15-251 : Great Theoretical Ideas In Computer Science

Fall 2013

Assignment 7 (Chinese Food Homework)

Due: Thursday, Oct. 24, 2013 11:59 PM

Name: \qquad

Andrew ID:

Question:	1	2	3	4	5	Total
Points:	20	30	25	25	10	110
Score:						

A brief introduction to satisfiability (SAT)

A boolean formula is a statement consisting of "variables" and boolean operators on these variables (here, we'll only use AND (\wedge), OR (\vee), and NOT (\neg)). We assign TRUE or FALSE to each variable and evaluate the formula.

Satisfying Assignment: A satisfying assignment for a boolean formula is an assignment of truth values to the variables such that the formula evaluates to TRUE. For example, consider the formula $\left(\neg x_{1} \vee \neg x_{2}\right) \wedge x_{2}$. Notice that the unique satisfying assignment for this formula is setting x_{1} to FALSE and x_{2} to TRUE. The formula $x \wedge \neg x$ does not have any satisfying assignment.

Literals: For each variable x, there are two "literals", x and $\neg x$.
CNF: We say that a boolean formula is in conjunctive normal form (CNF) if it is an AND of a finitely many "clauses", where each clause is an OR of finitely many literals. For example, $\left(x_{1} \vee x_{2}\right) \wedge\left(\neg x_{1}\right) \wedge\left(x_{2} \vee \neg x_{3} \vee x_{4} \vee \neg x_{4}\right)$ is a CNF formula, but $\neg\left(x_{1} \vee x_{2}\right) \wedge\left(x_{3} \vee x_{4}\right)$ is not.
k-CNF: We say that a boolean formula is in k-CNF form if it is in CNF form where all the clauses use exactly k literals. For example, $\left(x_{1} \vee x_{2}\right) \wedge\left(\neg x_{2} \vee x_{3}\right)$ is in 2-CNF form, while $\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{4} \vee x_{4}\right)$ is in 3-CNF form.

DNF: We say such a boolean formula is in disjunctive normal form (DNF) if it is an OR of a finitely many "clauses", where each clause is an AND of finitely many literals. For example, $\left(x_{1} \wedge x_{2}\right) \vee\left(\neg x_{1}\right) \vee\left(x_{2} \wedge \neg x_{3} \wedge x_{4} \wedge \neg x_{4}\right)$ is a DNF formula, but $\left(x_{1} \wedge x_{2}\right) \vee\left(x_{2} \wedge\left(x_{3} \vee x_{4}\right)\right)$ is not.

SAT: The satisfiability (SAT) problem is to check if a given a CNF formula has a satisfying assignment. SAT is known to be NP-complete (you can assume this in this problem).
k-SAT: The problem of checking whether a given k-CNF formula has a satisfying assignment is known as k-SAT.

You cannot make any complexity assumptions about k-SAT or checking satisfiability of DNF formulae. Check out questions Q1(b) and Q1(c).

NP-completeness: Please review the relevant definitions carefully from the lecture slides before attempting this homework.

1. Pineapple Fried Rice

I just opened a Chinese food restaurant, General Tso's Kitchen, that serves delicious General Tso's chicken 24 hours a day, 365 days a year.

While I only have one item on the menu, I feel that it's all I need to satisfy my guests.
However, after being open for a few weeks, I've noticed something interesting. When two people come in, it's easy to keep them satisfied. However, it's quite hard to satisfy 3 people (although I can still verify that they're satisfied pretty easily!). Please help me understand this phenomenon.
(a) For each of the following CNF formulas, give a satisfying assignment or explain why no such assignment exists.
i. $\left(x_{1} \vee x_{2}\right) \wedge\left(x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{3}\right)$
ii. $\left(\neg x_{2} \vee \neg x_{3}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{3} \vee \neg x_{1}\right) \wedge\left(x_{3}\right) \wedge\left(x_{2} \vee \neg x_{3}\right)$

Solution:

(b) Interestingly, 2-SAT is in P , but 3-SAT is NP-complete.

Prove that 3-SAT is NP-complete. Use a reduction from SAT.

Solution:

(c) While CNFs and DNFs look duals to each other, and checking satisfiability of CNF formulae is NP-complete, show that DNF-SATISFIABILITY, the problem of checking satisfiability of a given DNF formula, is in P .

Solution:

2. Egg Rolls and Wonton Soup

(a) General Tso's Kitchen is getting quite popular, so I've come up with a new idea to help expand: start delivering to customers!
There is quite a lot of competition out there, however, and I want to stand out. Because we only serve one item, I had the idea to promise delivery within one minute after the food is ordered.
To accomplish this, all I need are a bunch of delivery men waiting at various street intersections with buckets of delicious General Tso's chicken, ready to deliver. For each street segment, there should be a delivery man ready on at least one of the two end-points (street intersections) of the street segment. Formally, think of the intersections as vertices and the street segments as edges connecting the intersections.
Of course, I want to hire as few delivery men as possible to accomplish this. Define the problem TSO'S-DELIVERY as follows: Given a layout of intersections and street segments (as a graph) and an integer k, check if I can place at most k delivery men at the intersections to accomplish the delivery time I promised.
Give a polynomial-time reduction from TSO'S-DELIVERY to INDEPENDENTSET. [Review lecture slides for the definition of INDEPENDENT-SET problem. Also, please carefully note the direction in which you have to do the reduction.]

Solution:

(b) Now that my delivery men are doing all the work, I've been pretty bored during the day. Fortunately I have plenty of General Tso's chicken to eat and plenty of Minesweeper to play.
After mastering the expert level, I decided to come up with my own more general form of Minesweeper - one that can be played on any graph. This turned out to be quite hard!
Given a graph with integers on some of the vertices, MINESWEEPER determines if it is possible to put mines on a subset of the remaining vertices such that for each vertex with integer v_{k}, exactly v_{k} of its neighbors contain mines.
Prove that MINESWEEPER is NP-complete. Use 3-SAT when showing that it is NP-hard.
\square

Solution:

3. Soy Sauce

Wow, proving things about MINESWEEPER was even more fun than playing it! General Tso's Kitchen is doing quite well these days, but I want to come up with an even better recipe. Unfortunately, finding a better recipe is quite hard. To help me prepare to tackle this problem, I've been looking at a lot more hard problems (NP-hard, that is).

Recall 3-SAT from problem 1 and the HAMILTONIAN-CYCLE problem from lecture. Here, we'll consider a slight variant of the HAMILTONIAN-CYCLE problem, taking directed graphs as input rather than undirected graphs. I've been trying to come up with a polynomial-time reduction from 3-SAT to HAMILTONIAN-CYCLE, but need some help.
(a) Given a 3-CNF formula, we'll construct a directed graph that has a Hamiltonian cycle if and only if the formula has a satisfying assignment.
First consider the following directed graph:

In general, for n variables and m clauses, imagine a similar figure with n layers, one per variable, and $3 m$ vertices in each layer. The graph shown above is for 3 variables and 3 clauses. Hence, each of the 3 layers has 9 vertices.
How many Hamiltonian cycles does this graph (constructed for n variables and m clauses) have? In what natural way do these cycles correspond to assignments to variables in the corresponding 3-CNF formula?

Solution:

(b) The reduction is not complete yet! (Convince yourself why...) Now, add a new vertex for each clause, and add appropriate edges to present vertices so that it restricts the Hamiltonian cycles such that a Hamiltonian cycle now exists if and only if a correspondence similar to what you gave in (a) actually leads to a satisfying assignment. Prove why this gives a polynomial-time reduction that we desired.

Solution:

4. Beef Chow Mein

As General Tso's Kitchen expands, I need to place more and more delivery men so that I can still guarantee fast delivery. However, now that the size of the input has increased, the algorithm I've created is taking way too long. I need to come up with a better way to do it!

Recall TSO'S-DELIVERY from problem 2a. Show that coming up with an efficient algorithm is extremely difficult (or likely impossible) by showing that TSO'S-DELIVERY is NP-complete.
(a) First, show TSO'S-DELIVERY is in NP.

Solution:

(b) Next, show that TSO'S-DELIVERY is NP-hard by giving a polynomial-time reduction from 3-SAT to TSO'S-DELIVERY.
Hint: Construct a graph with 2 vertices per variable and 3 vertices per clause, and add edges appropriately.

Solution:

5. Bonus Question

(a) Now, define TSO'S-DELIVERY-EVEN as follows: Given a graph of intersections and street segments (as in problem 2a) such that each intersection has an even number of street segments incident on it and an integer k, is there a way to place at most k delivery men at intersections so that each street segment has a delivery man on at least one of its two ends?

Show that TSO'S-DELIVERY-EVEN is also NP-complete.
Solution:

