

NOT A TRICK QUESTION

• I have 14 teeth on the top and 12 teeth on the bottom. How many teeth do I have?

ADDITION RULE

- If A and B are disjoint (finite) sets, $|A \cup B| = |A| + |B|$
- If $A_1, ..., A_n$ are disjoint (finite) sets,

$$|A_1 \cup \dots \cup A_n| = \sum_{i=1}^n |A_i|$$

• If A and B are (any, finite) sets, $|A \cup B| = |A| + |B| - |A \cap B|$

- To count the elements of the set, partition it into disjoint subsets
- A = outcomes of throwing white die and black die
- A_i = outcomes when white die is i
- $|A| = \sum_{i=1}^{6} |A_i| = 6 \cdot 6$

- $A = \text{all outcomes where white} \neq \text{black}$
- A_i = all outcomes where white is i and black is $j \neq i$
- $|A| = \sum_{i=1}^{6} |A_i| = 6 \cdot 5$

- $A = \text{all outcomes where white} \neq \text{black}$
- B = all outcomes where white = black
- $|A \cup B| = |A| + |B| = 36$ and |B| = 6 $\Rightarrow |A| = 36 - 6 = 30$

- A = all outcomes where black < white
- Vote: |A| = ?

 - *2.* 12
 - *3.*) 15
 - 4. 18

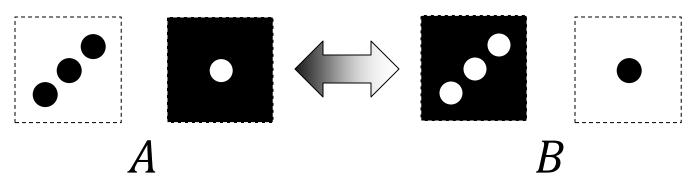
SYMMETRY

- A = all outcomes where black < white
- B = all outcomes where black > white
- |A| + |B| = 30
- By symmetry: $|A| = |B| \Rightarrow |A| = 15$

Is it clear by symmetry that |A| = |B|?

SYMMETRY VIA CORRESPONDENCE

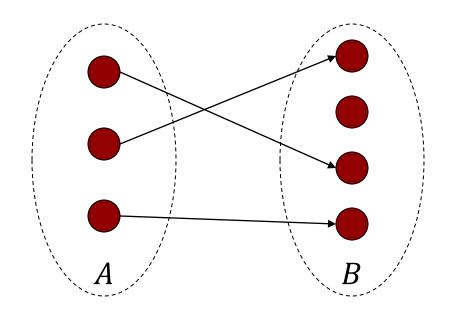
• Each outcome in *A* corresponds to outcome in *B* by swapping colors



- Each outcome in A matched with a different outcome in B, with none left over
- Thus, |A| = |B|

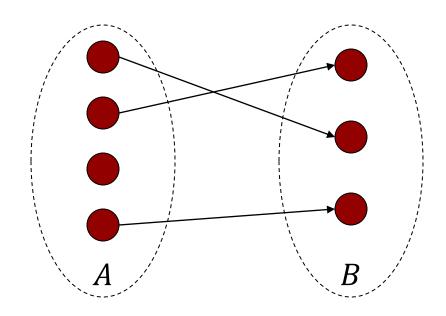
INJECTIVE FUNCTIONS

- $f: A \to B$ is injective if and only if $\forall x, y \in A, x \neq y \Rightarrow f(x) \neq f(y)$
- \exists injective $f: A \to B \Rightarrow |A| \le |B|$



SURJECTIVE FUNCTIONS

- $f: A \to B$ is surjective if and only if $\forall y \in B \ \exists x \in A \ \text{s.t.} \ f(x) = y$
- \exists surjective $f: A \to B \Rightarrow |A| \ge |B|$



CORRESPONDENCE PRINCIPLE

- $f: A \to B$ is bijective if and only if f is injective and surjective
- \exists surjective $f: A \to B \Rightarrow |A| = |B|$

This is called the correspondence principle; it's one of the most important mathematical ideas of all time!

COUNTING SUBSETS

- How many *n*-bit sequences are there?
- $A = \{a_1, a_2, a_3, a_4, a_5\}$ has many subsets: $\{a_1, a_5\}, \{a_1, a_2, a_3, a_4, a_5\}, \{a_3, a_4, a_5\}, \emptyset, \dots$
- These subsets correspond to 5-bit strings

	a	b	С	d	е	
	0	1	1	0	1	
{	-	b	С		e	}

• 1 means "take it", 0 means "leave it"

COUNTING SUBSETS

- Define a bijective f from n-bit sequences $b = (b_1, ..., b_n)$ to subsets of $A = \{a_1, ..., a_n\}$: $f(\mathbf{b}) = \{a_i \mid b_i = 1\}$
- f is injective:
 - If $\boldsymbol{b} \neq \boldsymbol{b}'$ then $\exists i \text{ s.t. } b_i \neq b_i'$
 - a_i is in exactly one of f(b), $f(b') \Rightarrow f(b) \neq f(b')$
- f is surjective:
 - \circ For any $S \subseteq A$ let $b_i = 1$ if and only if $a_i \in S$
 - $_{\circ}$ $f(\boldsymbol{b}) = S$

COUNTING SUBSETS

An *n*-element set has 2^n subsets!

COUNTING MEALS

- A restaurant has 2 appetizers, 4 entrees, and 3 deserts
- How many items on the menu?

$$2 + 4 + 3 = 9$$

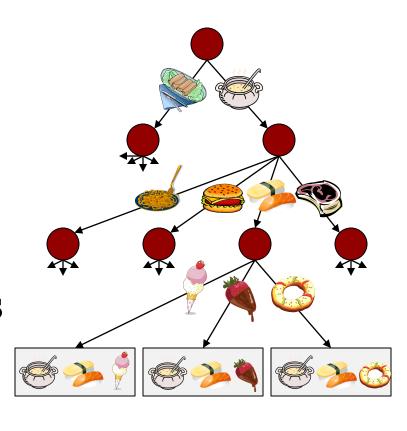
How many ways to choose a complete meal?

$$2 \cdot 4 \cdot 3 = 24$$

- Vote: How many ways to choose a meal if I am allowed to skip some (or all) of the courses?
 - 60
 - 145
 - $2^9 = 512$
 - $4. 2^{24} = 16,777,216$

CHOICE TREES

- Choice tree representation of set S
- Leaves correspond to elements of S
- If T has height h and each node at depth i has P_i children then #leaves = $P_1 \times \cdots \times P_h$



PRODUCT RULE

• Suppose that every element of S can be constructed by a sequence of nchoices with P_1 options for the first choice, P_2 options for the second, etc.

Combine correspondence principle with leaf counting!

- If:
 - Each sequence of choices creates an element of S
 - No two sequences create the same element
- Then: $|S| = P_1 \times \cdots \times P_n$

PERMUTATIONS

- How many orderings of 52 cards?
 - 52 choices for first card
 - 51 choices for second card

 - 1 choice for the last card
 - By product rule: $52 \times 51 \times \cdots \times 1 = 52!$
- Permutation = ordering
- The number of permutations of n objects is n!

PERMUTING k OF n

• How many sequences of 3 letters?

$$26^3 = 17,576$$

• Vote: How many sequences of 3 letters where at least one letter appears twice?

- 1949
- 1976 (see
 - 1998
 - 2008

Count objects with property by counting objects without property?

PERMUTING k OF n

The number of ways of choosing k ordered objects out of n is

$$n \times (n-1) \times \cdots \left(n - (k-1)\right) = \frac{n!}{(n-k)!}$$

ORDERED VS. UNORDERED

• How many ordered pairs from 52 cards? $52 \times 51 = 2652$

• How many unordered pairs?

$$\frac{52 \times 51}{2} = 1326$$

• Each unordered pair is listed twice on the list of ordered pairs

ORDERED VS. UNORDERED

• Vote: How many unordered 5 card hands out of deck of 52 cards?

$$1. \quad \frac{52 \times 51 \times 50 \times 49 \times 48}{5}$$

- $52 \times 51 \times 50 \times 49 \times 48$ 2. 5!
 - 52! 3. 5!
 - 4. $52! \times 5!$

ORDERED VS. UNORDERED

The number of ways of choosing k unordered objects out of n is

$$\binom{n}{k} = \frac{n!}{(n-k)!\,k!}$$

BACK TO BITS

- How many 8-bit sequences with two 0s?
 - Choose two positions for the 0s; the 1s are forced: $\binom{8}{2}$
 - Choose six positions for the 1s; the 0s are forced: $\binom{8}{6}$

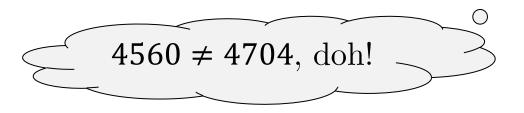
$$\binom{n}{k} = \frac{n!}{(n-k)! \, k!} = \frac{n!}{k! \, (n-k!)} = \binom{n}{n-k}$$

BACK TO BITS

- Vote: How many sequences of eight 1s and four 0s s.t. no two 0s are adjacent?
 - *1.* 70
 - *2.* 72
 - (3.) 126
 - 4. 128
- How many sequences of eight 1s and four 0s s.t. no two 0s and no two 1s are adjacent?

- How many ways to choose 5 cards with at least three aces?
- Method 1:
 - (4) ways of choosing three aces
 - \circ $\binom{49}{2}$ ways of choosing remaining two cards
 - $_{\circ}$ Overall $4 \times 1176 = 4704$

- Method 2:
 - Choose aces and then non-ace cards
 - $_{\circ}$ $\binom{4}{3} \times \binom{48}{2} = 4512$ hands with exactly three aces
 - $_{\circ}$ $\binom{4}{4} \times \binom{48}{1} = 48$ hands with exactly four aces
 - Overall 4512 + 48 = 4560

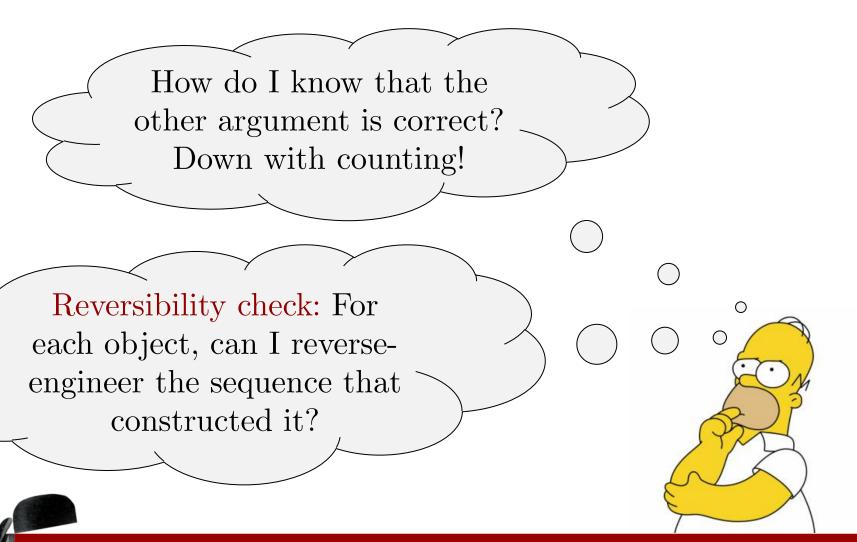


- Method 1 is wrong
- Example: Four different sequences of choices produce the same hand

A*A ◆ A ♥	A♠ K♦
A* A * A *	A♥K♦
A*A*A*	A + K +
A	A*K*

3 out of 4 aces

2 out of 49 cards



REVERSIBILITY TEST

• Method 1: Choose 3 of 4 aces, then 2 of remaining 49 cards

A* A* A*A* K*

• Cannot reverse to a unique choice sequence

A* A * A *	A♠ K♦
A* A * A *	A♥K◆
A* A* A*	A+ K+
A* A * A *	A* K*

REVERSIBILITY TEST

• Method 2: Choose 3 of 4 aces, then 2 of 48 non-ace cards

A* A* Q* A* K*

• Reverse test: Aces came from choice of aces, others came from choice of non-aces

Think choice trees!

WHAT WE HAVE LEARNED

- Definitions / facts
 - Injection, surjection, bijection
 - Ordered vs. unordered
- Principles / problem solving
 - Addition rule
 - Partition method
 - Correspondence principle
 - Product rule
 - Counting by removing
 - Reversibility test

