finally time to put on my com-
puter science hat. Does Dodgson’s rule 
sound complicated? It turns out that it 
is provably so. In an important paper 
written more than a century after Dodg-
son’s third pamphlet, Bartholdi et al. 
showed the problem of deciding wheth-
er a given candidate would be selected 
by Dodgson’s rule in a given voting situ-
ation is computationally hard [2]. This 
means to resolve some elections gov-
erned by Dodgson’s voting rule we can 
expect to wait a long time indeed. Natu-
rally, computational hardness is a huge 
barrier against employing a voting rule; 
no one wants to wait a billion years to 
find out who won the presidency! Dodg-
son’s rule is by no means the only well-
known voting rule to hold the dubious 
distinction of being computationally 
hard (although it certainly has the most 
interesting history); others include rules 
by Young, Kemeny, and Slater.

But not all hope is lost for Dodgson 
and his friends, as computer scientists 
have long successfully tackled compu-
tationally hard problems. One common 
approach is using heuristics. The work 
of Conitzer et al. provides a nice exam-
ple [3]. They focused on computing Ke-
meny’s rule, which, in brief, ranks the 

Lewis Carroll is less known for his work 
on voting methods.
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candidates in an order that minimizes 
the total number of disagreements with 
voters about the relative ranking of pairs 
of candidates. Although the problem is 
computationally hard, they gave practi-
cal heuristics for solving it. So practical, 
in fact, that Conitzer’s current employ-
er, Duke University’s computer science 
department, uses Kemeny’s rule to rank 
hundreds of Ph.D. applicants.

Alternatively, one can take a theoreti-
cal approach. I will just mention that 
one possible approach relies on param-
eterized complexity [4]. Another com-
mon theoretical approach for dealing 
with hard combinatorial optimization 
problems turns to the notion of approx-
imation. In the context of minimization 
problems, the approximation ratio giv-
en by the algorithm is the worst-case ra-
tio between the cost of the algorithm’s 
solution and the cost of the optimal 
solution. The problem of computing a 
candidate’s Dodgson distance is a min-
imization problem that is amenable to 
this type of analysis. So, a natural sug-
gestion is to approximate the Dodgson 
distance in polynomial time, and select 
a candidate closest to being a Condorcet 
winner according to the approximation 
algorithm. In this sense, one can view 
approximation algorithms as new vot-
ing rules, and seek approximation algo-
rithms that are desirable from a social 
choice point of view [5]. This approach 
hybridizes computer science and social 
choice in an attempt to rethink, and ul-
timately influence, the methods that we 
use for collective decision making.

THE 20TH CENTURY
During the first half of the 20th century 
there was no major progress in social 
choice theory. It wasn’t until 1949 when 
Kenneth Arrow proved his famous 
impossibility theorem and thereby re-
shaped the field. Taking an approach 
that in a sense can be traced back to 
Condorcet, Arrow suggested several 
basic properties that one would want to 
see in a voting rule. His shocking theo-
rem established that there are no vot-
ing rules that satisfy these properties. 
The ingenuity of Arrow’s theorem lies 
in providing an axiomatic framework 
that captures all voting rules simultane-
ously, rather than studying voting rules 
one by one (to determine, e.g., whether 
they are Condorcet consistent). For the 

last 62 years, social choice theorists 
have largely followed Arrow’s lead. Ar-
row received a Nobel Memorial Prize in 
Economic Sciences in 1972.

In parallel, the mid 20th century 
has seen the rise of the field of game 
theory, through the work of von Neu-
mann and Morgenstern, and then John 
Nash. Very generally speaking, game 
theory attempts to model and analyze 
rational interaction between different 
entities. The subfield of mechanism 
design, which started out in the ’60s, is 
concerned with designing the rules of 
interaction so that rational entities will 
behave in a desirable way (the designer 
is often interested in incentivizing these 
entities to truthfully report their private 
information).

By the 1970s social choice theory and 
game theory were mature enough to 
give rise to the Gibbard-Satterthwaite 
Theorem; in fact the timing was so right 
that Gibbard and Satterthwaite proved 
the theorem independently! The theo-
rem is concerned with the phenom-
enon of manipulation in elections. To 
see an example, consider a setting with 
three voters and four candidates. We 
will use the voting rule suggested by 
the chevalier de Borda, a contemporary 
of Condorcet. In our setting, under the 
so-called Borda count each voter gives 
three points to his top candidate, two 
points to the second place, one point to 
the third, and zero to the least preferred 
candidate; the candidate with most 
points, summed across voters, wins. As-
sume that voter 1 holds the ranking b > 
a > c > d, voter 2 holds the same ranking, 
and the preferences of voter 3 are a > b 
> c > d. Borda count awards eight points 
to b and seven points to a, and therefore 
(noting that other candidates are clearly 

weaker) b is the winner. What happens 
though if voter 3 reports the preferenc-
es a > c > d > b? In that case a still has 
seven points, but b receives only six, and 
a becomes the winner of the election. 
Because a is preferred to b according to 
the original preferences of voter 3, this 
voter can obtain a better outcome by ly-
ing about his preferences.

When asked about this phenom-
enon, Borda famously replied that his 
scheme is “intended only for honest 
men.” Most of us are not as optimistic 
as Borda though. One may also argue 
voters usually vote using secret ballots, 
and the lack of information would pre-
vent potential manipulators from lying 
about their preferences. However, many 
of us do vote strategically in political 
elections by not supporting favorite 
candidates who lose in the polls. It is 
therefore natural to take a worst-case 
approach by asking whether there are 
voting rules that are immune to strate-
gic manipulation, even if the manipula-
tor has full information about others’ 
votes; this property is known as “strat-
egyproofness.”	

The Gibbard-Satterthwaite Theo-
rem answers this question in the nega-
tive, by adopting Arrow’s approach. 
The theorem asserts that any strategy-
proof voting rule where at least three 
candidates have some chance of being 
selected must be a dictatorship, in the 
sense that the rule always selects the 
most preferred candidate of some fixed 
voter (known as the dictator), regard-
less of what other voters want. Note that 
a dictatorship is itself strategyproof: 
The dictator cannot gain from lying 
because he always gets what he wants, 
whereas other voters cannot gain from 
lying because their preferences are in 
any case ignored by the voting rule. 
(This can be interpreted as implying 
that dictatorship is the only good form 
of government!)

Two decades later, in another semi-
nal 1989 paper, Bartholdi et al. sug-
gested that computational complex-
ity can serve as an obstacle against 
manipulation in elections [6]. Indeed, 
they argued, the Gibbard-Satterthwaite 
Theorem tells us that there are vot-
ing situations in which voters can gain 
from lying about their preferences. Nev-
ertheless, perhaps it is possible to find 
voting rules that would make it difficult 

It is becoming 
apparent that 
computer scientists 
have a good shot at 
being the ones to 
ultimately eliminate 
manipulation in 
elections.
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for a voter to compute such a beneficial 
lie. Interestingly, while in the previous 
section computational hardness was 
bad (because it made it difficult to use 
Dodgson’s rule), here it is actually good 
(serving as a shield against an undesir-
able phenomenon).

As it turns out, several prominent 
voting rules are computationally hard to 
manipulate. One well-known example 
is single transferable vote (STV), which 
works as follows. The election proceeds 
in rounds, where in the first round each 
voter casts a vote for his most preferred 
candidate. The candidate with the least 
votes is then eliminated. In the second 
round, each voter casts a vote for the 
most preferred candidate among the 
surviving candidates (hence, the vot-
ers who liked the eliminated candidate 
best in the first round transfer their vote 
to their second choice). STV continues 
eliminating candidates, until only one 
is left standing. This voting rule is ac-
tually used in elections for parliament 
in Australia and in municipal elections 
in Cambridge, MA. In addition, most 
prominent voting rules are known to 
be hard to manipulate when there is a 
coalition of manipulators, and there is 
much research about related questions, 
such as the complexity of successfully 
bribing voters [7, 8].

As its founders themselves acknowl-
edged, this approach suffers from a 
serious flaw. The standard notion of 
computational hardness is worst case, 
and in particular it is possible that only 
a small fraction of the instances of a 
hard problem are hard. In the context 
of manipulation, this means that even 
though a voting rule is hard to manipu-
late in the worst case, it may be that vot-
ers are almost always able to efficiently 
compute beneficial manipulations. 
What we would really want is a voting 
rule that is hard to manipulate in an av-
erage, perhaps cryptographic, sense [9]. 
It is not yet known which voting rules, 
if any, have this property. Recent results 
suggest that such a voting rule would 
have to be randomized, but the jury is 
still out [10].

At the same time, computer scien-
tists are proposing additional inno-
vative methods of circumventing the 
Gibbard-Satterthwaite Theorem. An es-
pecially intriguing recent paper by Bir-
rell and Pass suggests common voting 

rules can be well-approximated by ran-
domized voting rules that are almost 
strategyproof [11]. As we explore exist-
ing approaches and invent new ones, 
it is becoming apparent that computer 
scientists have a good shot at being the 
ones to ultimately eliminate manipula-
tion in elections.

THE 21ST CENTURY
So what does the future hold in store 
for computational social choice? I see 
two main ways in which the field will 
continue to grow and ultimately have a 
great impact on both computer science 
and social choice.

First, much of the literature on social 
choice is negative in nature. Following 
Arrow, Gibbard, and Satterthwaite, so-
cial choice theorists often suggest a set 
of desirable properties and then prove 
that no voting rule satisfies these prop-
erties simultaneously. In contrast, com-
putational social choice is constructive 
in nature, in that researchers use com-
putational thinking to overcome barri-
ers (such as the Gibbard-Sattherthwaite 
Theorem) and obtain positive results.

Second, the principles of social 
choice theory are difficult to test in po-
litical elections, because changing the 
voting rule is almost impossible. The 
recent United Kingdom alternative 
vote referendum, held on May 5, 2011, 
is a fine example. Although most ex-
perts agreed the alternative voting rule 
is superior, it was perceived as helping 
Nick Clegg, the unpopular leader of the 
Liberal Democrats, and the proposal 
to replace the voting rule was rejected 
by 68 percent of the voters. (One may 
wonder whether the voting system used 
to decide whether to change the voting 
system should be changed, but in this 
case there were only two alternatives so 
majority voting is essentially perfect.)

In contrast, some computer science 
environments make it easy to change 
the voting rule. There is much talk 
among artificial intelligence research-
ers about employing social choice for 
aggregating preferences of autono-
mous software agents interacting in a 
multi-agent system (e.g., agents acting 
on behalf of suppliers, manufacturers, 
and retailers in a supply chain). In such 
a system the designer is free to experi-
ment with different voting rules. More-
over, human computation systems—

where a computer outsources some 
computational steps to humans—like 
EteRNA (http://eterna.cmu.edu) use vot-
ing today in order to aggregate noisy 
information, but this is done in an 
unprincipled way. Once again, the de-
signer is at liberty to employ any voting 
rule his heart desires. A great challenge 
for the future is leveraging social choice 
theory to improve the way voting is used 
in human computation systems, and at 
the same time rethinking some of the 
foundations of social choice theory to 
better understand these systems.
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