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Abstract. Hybrid systems, i.e., dynamical systems combining discrete
and continuous dynamics, have a complete axiomatization in differential
dynamic logic relative to differential equations. Differential invariants
are a natural induction principle for proving properties of the remaining
differential equations. We study the equational case of differential invari-
ants using a differential operator view. We relate differential invariants
to Lie’s seminal work and explain important structural properties re-
sulting from this view. Finally, we study the connection of differential
invariants with partial differential equations in the context of the inverse
characteristic method for computing differential invariants.

1 Introduction

Hybrid systems [1,11] are dynamical systems that combine discrete and contin-
uous dynamics. They are important for modeling embedded systems and cyber-
physical systems. Reachability in hybrid systems is neither semidecidable nor
co-semidecidable [11]. Nevertheless, hybrid systems have a complete axiomati-
zation relative to elementary properties of differential equations in differential
dynamic logic dL [18,21]. Using the proof calculus of dL, the problem of proving
properties of hybrid systems reduces to proving properties of continuous systems.

It is provably the case that the only challenge in hybrid systems verification
is the need to find invariants and variants [18,21]; the handling of real arith-
metic is challenging in practice [27], even if it is decidable in theory [2], but
this is not the focus of this paper. According to our completeness results [18,21],
we can equivalently focus on either only the discrete or on only the continu-
ous dynamics, because both are equivalently and constructively interreducible,
proof-theoretically. Thus, we can equivalently consider the need to prove proper-
ties of differential equations as the only challenge in hybrid systems verification.
Since the solutions of most differential equations fall outside the usual decid-
able classes of arithmetic, or do not exist in closed form, the primary means
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for proving properties of differential equations is induction [19]. In retrospect,
this is not surprising, because our constructive proof-theoretical alignment [21]
shows that every proof technique for discrete systems lifts to continuous systems
(and vice versa). Since most verification principles for discrete systems are based
on some form of induction, this means that induction is possible for differential
equations. Differential invariants are such an induction principle. We have intro-
duced differential invariants in 2008 [19], and later refined them to a procedure
that computes differential invariants in a fixed-point loop [24,25]. Differential in-
variants are also related to barrier certificates [29], equational templates [30], and
a constraint-based template approach [8]. The structure and theory of general
differential invariants has been studied in previous work in detail [23].

In this paper, we focus on the equational case of differential invariants. We
show that the equational case of differential invariants and similar approaches
is already subsumed by Lie’s seminal work [14,15,16,17] in the case of open do-
mains. On open (semialgebraic) domains, Lie’s approach gives an equivalence
characterization of (smooth) invariant functions. This almost solves the differ-
ential invariance generation problem for the equational case completely. It turns
out, however, that differential invariants and differential cuts may still prove
properties indirectly that the equivalence characterization misses. We carefully
illustrate why that is the case. We investigate structural properties of invariant
functions and invariant equations. We prove that invariant functions form an al-
gebra and that, in the presence of differential cuts provable invariant equations
and valid invariant equations form a chain of differential ideals, whose varieties
are generated by a single polynomial, which is the most informative invariant.

Furthermore, we study the connection of differential invariants with partial
differential equations. We explain the inverse characteristic method, which is the
inverse of the usual characteristic method for studying partial differential equa-
tions in terms of solutions of corresponding characteristic ordinary differential
equations. The inverse characteristic method, instead, uses partial differential
equations to study solutions of ordinary differential equations. What may, at
first, appear to idiosyncratically reduce the easier problem of ordinary differen-
tial equations to the more complicated one of partial differential equations, turns
out to be very useful, because it relates the differential invariance problem to
mathematically very well-understood partial differential equations.

Even though our results generalize to arbitrary smooth functions, we focus on
the polynomial case in this paper, because the resulting arithmetic is decidable.

For background on logic for hybrid systems, we refer to previous work [18,20,22].

2 Differential Dynamic Logic (Excerpt)

Continuous dynamics described by differential equations are a crucial part of
hybrid system models. An important subproblem in hybrid system verification
is the question whether a system following a (vectorial) differential equation
x′ = θ that is restricted to an evolution domain constraint region H will always
stay in the region F . We represent this by the modal formula [x′ = θ&H]F . It
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is true at a state ν if, indeed, a system following x′ = θ from ν will always stay
in F at all times (at least as long as the system stays in H). It is false at ν if
the system can follow x′ = θ from ν and leave F at some point in time, without
having left H at any time. Here, F and H are (quantifier-free) formulas of real
arithmetic and x′ = θ is a (vectorial) differential equation, i.e., x = (x1, . . . , xn)
is a vector of variables and θ = (θ1, . . . , θn) a vector of polynomial terms; for
extensions to rational functions, see [19]. In particular, H describes a region
that the continuous system cannot leave (e.g., because of physical restrictions of
the system or because the controller otherwise switches to another mode of the
hybrid system). In contrast, F describes a region which we want to prove that
the continuous system x′ = θ&H will never leave.

This modal logical principle extends to a full dynamic logic for hybrid sys-
tems, called differential dynamic logic dL [18,20,21]. Here we only need first-order
logic and modalities for differential equations. For our purposes, it is sufficient
to consider the dL fragment with the following grammar (where x is a vector of
variables, θ a vector of terms of the same dimension, and F,H are formulas of
(quantifier-free) first-order real arithmetic over the variables x):

φ, ψ ::= F | ¬φ | φ ∧ ψ | φ ∨ ψ | φ→ ψ | φ↔ ψ | ∀xφ | ∃xφ | [x′ = θ&H]F

A state is a function ν : V → R that assigns real numbers to all variables in the
set V = {x1, . . . , xn}. We denote the value of term θ in state ν by ν[[θ]]. The
semantics is that of first-order real arithmetic with the following addition:
ν |= [x′ = θ&H]F iff for each function ϕ : [0, r]→ (V → R) of some duration r
we have ϕ(r) |= F under the following two conditions:

1. the differential equation holds, i.e., for each variable xi and each ζ ∈ [0, r]:

dϕ(t)[[xi]]

dt
(ζ) = ϕ(ζ)[[θi]]

2. and the evolution domain is respected, i.e., ϕ(ζ) |= H for each ζ ∈ [0, r].

The following simple dL formula is valid (i.e., true in all states):

x > 5→ [x′ =
1

2
x]x > 0

It expresses that x will always be positive if x starts with x > 5 and follows
x′ = 1

2x for any period of time.

3 Differential Equations and Differential Operators

In this section, we study differential equations and their associated differential
operators. Only properties of very simple differential equations can be proved
by working with their solutions, e.g., linear differential equations with constant
coefficients that form a nilpotent matrix [18].

Differential Operators. More complicated differential equations need a dif-
ferent approach, because their solutions may not fall into decidable classes of
arithmetic, are not computable, or may not even exist in closed form. As a
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proof technique for advanced differential equations, we have
introduced differential invariants [19]. Differential invariants
turn the following intuition into a formally sound proof pro-
cedure. If the vector field of the differential equation always
points into a direction where the differential invariant F ,
which is a logical formula, is becoming “more true” (see
Fig. 1), then the system will always stay safe if it initially
starts safe. This principle can be understood in a simple but
formally sound way in the logic dL [19,20]. Differential in-
variants have been introduced in [19] and later refined to a
procedure that computes differential invariants in a fixed-point loop [24]. Instead
of our original presentation, which was based on differential algebra, total deriva-
tives, and differential substitution, we take a differential operator approach here.
Both views are fruitful and closely related.

Definition 1 (Lie differential operator). Let x′ = θ be the differential equa-
tion system x′1 = θ1, . . . , x

′
n = θn in vectorial notation. The (Lie) differential

operator belonging to x′ = θ is the operator θ ·∇ defined as

θ ·∇ def
=

n∑
i=1

θi
∂

∂xi
= θ1

∂

∂x1
+ · · ·+ θn

∂

∂xn
(1)

The { ∂
∂x1

, · · · , ∂
∂xn
} are partial derivative operators, but can be considered as a

basis of the tangent space at x of the manifold on which x′ = θ is defined. The
result of applying the differential operator θ ·∇ to a differentiable function f is

(θ ·∇)f =

n∑
i=1

θi
∂f

∂xi
= θ1

∂f

∂x1
+ · · ·+ θn

∂f

∂xn

The differential operator lifts conjunctively to logical formulas F :

(θ ·∇)F
def
=

∧
(b∼c) in F

(
(θ ·∇)b ∼ (θ ·∇)c

)
This conjunction is over all atomic subformulas b ∼ c of F for any operator
∼ ∈ {=,≥, >,≤, <}. In this definition, we assume that formulas use dualities
like ¬(a ≥ b) ≡ a < b to avoid negations and the operator 6= is handled in a
special way; see previous work for a discussion [19,22]. The functions and terms
in f and F need to be sufficiently smooth for the partial derivatives to be defined
and enjoy useful properties like commutativity of ∂

∂x and ∂
∂y . This is the case

for polynomials, which are arbitrarily smooth (C∞).
Since the differential operator θ ·∇ is a combination of the total deriva-

tive and differential substitution, we have elsewhere [19,22] denoted the result

(θ ·∇)F of applying θ ·∇ to a logical formula F by F ′
θ
x′ . The latter notation

is also appropriate, because (θ ·∇)F ≡ F ′θx′ can, indeed, be formed by taking
the total derivative F ′ and then substituting in the right-hand side θ of the dif-
ferential equation to replace its left-hand side x′, the result of which is denoted
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F ′
θ
x′ . It is insightful [19] to give a semantics to F ′, because that is the key to

proving advanced differential transformations [19], but beyond the scope of this
paper. We refrain from using this alternative notation in this paper, because we
want to emphasize the differential operator nature of the combined derivative
and differential substitution. In this notation, our differential induction proof
rule [19] is:

(DI)
H→(θ ·∇)F

F→[x′ = θ&H]F

This differential induction rule is a natural induction principle for differential
equations. The difference compared to ordinary induction for discrete loops is
that the evolution domain constraint H is assumed in the premise (because the
continuous evolution is not allowed to leave its evolution domain constraint) and
that the induction step uses the differential formula (θ ·∇)F corresponding to
formula F and the differential operator θ ·∇ belonging to the differential equa-
tion x′ = θ instead of a statement that the loop body preserves the invariant.
Intuitively, the differential formula (θ ·∇)F captures the infinitesimal change of
formula F over time along x′ = θ, and expresses the fact that F is only getting
more true when following the differential equation x′ = θ. The semantics of dif-
ferential equations is defined in a mathematically precise but computationally
intractable way using analytic differentiation and limit processes at infinitely
many points in time. The key point about differential invariants is that they
replace this precise but computationally intractable semantics with a computa-
tionally effective use of a differential operator. The valuation of the resulting
computable formula (θ ·∇)F along differential equations coincides with ana-
lytic differentiation [19]. The term (θ ·∇)p characterizes how p changes with
time along a solution of x′ = θ.

Lemma 2 (Derivation lemma). Let x′ = θ&H be a differential equation with
evolution domain constraint H and let ϕ : [0, r] → (V → R) be a corresponding
solution of duration r > 0. Then for all terms p and all ζ ∈ [0, r]:

dϕ(t)[[p]]

dt
(ζ) = ϕ(ζ)[[(θ ·∇)p]] .

Proof. This lemma can either be shown directly or by combining the derivation
lemma [19, Lemma 1] with differential substitution [19, Lemma 2]. ut

The rule DI for differential invariance is computationally very attractive,
because it replaces the need to reason about complicated solutions of differential
equations with simple symbolic computation and arithmetic on terms that are
formed by differentiation, and, hence, have lower degree. The primary challenge,
however, is to find a suitable F for a proof.

Equational Differential Invariants. General formulas with propositional
combinations of equations and inequalities can be used as differential invari-
ants. For the purposes of this paper, we focus on the equational case in more
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detail, which is the following special case of DI:

(DI=)
H→(θ ·∇)p = 0

p = 0→ [x′ = θ&H]p = 0

This equational case of differential invariants turns out to be a special case of
Lie’s seminal work on what are now called Lie groups [15,16]. Since θ and p are
(sufficiently) smooth, we can capture Lie’s theorem [17, Proposition 2.6] as a dL
proof rule to make the connection to DI= more apparent.

Theorem 3 (Lie [15,16]). Let x′ = θ be a differential equation system and H a
domain, i.e., a first-order formula of real arithmetic characterizing an open set.
The following proof rule is a sound global equivalence rule, i.e., the conclusion
is valid if and only if the premise is.

(DIc)
H→(θ ·∇)p = 0

∀c
(
p = c→ [x′ = θ&H]p = c

)
That is, the following dL axiom is sound, i.e., all of its instances valid

∀x∀c
(
p = c→ [x′ = θ&H]p = c

)
↔ ∀x (H→(θ ·∇)p = 0)

Proof (Sketch). We only sketch a proof for the soundness direction of DIc and re-
fer to [15,16,17,19] for a full proof. Suppose there was a ζ with ϕ(ζ)[[p]] 6= ϕ(0)[[p]],
then, by mean-value theorem, there is a ξ < ζ such that, when using Lemma 2:

0 6= ϕ(ζ)[[p]]− ϕ(0)[[p]] = (ζ − 0)
dϕ(t)[[p]]

dt
(ξ) = ζϕ(ξ)[[(θ ·∇)p]]

Thus, ϕ(ξ)[[(θ ·∇)p]] 6= 0, which contradicts the premise (when H ≡ true). ut

Note that domains are usually assumed to be connected. We can reason sep-
arately about each connected component of H, which are only finitely many,
because our domains are first-order definable in real-closed fields [31]. Observe
that the conclusion of DIc implies that of DI= by instantiating c with 0.

Corollary 4 (Decidability of invariant polynomials). It is decidable, whether
a polynomial p with real algebraic coefficients is an invariant function for a given
x′ = θ on a (first-order definable) domain H (i.e., the conclusion of DIc holds).
In particular, the set of polynomials with real algebraic coefficients that are in-
variant for x′ = θ is recursively enumerable.

This corollary depends on the fact that real algebraic coefficients are countable.
A significantly more efficient version of the recursive enumerability is obtained
when using symbolic parameters as coefficients in a polynomial p of increasing
degree and using the fact that the equivalence in Theorem 3 is valid for each
choice of p. In particular, when p is a polynomial with a vector a of symbolic
parameters, then, by Theorem 3, the following dL formula is valid

∃a ∀x∀c
(
p = c→ [x′ = θ&H]p = c

)
↔ ∃a ∀x (H→(θ ·∇)p = 0) (2)
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The right-hand side is decidable in the first-order theory of real-closed fields [31].
Hence, so is the left-hand side, but the approach needs to be refined to be useful.

This includes a logical reformulation of the so-called direct method, where
the user guesses an Ansatz p, e.g., as a polynomial with symbolic parameters a
instead of concrete numbers as coefficients, and these parameters are instantiated
as needed during the attempt to prove invariance of p. In dL, we do not need
to instantiate parameters a, because it is sufficient to prove existence, for which
there are corresponding dL proof principles [18]. Other constraints on p need
to be considered, however, e.g., that p = 0 holds in the initial state and p = 0
implies the desired postcondition. Otherwise, the instantiation of a that yields
the zero polynomial would be a solution for (2), just not a very insightful one.
For example, let dL formula A characterize the initial state and dL formula B
be the postcondition for a continuous system x′ = θ&H. Then validity of the
following (arithmetic) formula

∃a∀x ((H→(θ ·∇)p = 0) ∧ (A→ p = 0) ∧ (H ∧ p = 0→ B) (3)

implies validity of the dL formula

A→ [x′ = θ&H]B

Formula (3) is decidable if A and B are first-order real arithmetic formulas.
Otherwise, the full dL calculus is needed to prove (3). Existential quantifiers for
parameters can be added in more general ways to dL formulas with full hybrid
systems dynamics to obtain an approach for generating invariants for proving
more general properties of hybrid systems [24,25]. The Ansatz p can also be
varied automatically by enumerating one polynomial with symbolic coefficients
for each (multivariate) degree. This direct method can be very effective, and is
related to similar approaches for deciding universal real-closed field arithmetic
[27], but, because of the computational cost of real arithmetic [7,4], stops to be
efficient for complicated high-dimensional problems. In this paper, we analyze the
invariance problem further to develop a deeper understanding of its challenges
and ways of solving it.

Since DIc is an equivalence, Theorem 3 and its corollary may appear to solve
the invariance problem (for equations) completely. Theorem 3 is a very powerful
result, but there are still many remaining challenges in solving the invariance
problem as we illustrate in the following.

Counterexample 5 (Deconstructed aircraft). The following dL formula is valid.
It is a much simplified version of a formula proving collision freedom for an air
traffic control maneuver [19,26]. We have transformed the differential equations
to a physically less interesting case that is notationally simpler and still exhibits
similar technical phenomena as those that occur in air traffic control verification.

x2 + y2 = 1 ∧ e = x→[x′ = −y, y′ = e, e′ = −y](x2 + y2 = 1 ∧ e = x) (4)

This dL formula expresses that an aircraft with position (x, y) will always be
safely separated from the origin (0, 0), here, by exactly distance 1 to make things
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easier. Formula (4) also expresses that the aircraft always is in a compatible y-
direction e compared to its position (x, y). In the full aircraft scenario, there is
more than one aircraft, each aircraft has more than one direction variable, the
relation of the directions to the positions is more complex, and the distance of
the aircraft to each other is not fixed at 1, it can be any distance bigger than
a protected zone, etc. Yet the basic mathematical phenomena when analyzing
(4) are similar to those for full aircraft [19,26], which is why we focus on (4) for
notational simplicity. Unfortunately, when we try to prove the valid dL formula
(4) by a Lie-type differential invariance argument, the proof fails

not valid

−2xy + 2ey = 0

(−y)2x+ e2y = 0 ∧ −y = −y
−y ∂(x

2+y2)
∂x + e∂(x

2+y2)
∂y = 0 ∧ −y ∂e∂e = −y ∂x∂x

DIx2 + y2 = 1 ∧ e = x →[x′ = −y, y′ = e, e′ = −y](x2 + y2 = 1 ∧ e = x)

This is, at first, surprising, since Theorem 3 is an equivalence, but the conclusion
(4) is valid and, yet, the proof does not close. On second thought, the postcon-
dition is a propositional combination of equations instead of the single equation
assumed in DIc and DI=. This discrepancy might have caused Theorem 3 to fail.
That is not the issue, however, because we have shown that the deductive power
of equational differential invariants equals the deductive power of propositional
combinations of equations [19, Proposition 1][23, Proposition 5.1]. That is, ev-
ery formula that is provable using propositional combinations of equations as
differential invariants is provable with single equational differential invariants.

Proposition 6 (Equational deductive power [19,23]). The deductive power
of differential induction with atomic equations is identical to the deductive power
of differential induction with propositional combinations of polynomial equations:
That is, each formula is provable with propositional combinations of equations as
differential invariants iff it is provable with only atomic equations as differential
invariants.

Using the construction of the proof of Proposition 6 on the situation in Coun-
terexample 5, we obtain the following counterexample.

Counterexample 7 (Deconstructed aircraft atomic). The construction in the (con-
structive) proof of Proposition 6 uses an equivalence, here, the following:

x2 + y2 = 1 ∧ e = x ≡ (x2 + y2 − 1)2 + (e− x)2 = 0

The right-hand side of the equivalence is a valid invariant and now a single
polynomial as assumed in Theorem 3, but DIc and DI= still do not prove it,
even though the desired conclusion is valid (because it follows from (4) by axiom
K and Gödel’s generalization [21]):
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not valid

2(x2 + y2 − 1)(−2yx + 2ey) = 0

2(x2 + y2 − 1)(−y2x + e2y) + 2(e− x)(−y − (−y)) = 0

(−y ∂
∂x

+ e ∂
∂y
− y ∂

∂e
)
(
(x2 + y2 − 1)2 + (e− x)2

)
= 0

DI(x2+y2−1)2 + (e−x)2 = 0 →[x′ = −y, y′ = e, e′ = −y](x2 + y2 − 1)2 + (e− x)2 = 0

How can that happen? And what can we do about it? The key to understand-
ing this is the observation that we could close the above proof if only we knew
that e = x, which is part of the invariant we are trying to prove in this proof
attempt. Note that the relation of the variables in the air traffic control maneu-
ver is more involved than mere identity. In that case, a similar relation of the
state variables still exists, involving the angular velocity, positions, and multidi-
mensional directions of the aircraft. This relation is crucial for a corresponding
proof; see previous work [19,26].

We could close the proof attempt in Counterexample 7 if only we could as-
sume in the premise the invariant F that we are trying to prove. A common
mistake is to suspect that F (or the boundary of F ) could, indeed, be assumed
in the premise when proving invariance of F along differential equations. That
would generally be unsound even though it has been suggested [28,8].

Counterexample 8 (No recursive assumptions). The following counterexample
shows that it is generally unsound to assume invariants like F ≡ x2 − 6x+ 9 = 0
in the antecedent of the induction step for equational differential invariants

unsound

x2 − 6x+ 9 = 0 →y2x− 6y = 0

x2 − 6x+ 9 = 0 →y ∂(x
2−6x+9)
∂x − x∂(x

2−6x+9)
∂y = 0

x2 − 6x+ 9 = 0 →[x′ = y, y′ = −x]x2 − 6x+ 9 = 0

We have previously identified [19] conditions under which F can still be assumed
soundly in the differential induction step. Those conditions include the case
where F is open or where the differential induction step can be strengthen to
an open condition with strict inequalities. Unfortunately, these cases do not
apply to equations, which are closed and rarely satisfy strict inequalities in the
differential induction step. In particular, we cannot use those to close the proof
in Counterexample 7.

Differential Cuts. As an alternative, we have introduced differential cuts [19].
Differential cuts [19] are a fundamental proof principle for differential equations.
They can be used to strengthen assumptions in a sound way:

(DC)
F→[x′ = θ&H]C F→[x′ = θ& (H ∧ C)]F

F→[x′ = θ&H]F
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The differential cut rule works like a cut, but for differential equations. In the
right premise, rule DC restricts the system evolution to the subdomain H ∧ C
of H, which restricts the system dynamics to a subdomain but this change is
a pseudo-restriction, because the left premise proves that the extra restriction
C on the system evolution is an invariant anyhow (e.g. using rule DI). Note
that rule DC is special in that it changes the dynamics of the system (it adds
a constraint to the system evolution domain region that the resulting system is
never allowed to leave), but it is still sound, because this change does not reduce
the reachable set. The benefit of rule DC is that C will (soundly) be available
as an extra assumption for all subsequent DI uses on the right premise of DC.
In particular, the differential cut rule DC can be used to strengthen the right
premise with more and more auxiliary differential invariants C that cut down the
state space and will be available as extra assumptions to prove the right premise,
once they have been proven to be differential invariants in the left premise.

Using differential cuts repeatedly in a process called differential saturation
has turned out to be extremely useful in practice and even simplifies the invariant
search, because it leads to several simpler invariants to find and prove instead
of a single complex property [24,25,20]. Differential cuts helped us find proofs
for collision avoidance protocols for aircraft [19,26]. Following the same principle
in the simplified case of deconstructed aircraft, we finally prove the separation
property (4) by a differential cut. The differential cut elimination hypothesis,
i.e., whether differential cuts are necessary, has been studied in previous work
[23] and will be discussed briefly later.

Example 9 (Differential cuts help separate aircraft). With the help of a differ-
ential cut by e = x, we can now prove the valid dL formula (4), which is a
deconstructed variant of how safe separation of aircraft can be proved. For lay-
out reasons, we first show the left premise resulting from DC

∗
R −y = −y

−y ∂e∂e = −y ∂x∂x
DI e = x →[x′ = −y, y′ = e, e′ = −y]e = x .
DCx2 + y2 = 1 ∧ e = x →[x′ = −y, y′ = e, e′ = −y](x2 + y2 = 1 ∧ e = x)

and then show the proof of the right premise of DC resulting from the hidden
branch (indicated by . above):

∗
R e = x → − 2yx+ 2xy = 0

e = x →(−y)2x+ e2y = 0

e = x → − y ∂(x
2+y2)
∂x + e∂(x

2+y2)
∂y = 0

DIx2 + y2 = 1 ∧ e = x →[x′ = −y, y′ = e, e′ = −y& e = x](x2 + y2 = 1 ∧ e = x)

Finally, we have a proof of (4) even if it took more than Theorem 3 to prove it.
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Another challenge in invariance properties of differential equations the fol-
lowing. Theorem 3 is sufficient, i.e., the premise of DIc implies the conclusion
even if H is not a domain. But the converse direction of necessity may stop to
hold, because the conclusion might hold only because all evolutions immediately
leave the evolution domain H.

Counterexample 10 (Equivalence requires domain). The following counterexam-
ple shows that the equivalence of DIc requires H to be a domain

not valid

y = 0 →2 = 0

y = 0 →(2 ∂
∂x + 3 ∂

∂y )x = 0

∀c
(
x = c→ [x′ = 2, y′ = 3 & y = 0]x = c

)
Here, the (closed) restriction y = 0 has an empty interior and y′ = 3 leaves it
immediately. The fact that the evolution leaves y = 0 immediately is the only
reason why x = c is an invariant, which would otherwise not be true, because
x′ = 2 leaves x = c when evolving for any positive duration. That is why the
above premise is not valid even if the conclusion is. Consequently, DIc can miss
some invariants if H is not a domain. Similar phenomena occur when H has a
non-empty interior but is not open.

In the proof of Example 9, after the differential cut (DC) with e = x, the re-
fined evolution domain constraint is not a domain anymore, which may appear
to cause difficulties in the reasoning according to Counterexample 10. Whether
evolution domain restrictions introduced by differential cuts are domains, how-
ever, is irrelevant, because the left premise of DC just proved that the differential
equation (without the extra constraint C) never leaves C, which turns C into a
manifold on which differentiation is well-defined and Lie’s theorem applies.

Example 11 (Indirect single proof proof of aircraft separation). We had originally
conjectured in 2008 [19] that the differential cuts as used in Example 9 and for
other aircraft dynamics are necessary to prove these separation properties. We
recently found out, however, that this is not actually the case [23]. The following
proof of (4) uses a single differential induction step and no differential cuts:

∗
R −y2e+ e2y = 0 ∧ −y = −y

−y ∂(e
2+y2)
∂e + e∂(e

2+y2)
∂y = 0 ∧ −y ∂e∂e = −y ∂x∂x

DIe2 + y2 = 1 ∧ e = x →[x′ = −y, y′ = e, e′ = −y](e2 + y2 = 1 ∧ e = x)

Using the construction in Proposition 6, a corresponding proof uses only a single
equational invariant to prove (4):

∗
R 2(e2 + y2 − 1)(−y2e + e2y) + 2(e− x)(−y − (−y)) = 0

(−y ∂
∂x

+ e ∂
∂y
− y ∂

∂e
)
(
(e2 + y2 − 1)2 + (e− x)2

)
= 0

DI(e2+y2−1)2 + (e−x)2 = 0 →[x′ = −y, y′ = e, e′ = −y](e2 + y2 − 1)2 + (e− x)2 = 0
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Thus, DC and domain restrictions are not critical for proving (4). Observe,
however, that the indirect proof of (4) in Example 11 worked with a single equa-
tional differential invariant and recall that the same formula was not provable
directly in Counterexample 5. Thus, even when the evolution domain (here true)
is a domain and the phenomena illustrated in Counterexample 10 are not an is-
sue, indirect proofs with auxiliary invariants may succeed even if the direct use
of DIc fails. This makes Theorem 3 incomplete and invariant generation chal-
lenging.

Before we illustrate the reasons for this difference in the next section, we
briefly show that the same phenomenon happens for the actual aircraft dynamics,
not just the deconstructed aircraft-type dynamics.

Example 12 (Aircraft). We abbreviate d21 + d22 = ω2p2 ∧ d1 = −ωx2 ∧ d2 = ωx1
by F , which is equivalent to the condition x21 + x22 = p2 ∧ d1 = −ωx2 ∧ d2 = ωx1
for safe separation by distance p of the aircraft (x1, x2) from the origin (0, 0),
when the aircraft flies in a roundabout in its current direction (d1, d2) with
angular velocity ω 6= 0. We prove invariance of F for an aircraft:

∗
R 2d1(−ωd2) + 2d2ωd1 = 0 ∧ −ωd2 = −ωd2 ∧ ωd1 = ωd1

2d1d
′
1 + 2d2d

′
2 = 0 ∧ d′1 = −ωx′2 ∧ d′2 = ωx′1

DIF ∧ ω 6= 0 →[x′1 = d1, x
′
2 = d2, d

′
1 = −ωd2, d′2 = ωd1]F

The proof for collision freedom of an aircraft (x1, x2) in direction (d1, d2) from
an aircraft (y1, y2) flying in direction (e1, e2) is similar to that in [19].

While differential cuts have, thus, turned out not to be required (though still
practically useful) for these aircraft properties, differential cuts are still crucially
necessary to prove other systems. We have recently shown that differential cuts
increase the deductive power fundamentally [23]. That is, unlike in the first-order
case, where Gentzen’s cut elimination theorem [6] proves that first-order cuts
can be eliminated, we have refuted the differential cut elimination hypothesis,
by proving that some properties of differential equations can only be proved with
a differential cut, not without.

Theorem 13 (Differential cut power [23]). The deductive power with dif-
ferential cuts (rule DC) exceeds the deductive power without differential cuts.

We refer to previous work [23] for details on the differential cut elimination
hypothesis [19], the proof of its refutation [23], and a complete investigation of
the relative deductive power of several classes of differential invariants.

4 Invariant Equations and Invariant Functions

In this section, we study invariant equations and the closely related notion of
invariant functions. The conclusion of rule DIc expresses that the polynomial
term p is an invariant function of the differential equation x′ = θ on domain H:
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Definition 14 (Invariant function). The function p is an invariant function
of the differential equation x′ = θ on H iff

� ∀c
(
p = c→ [x′ = θ&H]p = c

)
That is, an invariant function p is one whose value p(x(t)) is constant along all
solutions x(t), as a function of time t, of the differential equation x′ = θ within
the domain H, i.e., p(x(t)) = p(x(0)) for all t. Rule DIc provides a way to prove
that p is an invariant function. A closely related notion is the following.

Definition 15 (Invariant equation). For a function p, the equation p = 0 is
an invariant equation of the differential equation x′ = θ on H iff

� p = 0→ [x′ = θ&H]p = 0

Synonymously, we say that p = 0 is an equational invariant or that the variety
V (p) is an invariant variety of x′ = θ&H. For a set S of functions (or polyno-
mials), V (S) is the variety of zeros of S:

V (S)
def
= {a ∈ Rn : f(a) = 0 for all f ∈ S}

3
21

0

Fig. 2. Invariant equations p = c
for levels c of invariant function p

For a single function or polynomial p, we
write V (p) for V ({p}). Varieties of sets of
polynomials are a fundamental object of
study in algebraic geometry [3,10]. Rule DI=
provides a way to prove that p = 0 is an in-
variant equation.

What is, at first, surprising, is that the
premise of rule DI= does not depend on the
constant term of the polynomial p. However,
a closer look reveals that the premises of DI=
and DIc are equivalent, and, hence, rule DI=
actually proves that p is an invariant func-
tion, not just that p = 0 is an equational invariant. Both notions of invariance
are closely related but different. If p is an invariant function, then p = 0 is an
equational invariant [17], but not conversely, since not every level set of p has to
be invariant if p = 0 is invariant; compare Fig. 2 to general differential invariant
Fig. 1.

Lemma 16 (Relation of invariant functions and invariant equations). A
(smooth) polynomial p is an invariant function of x′ = θ&H iff, for every c ∈ R,
p = c is an invariant equation of x′ = θ&H. In this case, if c is a constant that
denotes the value of p at the initial state, then p = c and p = 0 are invariant
equations. Conversely, if p = 0 is an equational invariant then the product Ip=0p
is an invariant function (not necessarily C1, i.e., continuously differentiable). If
c is a fresh variable and p = c an invariant equation of x′ = θ, c′ = 0 &H, then
p is an invariant function of x′ = θ&H and x′ = θ, c′ = 0 &H.
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Proof. By definition. Recall that the characteristic or indicator function of p = 0
is defined as Ip=0(x) = 1 if p(x) = 0 and as Ip=0(x) = 0 if p(x) 6= 0. ut

Counterexample 17 (p = 0 equational invariant 6⇒ p invariant function). We
have � x = 0 → [x′ = x]x = 0 but 6� x = 1 → [x′ = x]x = 1, hence p = 0 is
an equational invariant of x′ = x but p is no invariant function, because p = 1
is no equational invariant. In particular, we can tell by simulation, whether a
polynomial p can be an invariant function, which gives a good falsification test.

The structure of invariant functions is that they form an algebra.

Lemma 18 (Structure of invariant functions). The invariant functions (or
the invariant polynomials) of x′ = θ&H form an R-algebra.

Proof. As a function of time t, let x(t) be a solution of the differential equation
under consideration. If p, q are invariant functions and λ ∈ R is a number (or
constant symbol), then p + q, pq, λp are invariant functions, because, for any
operator ⊕ ∈ {+, ·}:
(p⊕ q)(x(t)) = p(x(t))⊕ q(x(t()) = p(x(0))⊕ q(x(0)) = (p⊕ q)(x(0)) ut

According to Lemma 18, it is enough to find a generating system of the algebra
of invariant functions, because all algebraic expressions built from this gener-
ating set are invariant functions. A generating system of an algebra is a set S
such that the set of all elements that can be formed from S by operations of
the algebra coincides with the full algebra. More precisely, the smallest algebra
containing S is the full algebra of invariant functions. This generating system is
not necessarily small, however, because, whenever p is an invariant function and
F an arbitrary (sufficiently smooth) function, e.g., polynomial, then F (p) is an
invariant function. This holds accordingly for (sufficiently smooth) functions F
with multiple arguments. The situation improves if we take a functional gener-
ating set G. That is, a set G that gives all invariant functions when closing it
under composition with any (sufficiently smooth) function F , i.e., F (p1, . . . , pn)
is in the closure for all pi in the closure.

A useful structure of the invariant equations is that they form an ideal. For a
fixed dynamics x′ = θ or x′ = θ&H we define the following sets of valid formulas
and provable formulas, respectively:

I=(Γ ) := {p ∈ R[x] : � Γ → [x′ = θ&H]p = 0}
DCI=(Γ ) := {p ∈ R[x] : `DI=+DC Γ → [x′ = θ&H]p = 0}

rI= := {p ∈ R[x] : � p = 0→ [x′ = θ&H]p = 0}
rDCI= := {p ∈ R[x] : `DI=+DC p = 0→ [x′ = θ&H]p = 0}

The set I=(Γ ) collects the polynomials whose variety forms an invariant equation
(p ∈ I=(Γ )). The set DCI=(Γ ) collects the polynomials for whose zero set it
is provable using equational differential invariants (DI=) and differential cuts
(DC) that they are invariant equations (p ∈ DCI=(Γ )). The sets I=(Γ ) and
DCI=(Γ ) are relative to a dL formula (or set) Γ that is used as assumption.



42 André Platzer

The reflexive sets rI= and rDCI=, instead, assume that the precondition and
postcondition are identical. It turns out that the reflexive versions do not have a
very well-behaved structure (see the following proof). The invariant sets I=(Γ )
and DCI=(Γ ), instead, are well-behaved and form a chain of differential ideals.

Lemma 19 (Structure of invariant equations). Let Γ be a set of dL for-
mulas, then DCI=(Γ ) ⊆ I=(Γ ) is a chain of differential ideals (with respect to
the derivation θ ·∇, in particular (θ ·∇)p ∈ DCI=(Γ ) for all p ∈ DCI=(Γ )).
Furthermore, the varieties of these ideals are generated by a single polynomial.

Proof. We prove each of the stated properties.

1. The inclusion follows from soundness. The inclusion rDCI= ⊆ rI= even still
holds for rI=.

2. It is easy to see that p, q ∈ I=(Γ ) and r ∈ R[x] imply p+ q, rp ∈ I=(Γ ).
Both properties do not hold for rI=, because x, x2 ∈ rI= for the dynamics
x′ = x, but the sum/product x2 + x = x(x+ 1) 6∈ rI=

3. Let p, q ∈ DCI=(Γ ), then p+ q ∈ DCI=(Γ ), because Γ → p = 0 ∧ q = 0 im-
plies Γ → p+ q = 0 (for the antecedent) and θ ·∇ is a linear operator:

(θ ·∇)(p+ q) = (θ ·∇)p+ (θ ·∇)q = 0 + 0 = 0

The second equation holds after sufficiently many uses of DC that are needed
to show that p, q ∈ DCI=(Γ ).

4. Let p ∈ DCI=(Γ ) and r ∈ R[x], then rp ∈ DCI=(Γ ), because Γ → p = 0
implies Γ → rp = 0 (for the antecedent) and θ ·∇ is a derivation operator:

(θ ·∇)(rp) = p(θ ·∇)r + r (θ ·∇)p︸ ︷︷ ︸
0

= p︸︷︷︸
0

(θ ·∇)r = 0

The second equation holds after sufficiently many uses of DC that are needed
to show that p ∈ DCI=(Γ ). The last equation holds after one more use of DC
by p = 0, which entails p = 0 on the (new) domain of evolution H ∧ p = 0.

5. The fact that the ideal DCI=(Γ ) is a differential ideal follows from [20, Lem
3.7], which just uses differential weakening. In detail: p ∈ DCI=(Γ ) implies
that (θ ·∇)p = 0 is provable after sufficiently many DC. Hence, after the
same DC, invariance of (θ ·∇)p = 0 is provable by DW.

6. From p ∈ I=(Γ ), we conclude (θ ·∇)p ∈ I=(Γ ) as follows. Let p(x(t)) = 0 ∀t.
Then ((θ ·∇)p)(x(t)) =

∑
i θi(x(t)) ∂p∂xi

(x(t)) = 0 follows from the necessity
direction of Theorem 3.

7. p = 0∧ q = 0 is a propositional equation that is invariant iff p2 + q2 ∈ I(Γ ),
i.e., p2 + q2 = 0 gives an invariant equation. The same holds for DCI=(Γ )
by previous work [19,23]. By repeating this construction, we obtain a variety
generated by a single polynomial, because, by Hilbert’s basis theorem [12],
every ideal in the (multivariate) polynomial ring of a Noetherian ring (e.g., a
field) is finitely generated ideal. Yet the ring of polynomials is not a principal
ideal domain except in dimension 1.
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8. p = 0 ∨ q = 0 is a propositional equational invariant iff pq ∈ I=(Γ ), i.e.,
pq = 0 gives an invariant equation. The same holds for DCI=(Γ ) by previous
work [19,23]. ut

Observe that the differential cut rule DC needs to be included to make DCI= an
ideal (not closed under multiplication with other polymials). Without differential
cuts, the set of provable equational differential invariants is generally no ideal.
As a corollary to Lemma 19, it is sufficient to find a complete set of differential
ideal generators, because these generators describe all other invariants. Without
taking functional generators into account, there are still infinitely many invariant
equations, because every invariant function induces infinitely many invariant
equations by Lemma 16.

According to Lemma 19, however, there is a single generator of the variety
of the differential ideals, which is the most informative invariant.

5 Assuming Equations and Equational Invariants

Theorem 3 gives an equivalence characterization of invariant functions on open
domains. Another seminal result due to Lie provides a similar equivalence charac-
terization for invariant equations of full rank. This equivalence characterization
assumes the invariant F during its proof, which is not sound in general; see
Counterexample 8. In the case of full rank, this is different.

Theorem 20 (Lie [15,16][17, Theorem 2.8]). The following rule is sound

(
←−
DIp)

n∧
i=1

pi = 0→ [x′ = θ&H]

n∧
i=1

pi = 0

H ∧
n∧
i=1

pi = 0→
n∧
i=1

(θ ·∇)pi = 0

If rank ∂pi
∂xj

= n on H ∧
∧n
i=1 pi = 0, then the premise and conclusion are equiv-

alent.

Rule
←−
DIp provides a necessary condition for an equation system to be an

invariant and can, thus, be used to disprove invariance. Rule DI= provides a
sufficient condition, but implies a stronger property (invariant function instead

of just invariant equation). In the full rank case,
←−
DIp is an equivalence and

can decide whether
∧n
i=1 pi = 0 is an invariant equation. Whether

∧n
i=1 pi = 0

satisfies the full rank condition is decidable in real-closed fields, but nontrivial
without optimizations. The invariant in Example 9 has full rank 2, except when
x = y = 0, which does not satisfy the invariant x2 + y2 = 1:(

∂(x2+y2−1)
∂x

∂(x2+y2−1)
∂y

∂(x2+y2−1)
∂e

∂(e−x)
∂x

∂(e−x)
∂y

∂(e−x)
∂e

)
=

(
2x 2y 0

−1 0 1

)
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In Counterexample 8, however, the full rank condition is, in fact, violated, since
∂(x2−6x+9)

∂y = 0 and ∂(x2−6x+9)
∂x = 2x− 6 has a zero when x = 3, which satisfies

x2 − 6x+ 9 = 0. This explains why it was not sound to assume x2 − 6x+ 9 = 0
when attempting to prove it.

It is sound to use equations in the following style (also see [30]):

Theorem 21. This rule is sound for any choice of smooth functions Qi,j:

(
−→
DIp)

H→
n∧
i=1

(θ ·∇)pi =
∑
j

Qi,jpj

n∧
i=1

pi = 0→ [x′ = θ&H]

n∧
i=1

pi = 0

If rank ∂pi
∂xj

= n on H ∧
∧n
i=1 pi = 0, then the premise of

−→
DIp is equivalent to the

conclusion of
←−
DIp.

Proof. This result follows from [17], since the premise of
−→
DIp is equivalent to

the conclusion of
←−
DIp by [17, Proposition 2.10] in the maximal rank case. We

only sketch the (simple) soundness direction for n = 1 and H ≡ true. At any ζ,
by Lemma 2, the premise, and the antecedent of the conclusion:

dϕ(t)[[p]]

dt
(ζ) = ϕ(ζ)[[(θ ·∇)p]] = ϕ(ζ)[[Qp]] = ϕ(ζ)[[Q]] · ϕ(ζ)[[p]]

ϕ(0)[[p]] = 0

The constant function zero solves this linear differential equation (system). Since
solutions are unique (Q and p smooth), this implies ϕ(ζ)[[p]] = 0 for all ζ. ut

According to Theorem 20, it is necessary for invariance of
∧n
i=1 pi = 0 that

(θ ·∇)pi is in the variety, i.e., (θ ·∇)pi ∈ V (p1, . . . , pn) for all i. But, accord-
ing to Theorem 21 it is only sufficient if (θ ·∇)pi is in the ideal (p1, . . . , pn)
generated by the pj , i.e., the set {

∑
j Qjpj : Qj ∈ R[x]}. In the full rank case,

both conditions are equivalent.

Counterexample 22 (Full rank). Full rank is required for equivalence. For exam-
ple, h := x− 1 vanishes on p := (x− 1)2 = 0, but no smooth function Q satisfies
h = Qp, since the required Q := (x− 1)−1 has a singularity at p = 0.

6 Partial Differential Equations and the Inverse
Characteristic Method

In this section, we study the connection of differential invariants with partial
differential equations. The operator θ ·∇ defined in (1) is a differential operator.
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Then the premise H → (θ ·∇)p of DIc, which is the same as the premise of DI=,
is a partial differential equation on the domain H.

(θ ·∇)p = 0 on H (5)

This equation is a first-order, linear, homogeneous partial differential equation,
which are well-behaved partial differential equations. By Theorem 3, p is a so-
lution of the partial differential equation (5) on domain H iff p is an invariant
function of x′ = θ&H. Thus, with the caveats explained in Section 3, solving
partial differential equations gives a complete approach to generating invariant
functions, which are the strongest type of differential invariants.

This approach first seems to be at odds with what we wanted to achieve in
the first place. Differential equations are complicated, their solutions hard to
compute. So we work with differential invariants instead, which are perfect for
verification if only we find them. In order to find differential invariants, we solve
a partial differential equation, which, in general, is even harder than solving or-
dinary differential equations. In fact, many numerical and symbolic algorithms
for solving partial differential equations are based on solving a number of ordi-
nary differential equation systems as subproblems. The characteristic method,
see [5, Theorem 3.2.1][32, §1.13.1.1], studies the characteristic ordinary differen-
tial equations belonging to a partial differential equation in order to understand
the partial differential equation.

We nevertheless proceed this way and call it the inverse characteristic method,
i.e., the study of properties of ordinary differential equations by studying the
partial differential equation belonging to its Lie-type differential operator.

Theorem 23 (Inverse characteristic method). A (sufficiently smooth) func-
tion f is an invariant function of the differential equation x′ = θ on the domain
H iff f solves the partial differential equation (5) on H, i.e.,

(θ ·∇)f = 0 on H

Proof. This is a consequence of Theorem 3. ut
The inverse characteristic method is insightful for two reasons. First, it identifies
a mathematically well-understood characterization of the problem of generating
differential invariants, at least for the equational case of invariant functions on
domains. Second, the inverse characteristic method can be quite useful in prac-
tice, because the resulting partial differential equations are rather well-behaved,
and solvers for partial differential equations are built on very mature founda-
tions. Note that it is beneficial for the purposes of building a verification tool
that the partial differential equation solver can work as an oracle and does not
need to be part of the trusted computing base, since we can easily check its
(symbolic) solutions for invariance by rule DIc just using symbolic derivatives
and polynomial algebra.

Example 24 (Deconstructed aircraft). For the deconstructed aircraft from Coun-
terexample 5, the dynamics yields the corresponding partial differential equation

−y ∂f
∂x

+ e
∂f

∂y
− y ∂f

∂e
= 0
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whose solution can easily be computed to be

f(x, y, e) = g

(
e− x, 1

2
(2ex− x2 + y2)

)
Thus, the solution is a function g of e− x and of 1

2 (2ex− x2 + y2), which turns
both terms into invariant functions:

e− x (6)

2ex− x2 + y2 (7)

Contrast this with the invariant equation (e2 + y2 − 1)2 + (e− x)2 = 0 from the
proof of (4) in Example 11. In order to relate this creative invariant to the
systematically constructed invariants (6)–(7), we note that the initial state and
postcondition in (4) is x2 + y2 = 1 ∧ e = x. Hence, y2 = 1− x2, e = x, which we
substitute in (7) to obtain 2xx− x2 + (1− x2) = 1. Thus, for the purpose of
proving (4), the initial value for (6) is 0 and that for (7) is 1. Using e− x = 0,
the invariant e2 + y2 − 1 can be obtained from (7) and the initial value 1 by
polynomial reduction.

Example 25 (Aircraft). For the actual aircraft dynamics in Example 12, the cor-
responding partial differential equation

d1
∂f

∂x1
+ d2

∂f

∂x2
− ωd2

∂f

∂d1
+ ωd1

∂f

∂d2
= 0

whose solution can easily be computed to be (recall ω 6= 0)

f(x1, x2, d1, d2) = g

(
d2 − ωx1,

d1 + ωx2
ω

,
1

2
(d21 + 2ωd2x1 − ω2x21)

)
revealing the invariant functions d2 − ωx1, d1 + ωx2, d

2
1 + 2ωd2x1 − ω2x21. From

these, the creative invariant in Example 12 can be constructed in retrospect with
initial value 0, 0, and ω2p2, respectively. The value ω2p2 can be found either by
polynomial reduction or by substituting ωx1 = d2 in as follows

d21 + 2ωd2x1 − ω2x21 = d21 + 2d22 − d22 = d21 + d22 = ω2p2

7 Conclusions and Future Work

Differential invariants are a natural induction principle for differential equations.
The structure of general differential invariants has been studied previously. Here,
we took a differential operator view and have studied the case of equational dif-
ferential invariants in more detail. We have related equational differential invari-
ants to Lie’s seminal work and subsequent results about Lie groups. We have
shown how the resulting equivalence characterization of invariant equations on
open domains can be used, carefully illustrate surprising challenges in invariant
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generation, explain why they exist, and show with which techniques they can
be overcome. We have studied the structure of invariant functions and invariant
equations, their relation, and have shown that, in the presence of differential
cuts, the invariant equations and provable invariant equations form a chain of
differential ideals and that their varieties are generated by a single invariant.
Finally, we relate differential invariants to partial differential equations and ex-
plain how the inverse characteristic method reduces the problem of equational
differential invariant generation to that of solving partial differential equations.

The results we present in this paper relate equational differential invariants to
other problems. They show equivalence characterizations and methods for gener-
ating equational differential invariants. While the connection with other aspects
of mathematics makes a number of classical results available, their complexity
indicates that the study of differential invariants has the potential for many fur-
ther discoveries. In this paper, we have focused exclusively on the equational
case. In the theory of differential invariants, however, the equational and gen-
eral case have quite different characteristics [23]. The general case of differential
invariants that are logical formulas with equations and inequalities has been
studied elsewhere [23].

Acknowledgements. I thank David Henriques and the PC chairs of ITP for
helpful feedback.
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