

CMU 15-251

CAKE CUTTING

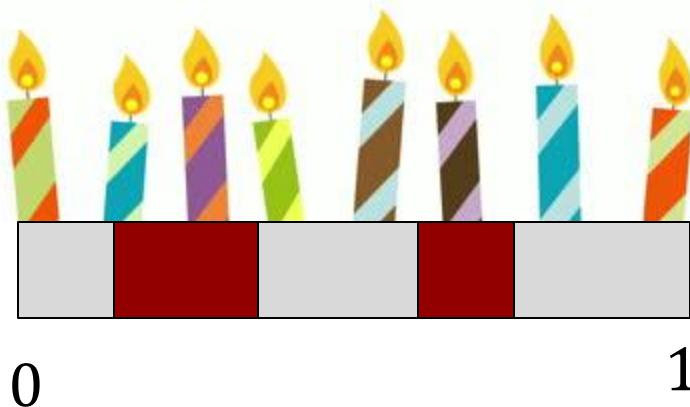
TEACHERS:
VICTOR ADAMCHIK
ARIEL PROCACCIA (THIS TIME)

CAKE CUTTING

- A cake must be divided between several children
- The cake is heterogeneous
- Each child has different value for same piece of cake
- How can we divide the cake fairly?
- What is “fairly”?
- A metaphor for land disputes, time using shared resources, etc.

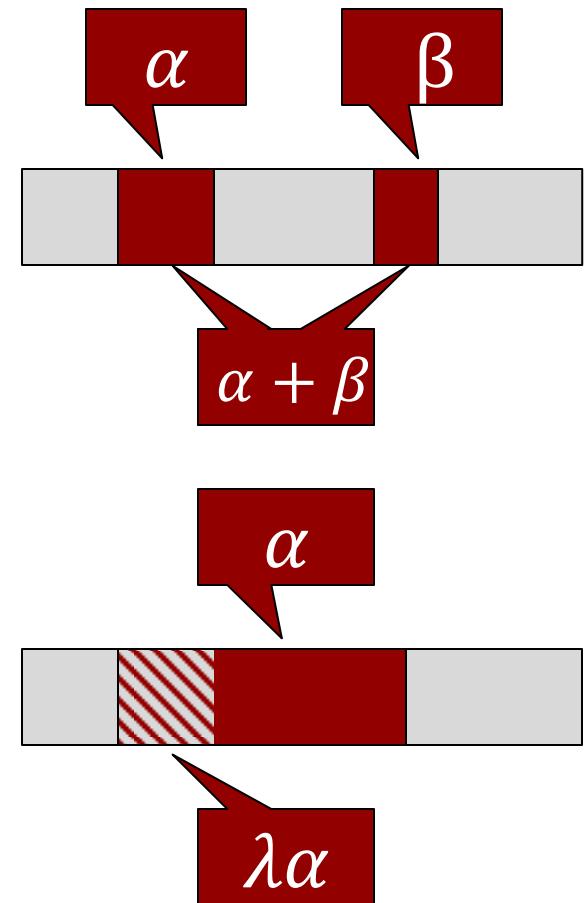
THE PROBLEM

- Cake is interval $[0,1]$
- Set of **players** $N = \{1, \dots, n\}$
- Piece of cake $X \subseteq [0,1]$: finite union of disjoint intervals



THE PROBLEM

- Each player has valuation V_i over pieces of cake
- Additive: for $X \cap Y = \emptyset$,
 $V_i(X) + V_i(Y) = V_i(X \cup Y)$
- Normalized: For all $i \in N$,
 $V_i([0,1]) = 1$
- Divisible: $\forall \lambda \in [0,1]$ can cut $I' \subseteq I$ s.t. $V_i(I') = \lambda V_i(I)$



FAIRNESS PROPERTIES

- Our goal is to find an allocation A_1, \dots, A_n
- Proportionality:

$$\forall i \in N, V_i(A_i) \geq \frac{1}{n}$$

- Envy-Freeness (EF):

$$\forall i, j \in N, V_i(A_i) \geq V_i(A_j)$$

- Vote: For $n = 2$ which is stronger?

1. Proportionality
2. EF
3. They are equivalent
4. They are incomparable

FAIRNESS PROPERTIES

- Proportionality:

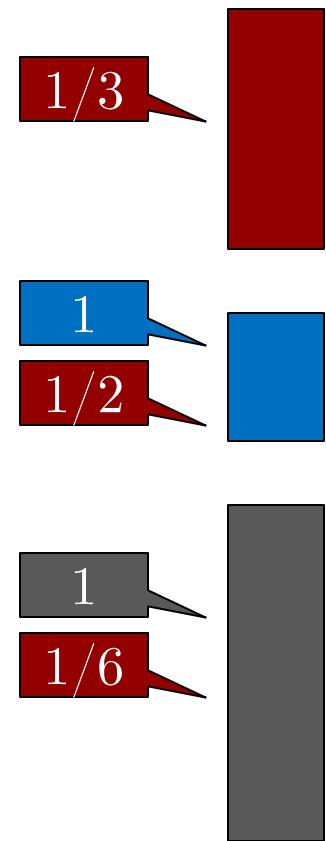
$$\forall i \in N, V_i(A_i) \geq \frac{1}{n}$$

- Envy-Freeness (EF):

$$\forall i, j \in N, V_i(A_i) \geq V_i(A_j)$$

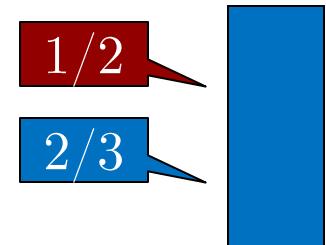
- Vote: For $n \geq 3$ which is stronger?

1. Proportionality
2. EF
3. They are equivalent
4. They are incomparable



CUT-AND-CHOOSE

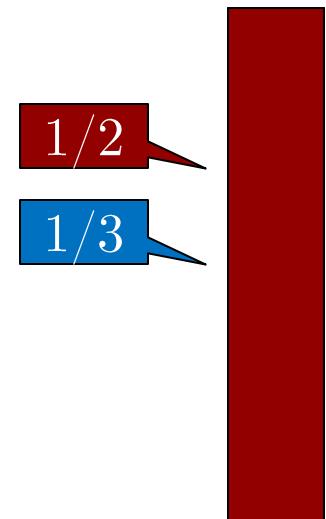
- Algorithm for $n = 2$ [Procaccia and Procaccia, circa 1985]



- Player 1 divides into two pieces X, Y s.t.

$$V_1(X) = 1/2, V_1(Y) = 1/2$$

- Player 2 chooses preferred piece
- This is EF (hence proportional)



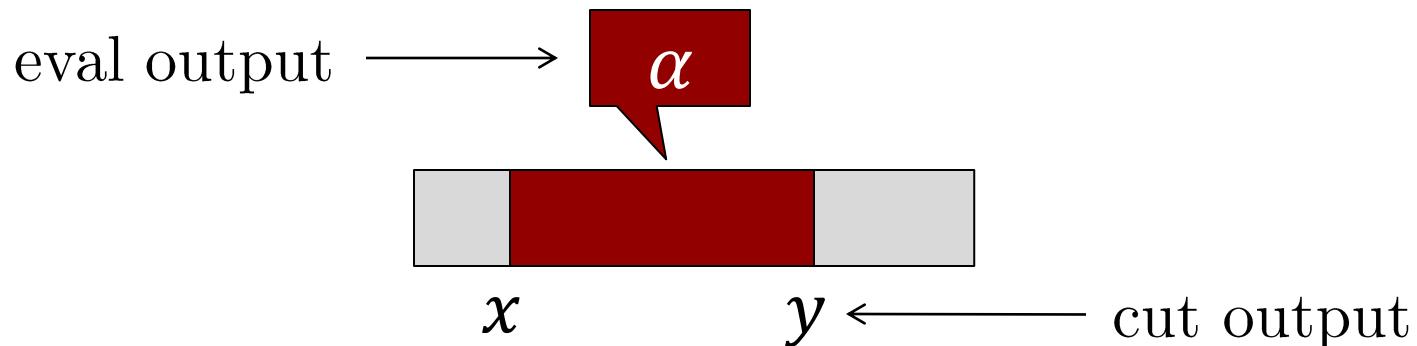
TIME COMPLEXITY

- Player 1 divides into two pieces X, Y s.t.
$$V_1(X) = 1/2, V_1(Y) = 1/2$$
- Player 2 chooses preferred piece

What is the running time
of Cut-and-Choose? What
is the input size?

THE ROBERTSON-WEBB MODEL

- Input size is n
- Two types of operations
 - $\text{Eval}_i(x, y)$ returns $V_i([x, y])$
 - $\text{Cut}_i(x, \alpha)$ returns y such that $V_i([x, y]) = \alpha$



THE ROBERTSON-WEBB MODEL

- Two types of operations
 - $\text{Eval}_i(x, y) = V_i([x, y])$
 - $\text{Cut}_i(x, \alpha) = y \text{ s.t. } V_i([x, y]) = \alpha$
- **Vote:** #operations needed to find an EF allocation when $n = 2$?

- 1
- 2
- 3
- 4

This concrete complexity model is a great idea!

DUBINS-SPANIER

- Referee continuously moves knife
- Repeat: when piece left of knife is worth $1/n$ to player, player shouts “stop” and gets piece
- That player is removed
- Last player gets remaining piece

DUBINS-SPANIER

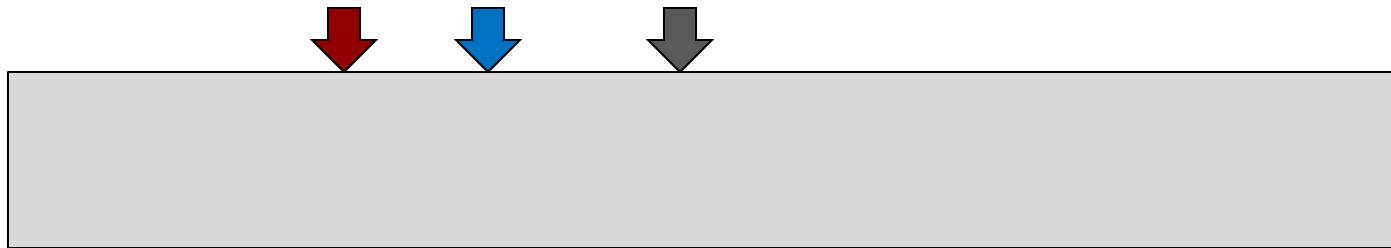
- **Claim:** The Dubins-Spanier protocol produces a proportional allocation
- **Proof:**
 - At stage 0, each of the n players values the whole cake at 1
 - At each stage, the allocated piece of cake is worth at most $1/n$ to the remaining players
 - Hence, if at stage k each of the remaining $n - k$ has value at least $1 - \frac{k}{n}$ for the remaining cake, then at stage $k + 1$ each of the remaining $n - (k + 1)$ players has value at least $1 - \frac{k+1}{n}$ for the remaining cake ■

DUBINS-SPANIER

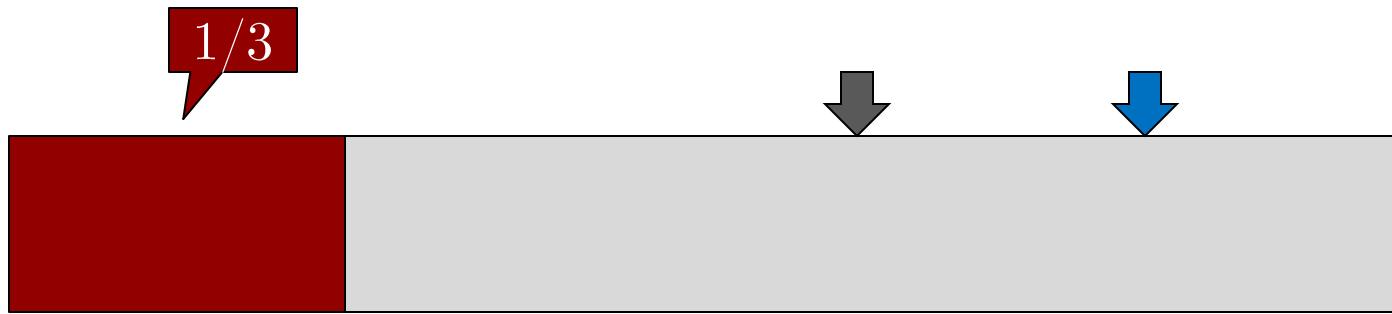
What is the complexity of Dubins-Spanier in the RW model?

- Moving knife is not really needed
- Repeat: each player makes a mark at his $1/n$ point, leftmost player gets piece up to its mark

DUBINS-SPANIER



DUBINS-SPANIER



DUBINS-SPANIER

1/3

1/3

DUBINS-SPANIER



DUBINS-SPANIER

- **Vote:** So what is the complexity of Dubins-Spanier in the RW model?

1. $\Theta(n)$
2. $\Theta(n \log n)$
3. $\Theta(n^2)$
4. $\Theta(n^2 \log n)$

Can we do
better?

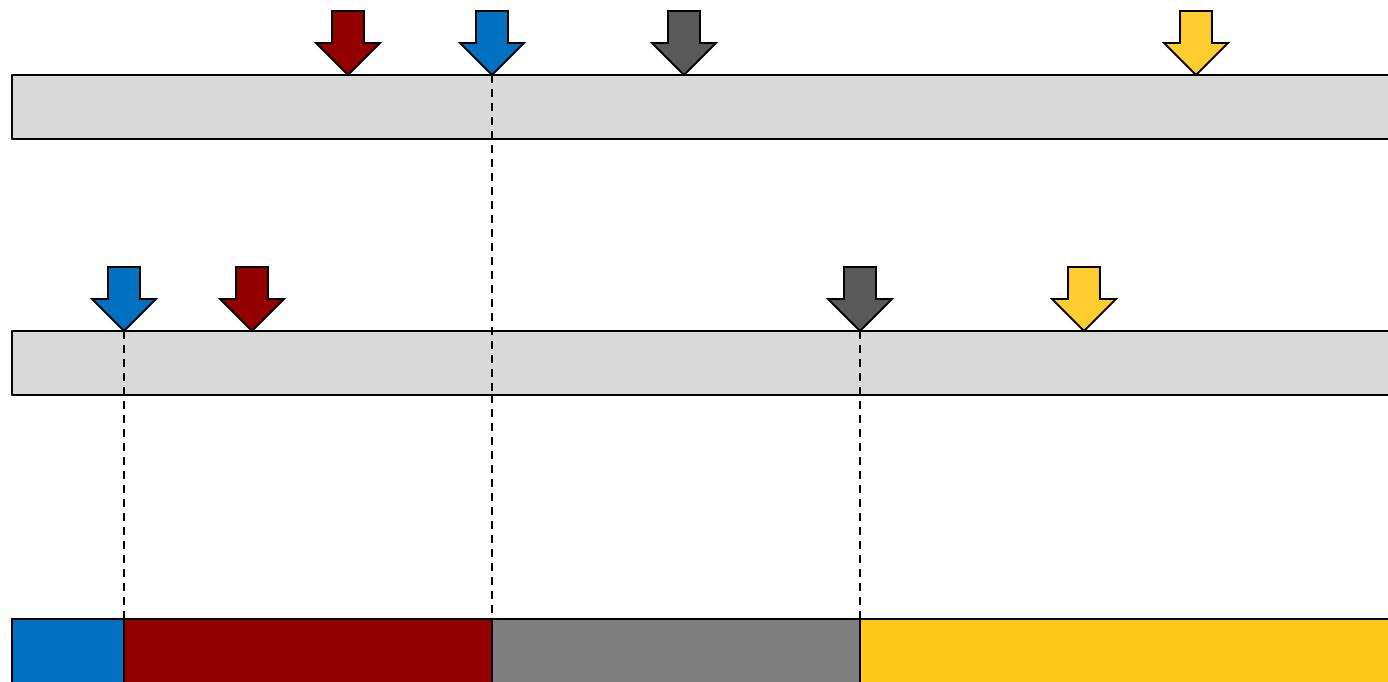
EVEN-PAZ

- Given $[x, y]$, assume $n = 2^k$
- If $n = 1$, give $[x, y]$ to the single player
- Otherwise, each player i makes a mark z s.t.

$$V_i([x, z]) = \frac{1}{2} V_i([x, y])$$

- Let z^* be the $n/2$ mark from the left
- Recurse on $[x, z^*]$ with the left $n/2$ players, and on $[z^*, y]$ with the right $n/2$ players

EVEN-PAZ



EVEN-PAZ

- **Claim:** The Even-Paz protocol produces a proportional allocation
- **Proof:**
 - At stage 0, each of the n players values the whole cake at 1
 - At each stage the players who share a piece of cake value it at least at $V_i([x, y])/2$
 - Hence, if at stage k each player has value at least $1/2^k$ for the piece he's sharing, then at stage $k + 1$ each player has value at least $\frac{1}{2^{k+1}}$
 - The number of stages is $\log n$ ■

EVEN-PAZ

- **Vote:** What is the correct recursion formula for Even-Paz?

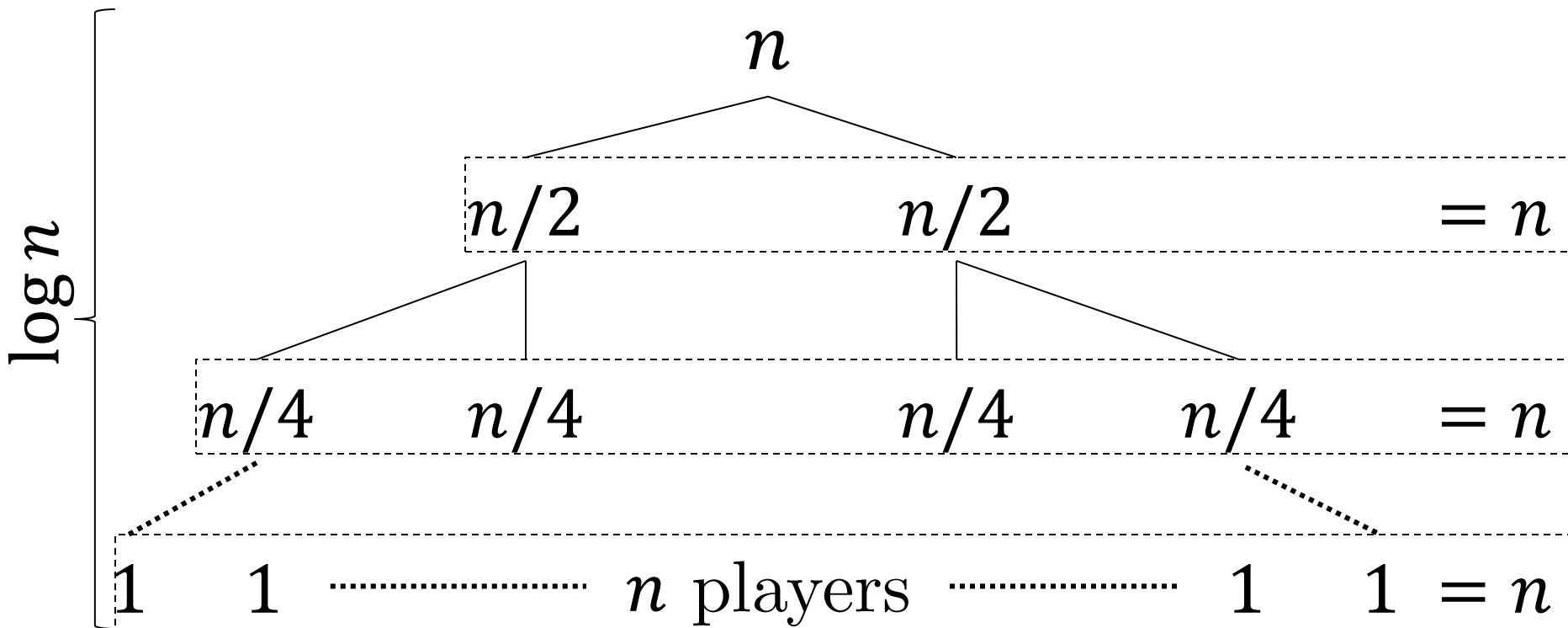
1. $T(1) = 0, T(n) = n + 2T\left(\frac{n}{2}\right)$

2. $T(1) = 0, T(n) = \frac{n}{2} + 2T\left(\frac{n}{2}\right)$

3. $T(1) = 0, T(n) = n + T\left(\frac{n}{2}\right)$

4. $T(1) = 0, T(n) = \frac{n}{2} + T\left(\frac{n}{2}\right)$

EVEN-PAZ



Overall: $n \log n$

COMPLEXITY OF PROPORTIONALITY

- **Theorem** [Edmonds and Pruhs, 2006]: Any proportional protocol needs $\Omega(n \log n)$ operations in the RW model
- The Even-Paz protocol is provably optimal!

WHAT WE HAVE LEARNED

- Definitions:
 - Proportionality / envy-freeness
 - The Robertson-Webb model
 - The Dubins-Spanier protocol
 - The Even-Paz protocol
- Principles:
 - Concrete complexity models for reasoning about time complexity

