
Bootstrapping Dialog Systems with Word
Embeddings

Gabriel Forgues, Joelle Pineau
School of Computer Science

McGill University
{gforgu, jpineau}@cs.mcgill.ca

Jean-Marie Larchevêque, Réal Tremblay
Nuance Communications, Inc.

{jean-marie.larcheveque,
real.tremblay}@nuance.com

Abstract

One of the main tasks of a dialog system is to assign intents to user utterances,
which is a form of text classification. Since intent labels are application-specific,
bootstrapping a new dialog system requires collecting and annotating in-domain
data. To minimize the need for a long and expensive data collection process,
we explore ways to improve the performance of dialog systems with very small
amounts of training data. In recent years, word embeddings have been shown to
provide valuable features for many different language tasks. We investigate the use
of word embeddings in a text classification task with little training data. We find
that count and vector features complement each other and their combination yields
better results than either type of feature alone. We propose a simple alternative,
vector extrema, to replace the usual averaging of a sentence’s vectors. We show
how taking vector extrema is well suited for text classification and compare it
against standard vector baselines in three different applications.

1 Introduction

Dialog systems are gaining popularity and can now be found in cars, televisions, phones and other
devices. Two essential components of such systems are: a speech recognition engine to transcribe
speech into text and a language model to understand the text’s intent. While speech recognition can
now often boast impressive accuracy, language understanding is still very difficult in comparison.
Here we focus on the text classification task which aims to identify the intent of some short piece
of text such as a single utterance. Although dialog systems deployed with large amounts of training
data can train complex models to reach high accuracy on this task, their performance hinges on a
large domain-specific data collection effort. The most representative in-domain data is collected
from real user speech after deploying the dialog system, but data collection can be a lengthy and
costly process. In practice, new dialog systems can be seeded with a few artificial samples and
then deployed to interact with users. However, the small amount of training data can limit users to
shallow dialogs. The conversational data can then be annotated and used to train a better model.
Many such iterations might occur before the system reaches high accuracy. A strong start out of
the gate can be expected not only to improve early user experience, but also to positively impact
dialog quality over the long term. We accordingly focus on improving dialog systems in their early
stages when very little training data is available. We consider tasks with very short texts (e.g. single
sentences) and many classes, and where texts are semantically rich despite their short length.

2 Word embeddings

In recent years, several algorithms have been proposed to learn word embeddings, also known as
word vectors or distributed representations of words [1,2,3]. These embeddings encode words as

1

vectors such that words with similar meanings have similar vector representations. Although large
amounts of data are needed to learn effective representations, the data need not be domain-specific or
labelled, which makes word vectors well suited as additional features to bootstrap text classification.

2.1 Sentence-level vectors using extrema

Since our goal is not to learn new word embeddings, we assume we have access to vectors which
have been pre-trained on some large unlabelled text [4,5]. We must then encode sentences with a
variable number of vectors into a fixed-length feature representation. The standard approach sums
or averages the sentence’s vectors. A simple improvement uses a weighted average where important
words carry higher weight. This approach requires some method of computing word weights, such
as the commonly-used inverse document frequency (IDF) [6]. While more complex approaches have
been proposed [6,7], they typically require additional data in the form of context or extra labels.

Although there are many algorithms to induce word embeddings, the training objectives frequently
involve maximizing the similarity of vectors of words occurring in similar contexts while minimizing
the similarity with other words. Since the vectors can contain negative as well as positive values,
this effectively pulls the vectors of common words towards the zero vector, so that they are not too
dissimilar to the entire vocabulary. On the other hand, context-specific words are pushed away from
zero, either in the negative or positive direction. Since these rarer words tend to strongly convey
intent, we can emphasize them in the sentence’s vector by taking the maximum (or minimum) of
each dimension di ∈ D from the sentence’s set of D-dimensional word vectors. However, since we
have no reason to favour either the maximum or minimum, we instead take whichever of the two
values is further from zero. We refer to this operation as the vector extrema.

extrema(di) =
{
max di if max di ≥ |min di|
min di otherwise

(1)

2.2 Combining word counts with embeddings

Baroni et al. [8] recently compared context word counts against distributed word representations on
tasks such as synonym detection and semantic relatedness between pairs of words, and found that
word vectors were overwhelmingly superior. However, their evaluation considered word-level tasks
where word embeddings can be directly used as features. The results do not apply to text which must
be transformed into a fixed-length representation. For this task, intuition might suggest that word
embeddings are especially helpful when there is little training data. In this setting, a vector repre-
sentation of words gives a basis to relate unseen test words to similar words seen during training.
However, as the amount of training data increases, we might expect word counts to be favourable
over the averaging of a sentence’s word vectors, since the first approach exactly represents each
word while the second obscures the presence of individual words. We evaluate whether the two sets
of features can be complementary by representing a sentence of words w1, ..., wk as a combination
of its bag of word counts alongside real-valued features from its word vectors v1, ..., vk.

BoW : 〈 bag of word counts 〉

Vec(Avg) : 〈 1k
∑k

i=1 vi 〉

BoW + Vec(Avg) : 〈 bag of word counts, 1
k

∑k
i=1 vi 〉

BoW + Vec(W.Avg) : 〈 bag of word counts,
∑k

i=1 idf(wi)vi∑k
i=1 idf(wi)

〉

BoW + Vec(Ext) : 〈 bag of word counts, extrema(di)∀ di ∈ D 〉

3 Experiments

We evaluate the combination of word count features and word embeddings and compare the vector
average and extrema operations. Two dialog datasets from Nuance Communications are used for
these experiments: a banking dataset which contains 2,961 unique utterances classified into one of
172 intent labels (deposits, stock quotes, etc.), and a travel dataset of 2,494 utterances and 62 intent

2

Figure 1: Combination of word count (BoW) and vector average features

Figure 2: Distribution of extrema words. The x-axis represents the number of extremum values (as
a percentage of vector dimension) which each word contributed to the sentence’s extrema vector.

labels (book flight, change seats, etc.). We also evaluate the methods on a question classification
dataset [9] with 15,452 short questions labelled into 50 classes (person, country, money, etc.).

3.1 Setup

In preliminary experiments, we considered different sets of features to use as baselines such as
unigrams, bigrams, part of speech tags and stemming. For the dialog data we evaluated, none of
these features provided a significant improvement over unigram word counts alone. We therefore use
unigram counts as the baseline feature representation (BoW). We also compared different classifiers,
including naive Bayes and logistic regression, but ultimately selected a linear SVM as the best
classifier for this task.

We train the classifier in a stratified way to ensure that all classes are seen in training. For some pa-
rameter k, we select k samples from each intent label, thereby downsampling the annotated corpus.
We run 200 trials for each value of k, where each trial is trained on k random samples from each
intent and evaluated on all remaining non-training samples. We report results of accuracy averaged
over all trials, with a special focus for k < 10 as the smallest number of samples of each class that
one might reasonably expect when bootstrapping a new application.

3.2 Preprocessing

We first convert all text to lower-case and split each sentence into tokens for spaces and punctua-
tion. We then remove all single-character words since preliminary experiments showed they were
uninformative and their removal led to an increase in accuracy. We also add all label words into
the training vocabulary by creating a new artificial sample for each label, where the sample’s text
consists only of the label’s words (e.g. ”book flight” for label BOOK FLIGHT). This ensures the
baseline classifier can accurately label the simplest sentences regardless of its training data.

The experiments used the pre-trained word vectors distributed by word2vec [4]. We normalize all
vectors by taking the minimum and maximum value of each dimension from the training word
vectors, such that the vectors of words seen during training have values which are bounded in [-1,1].

3

Figure 3: Results comparing vector extrema with IDF-weighted and non-weighted vector averages

4 Results

In Figure 1, we can see a trade-off between word counts (BoW) and vectors. While word vectors
are initially superior, this advantage shifts as the amount of training data increases. However, the
combination of both features outperforms each set of features individually. While the figure only
shows one example domain, the joint use of word counts and vectors was superior to vectors alone
for all applications considered, therefore we only report results combining both features hereafter.

The vector extrema operation produced the highest accuracy on both dialog datasets by a small
margin and the second highest on the question dataset (Figure 3). The same figure also shows the
effect of increasing the amount of training data, with all three domains nearly doubling or tripling
in accuracy with less than 10 samples per class. We also analysed the composition of sentence
extrema vectors to determine which words contributed the most extreme components. As shown in
Figure 2, words which occur in specific contexts (e.g. ’napalm’) tend to have the greatest extremum
values, while stopwords (e.g. ’the’) contribute the least. The results suggest that taking vector
extrema effectively induces a global weighing scheme on a sentence’s words, where words that are
indicative of highly specific contexts in the comprehensive corpus (which was used to learn the
word embeddings) have higher weight. This is to be contrasted with the local weights, derived from
frequencies in the training set that are used to compute weighted averages.

5 Discussion

While word counts and vectors have often been pitted against each other, our empirical results sug-
gest that they provide features which are complementary, at least to the extent that their combination
was advantageous for the three domains we evaluated. However, the combination of real and discrete
features is not without issues. The concatenation of word counts with real-valued features prevents
the use of a sparse dictionary representation which is typical for large text corpora. While this is not
problematic in settings with small amounts of data, it would introduce memory issues as the dataset
grows in size. One possible solution would be to discretize the real-valued vectors as new entries in
the sparse matrix, but this might significantly reduce the word embeddings’ benefit.

The vector extrema operation appears to be a good alternative to a weighted vector average, espe-
cially because of its implicit word weights, but its effectiveness seems domain-dependent. It scored
lower than a vector average on the question dataset, especially with few training samples, likely
because interrogative words were under-represented in sentence extrema (e.g. ’who’ is a general
word yet it clearly suggests the question relates to a person). The extrema representation will also
grow ineffective as the input text’s size increases beyond single sentences since the vector must hold
components from many words in order to preserve information of the entire sentence.

Acknowledgments

Funding for this work was provided by FRQNT, NSERC and Nuance Communications, Inc..

4

References

[1] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin. A neural probabilistic language model. Journal of
Machine Learning Research, 3:1137-1155, 2003.

[2] R. Collobert and J. Weston. A unified architecture for natural language processing: Deep neural networks
with multitask learning. In Proceedings of the 25th International Conference on Machine Learning, 2008.

[3] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word representations in vector space.
In Proceedings of Workshop at the International Conference on Learning Representations, 2013.

[4] Word2Vec. [Online]. Available: https://code.google.com/p/word2vec/. [Accessed October 8th 2014]

[5] E. Huang. Word Representations. [Online]. Available: https://ai.stanford.edu/˜ehhuang. [Accessed October
8th 2014]

[6] E. Huang, R. Socher, C. Manning, and A. Ng. Improving word representations via global context and
multiple word prototypes. In Proceedings of the 50th Annual Meeting of the Association for Computational
Linguistics, 2012

[7] Q. Le, T. Mikolov. Distributed Representations of Sentences and Documents. In Proceedings of the 31st
International Conference on Machine Learning, 2014.

[8] M. Baroni, G. Dinu, and G. Kruszewski. Don’t count, predict! A systematic comparison of context-counting
vs. context-predicting semantic vectors. In Proceedings of the 52nd Annual Meeting of the Association for
Computational Linguistics, 2014.

[9] X. Li and D. Roth. Learning Question Classifiers: The Role of Semantic Information. In Proceedings of
the 19th International Conference on Computational Linguistics, 2002.

5

	Introduction
	Word embeddings
	Sentence-level vectors using extrema
	Combining word counts with embeddings

	Experiments
	Setup
	Preprocessing

	Results
	Discussion

