03: Choice & Control

Logical Foundations of Cyber-Physical Systems

André Platzer

Carnegie Mellon University
Computer Science Department
Outline

1. Learning Objectives

2. Gradual Introduction to Hybrid Programs

3. Hybrid Programs
 - Syntax
 - Semantics
 - Notational Convention

4. Examples

5. Summary
Outline

1 Learning Objectives

2 Gradual Introduction to Hybrid Programs

3 Hybrid Programs
 - Syntax
 - Semantics
 - Notational Convention

4 Examples

5 Summary
Learning Objectives

Choice & Control

- nondeterminism
- abstraction
- programming languages for CPS
- semantics
- compositionality

CT

M&C

CPS

models
core principles
discrete+
continuous

operational effect
operational precision

André Platzer (CMU)
Outline

1. Learning Objectives

2. Gradual Introduction to Hybrid Programs

3. Hybrid Programs
 - Syntax
 - Semantics
 - Notational Convention

4. Examples

5. Summary
Example (Speedy the point)

\[\{ x' = v, v' = a \} \]

Purely continuous dynamics

What about the cyber?
Playing with Acceleration and Braking

Example (Speedy the point)

\[a := a + 1 \]

Purely discrete dynamics

How do both meet?
Example (Speedy the point)

\[a := a + 1; \{x' = v, v' = a\} \]

Hybrid dynamics, i.e., composition of continuous and discrete dynamics
Here: sequential composition first; second
Example (Speedy the point)

\[
a := -2; \quad \{ x' = v, v' = a \}; \\
a := 0.25; \quad \{ x' = v, v' = a \}; \\
a := -2; \quad \{ x' = v, v' = a \}; \\
a := 0.25; \quad \{ x' = v, v' = a \}; \\
a := -2; \quad \{ x' = v, v' = a \}; \\
a := 0.25; \quad \{ x' = v, v' = a \}
\]
Example (Speedy the point)

$$a := -2; \{ x' = v, v' = a \};$$

$$a := 0.25; \{ x' = v, v' = a \};$$

$$a := -2; \{ x' = v, v' = a \};$$

$$a := 0.25; \{ x' = v, v' = a \};$$

$$a := -2; \{ x' = v, v' = a \};$$

$$a := 0.25; \{ x' = v, v' = a \};$$

How long to follow an ODE?
Playing with Acceleration and Braking

Example (Speedy the point)

\[a := -2; \{ x' = v, v' = a \}; \]
\[a := 0.25; \{ x' = v, v' = a \}; \]
\[a := -2; \{ x' = v, v' = a \}; \]
\[a := 0.25; \{ x' = v, v' = a \}; \]
\[a := -2; \{ x' = v, v' = a \}; \]
\[a := 0.25; \{ x' = v, v' = a \}; \]

How to check conditions before actions?
Example (Speedy the point)

\[
\begin{align*}
 \text{if}(v < 4) & \quad a := a + 1 \quad \text{else} \quad a := -b; \\
 \{x' = v, \ v' = a\}
\end{align*}
\]

Velocity-dependent control
Example (Speedy the point)

\[
\text{if}(x - m > s) \quad a := a + 1 \quad \text{else} \quad a := -b;
\]

\[
\{ x' = v, \; v' = a \}
\]

Distance-dependent control for obstacle \(m \)
Example (Speedy the point)

\[\text{if}(x - m > s \land v < 4) \ a := a + 1 \ \text{else} \ a := -b; \]
\[\{x' = v, \ v' = a\} \]

Velocity and distance-dependent control

Iterative Design

Start as simple as possible, then add challenges once basics are correct.
Example (Speedy the point)

\[
\begin{align*}
 \text{if}(x - m > s \land v < 4 \land \text{efficiency}) \quad & a := a + 1 \quad \text{else} \quad a := -b; \\
 \{x' = v, \quad v' = a\}
\end{align*}
\]

Also only accelerate if it’s efficient to do so
Example (Speedy the point)

\[
\text{if}(x - m > s \land v < 4 \land \text{efficiency}) \quad a := a + 1 \quad \text{else} \quad a := -b;
\]
\[
\{ x' = v, v' = a \}\]

Exact models are unnecessarily complex. Not all features are safety-critical.
Example (Speedy the point)

\[
(a := a + 1 \cup a := -b); \\
\{x' = v, v' = a\}
\]

Nondeterministic choice \(\cup \) allows either side to be run, arbitrarily

Power of Abstraction

Only include relevant aspects, elide irrelevant detail. The model and its analysis become simpler. And apply to more systems.
Example (Speedy the point)

\[
(a := a + 1 \cup a := -b); \\
\{x' = v, v' = a\}
\]

Nondeterministic choice \(\cup \) allows either side to be run, arbitrarily.

Oops, now it got too simple! Not every choice is always acceptable.
Example (Speedy the point)

\[(?v < 4; a := a + 1 \cup a := -b); \{ x' = v, v' = a \} \]

Test \(?Q\) checks if formula \(Q\) is true in current state
Example (Speedy the point)

$$(?v < 4; a := a + 1 \cup a := -b); \{x' = v, v' = a\}$$

Test Q checks if formula Q is true in current state, otherwise run fails.

Discarding failed runs and backtracking

System runs that fail tests are discarded and not considered further.

$$?v < 4; v := v + 1$$ only runs if $v < 4$

$$v := v + 1; ?v < 4$$ only runs if $v < 4$

Broader significance of nondeterminism

Nondeterminism is a tool for abstraction to focus on critical aspects. Nondeterminism is essential to describe imperfectly known environment.
Example (Speedy the point)

\[
(\forall v < 4; a := a + 1 \cup a := -b);
\{x' = v, v' = a\}
\]

Test \(Q \) checks if formula \(Q \) is true in current state, otherwise run fails.

Discarding failed runs and backtracking

System runs that fail tests are discarded and not considered further.

\[
\forall v < 4; v := v + 1 \quad \text{only runs if} \quad v < 4 \quad \text{initially true}
\]

\[
 v := v + 1; \forall v < 4 \quad \text{only runs if} \quad v < 3 \quad \text{initially true}
\]

Broader significance of nondeterminism

Nondeterminism is a tool for abstraction to focus on critical aspects. Nondeterminism is essential to describe imperfectly known environment.
Example (Speedy the point)

\[(?v < 4; a := a + 1 \cup a := -b); \{x' = v, v' = a\};
(\?
\begin{align*}
(\?v & < 4; a := a + 1 \cup a := -b); \\
& \{x' = v, v' = a\}; \\
(\?v & < 4; a := a + 1 \cup a := -b); \\
& \{x' = v, v' = a\}
\end{align*}

Repeated control needs longer programs, e.g., by copy&paste
Example (Speedy the point)

\[
\left((?v < 4; a := a + 1 \cup a := -b); \\
\{ x' = v, v' = a \} \right)^* \]

Nondeterministic repetition * repeats *any* arbitrary number of times
Outline

1. Learning Objectives

2. Gradual Introduction to Hybrid Programs

3. Hybrid Programs
 - Syntax
 - Semantics
 - Notational Convention

4. Examples

5. Summary
Definition (Syntax of hybrid program α)

\[
\alpha, \beta ::= x := e \mid ?Q \mid x' = f(x) \& Q \mid \alpha \cup \beta \mid \alpha;\beta \mid \alpha^*
\]
Definition (Syntax of hybrid program α)

$$\alpha, \beta ::= x := e \mid ?Q \mid x' = f(x) \& Q \mid \alpha \cup \beta \mid \alpha; \beta \mid \alpha^*$$

Syntax Elements
- **Discrete Assign**
- **Test Condition**
- **Differential Equation**
- **Nondet. Choice**
- **Seq. Compose**
- **Nondet. Repeat**
Hybrid Programs: Syntax

Definition (Syntax of hybrid program α)

$$\alpha, \beta ::= x := e \mid ?Q \mid x' = f(x) \& Q \mid \alpha \cup \beta \mid \alpha;\beta \mid \alpha^*$$

- Discrete Assign
- Test Condition
- Differential Equation
- Nondet. Choice
- Seq. Compose
- Nondet. Repeat

Like regular expressions. Everything nondeterministic.
Hybrid Programs: Semantics

\[x := e \]

\[x' = f(x) \& Q \]

?Q

\[\omega \rightarrow v \]

\[\omega \rightarrow v \]

\[\omega \rightarrow v \]
Hybrid Programs: Semantics

\[x := e \]

\[x' = f(x) \& Q \]

\[?Q \]

\[\begin{align*}
 & v \quad \text{if } v(x) = \omega[e] \\
 & \omega \quad \text{and } v(z) = \omega(z) \text{ for } z \neq x
\end{align*} \]
Hybrid Programs: Semantics

\(x := e \)

\(x' = f(x) \& Q \)

\(?Q\)
Hybrid Programs: Semantics

\[x := e \]
\[x' = f(x) \& Q \]
\[?Q \]

\[v \]
\[\omega \]

\[v(x) = \omega[e] \]
\[\omega \text{ and } v(z) = \omega(z) \text{ for } z \neq x \]

\[x' = f(x) \& Q \]

\[\omega \mid Q \]
\[\omega \not\mid Q \]

Andre Platzer (CMU)
LFCPS/03: Choice & Control
Hybrid Programs: Semantics

\(x := e \)

\(x' = f(x) \& Q \)

\(?Q\)
Hybrid Programs: Semantics

- $x := e$
- $x' = f(x) \& Q$
- $?Q$

Semantics:
- v if $v(x) = \omega[\epsilon]
- \omega$ and $v(z) = \omega(z)$ for $z \neq x$
- $x' = f(x) \& Q$
- $x' = f(x) \& Q$

Andre Platzer (CMU)
Hybrid Programs: Semantics

\[
x := e
\]

\[
x' = f(x) \& Q
\]

\[
?Q \quad \text{if } \omega \models Q
\]

\[
\begin{align*}
\nu &\quad \text{if } \nu(x) = \omega[e] \\
\omega &\quad \text{and } \nu(z) = \omega(z) \text{ for } z \neq x
\end{align*}
\]

\[
x' = f(x) \& Q
\]

\[
\omega \quad \text{no change if } \omega \models Q
\]
Hybrid Programs: Semantics

\(x := e \)

\(x' = f(x) & Q \)

\(?Q \) if \(\omega \models Q \)

\(\omega \) no change if \(\omega \models Q \)

\(\omega \) otherwise no transition

\(\nu(\omega[e]) \)

\(\nu(z) = \omega(z) \) for \(z \neq x \)

\(t \)

\(0 \)

\(r \)

\(0 \)

\(t \)

\(x \)

\(x' = f(x) \& Q \)

\(Q \)

\(Q \)

\(\omega \)

André Platzer (CMU)

LFCPS/03: Choice & Control
Hybrid Programs: Semantics

\(\omega \cup \beta \)

\(\alpha ; \beta \)

\(\alpha^* \)
Hybrid Programs: Semantics

\[\omega \xrightarrow{\alpha} \nu_1 \]
\[\omega \xrightarrow{\alpha \cup \beta} \nu_1 \cup \nu_2 \]
\[\nu_1 \xrightarrow{\alpha \cdot \beta} \nu_2 \]
\[\omega \xrightarrow{\alpha^*} \nu \]
Hybrid Programs: Semantics

\[
\begin{align*}
 \omega &\xrightarrow{\alpha} v_1 \\
 \omega &\xrightarrow{\alpha \cup \beta} v_1 \\
 \omega &\xrightarrow{\beta} v_2 \\
 \alpha ; \beta &\xrightarrow{} \mu \xrightarrow{} v \\
 \omega &\xrightarrow{\alpha} \mu \\
 \omega &\xrightarrow{\beta} \mu \\
 \omega &\xrightarrow{\alpha^*} \nu \\
 \omega &\xrightarrow{} \nu
\end{align*}
\]
Hybrid Programs: Semantics
Hybrid Programs: Semantics

\[\alpha \cup \beta \]

\[\alpha ; \beta \]

\[\alpha^* \]

\[\omega \rightarrow \alpha \rightarrow \omega_1 \rightarrow \alpha \rightarrow \omega_2 \rightarrow \alpha \rightarrow \nu \]

\[\omega \rightarrow \alpha \rightarrow \mu \rightarrow \beta \rightarrow \nu \]

\[x \rightarrow \omega \rightarrow v_1 \rightarrow v_2 \rightarrow t \]

\[x \rightarrow \omega \rightarrow v \rightarrow t \]

\[x \rightarrow \omega \rightarrow v \rightarrow t \]
Plug-in for Semantics of Composed Hybrid Programs

\[\alpha ; \beta \]

\[\omega \xrightarrow{\alpha} \mu \xrightarrow{\beta} \nu \]

\[\alpha^* \]

\[\omega \xrightarrow{\alpha} \omega_1 \xrightarrow{\alpha} \omega_2 \xrightarrow{\alpha} \nu \]

\[\omega \xrightarrow{\alpha} v_1 \]

\[\omega \xrightarrow{\beta} v_2 \]

\[\omega \xrightarrow{\alpha \cup \beta} v_1 \]

\[\omega \xrightarrow{\beta} v_2 \]
Hybrid Programs: Syntax & Semantics

Definition (Syntax of hybrid program α)

\[\alpha, \beta ::= x := e \mid ?Q \mid x' = f(x) \& Q \mid \alpha \cup \beta \mid \alpha; \beta \mid \alpha^* \]

Definition (Semantics of hybrid programs) \(\llbracket \cdot \rrbracket : \text{HP} \to \mathcal{P}(\mathcal{S} \times \mathcal{S}) \)

\[
\begin{align*}
\llbracket x := e \rrbracket &= \{ (\omega, \nu) : \nu = \omega \text{ except } \nu[x] = \omega[e] \} \\
\llbracket ?Q \rrbracket &= \{ (\omega, \omega) : \omega \models Q \} \\
\llbracket x' = f(x) \rrbracket &= \{ (\varphi(0), \varphi(r)) : \varphi \models x' = f(x) \text{ for some duration } r \geq 0 \} \\
\llbracket \alpha \cup \beta \rrbracket &= \llbracket \alpha \rrbracket \cup \llbracket \beta \rrbracket \\
\llbracket \alpha; \beta \rrbracket &= \llbracket \alpha \rrbracket \circ \llbracket \beta \rrbracket = \{ (\omega, \nu) : (\omega, \mu) \in \llbracket \alpha \rrbracket \text{ and } (\mu, \nu) \in \llbracket \beta \rrbracket \} \\
\llbracket \alpha^* \rrbracket &= \llbracket \alpha \rrbracket^* = \bigcup_{n \in \mathbb{N}} \llbracket \alpha^n \rrbracket \quad \alpha^n \equiv \alpha; \alpha; \alpha; \ldots; \alpha
\end{align*}
\]

Compositional
Definition (Syntax of hybrid program α)

$$\alpha, \beta ::= x := e \mid ?Q \mid x' = f(x) \& Q \mid \alpha \cup \beta \mid \alpha;\beta \mid \alpha^*$$

Definition (Semantics of hybrid programs)
\[(\cdot) : HP \rightarrow \wp(S \times S)\]

\[
\begin{align*}
[x := e] &= \{(\omega, v) : v = \omega \text{ except } v[x] = \omega[e]\} \\
[?Q] &= \{(\omega, \omega) : \omega \models Q\} \\
[x' = f(x)] &= \{(\phi(0), \phi(r)) : \phi \models x' = f(x) \text{ for some duration } r \geq 0\} \\
[\alpha \cup \beta] &= [\alpha] \cup [\beta] \\
[\alpha;\beta] &= [\alpha] \circ [\beta] \\
[\alpha^*] &= [\alpha]^* = \bigcup_{n \in \mathbb{N}} [\alpha^n]
\end{align*}
\]

1. $\phi(z)(x') = \frac{d\phi(t)(x)}{dt}(z)$ exists at all times $0 \leq z \leq r$
2. $\phi(z) \models x' = f(x) \wedge Q$ for all times $0 \leq z \leq r$
3. $\phi(z) = \phi(0)$ except at x, x'

Andre Platzer (CMU)
Notational Conventions: Names

Example (Naming Conventions)

<table>
<thead>
<tr>
<th>Letters</th>
<th>Convention</th>
</tr>
</thead>
<tbody>
<tr>
<td>x, y, z</td>
<td>variables</td>
</tr>
<tr>
<td>e, \tilde{e}</td>
<td>terms</td>
</tr>
<tr>
<td>P, Q</td>
<td>formulas</td>
</tr>
<tr>
<td>α, β</td>
<td>programs</td>
</tr>
<tr>
<td>c</td>
<td>constant symbols</td>
</tr>
<tr>
<td>f, g, h</td>
<td>function symbols</td>
</tr>
<tr>
<td>p, q, r</td>
<td>predicate symbols</td>
</tr>
</tbody>
</table>

In CPS applications, all bets are off because names follow application: x position, v velocity, and a acceleration variables.
Conventional Notations: Precedence

Convention (Operator Precedence)

1. Unary operators (including *, ¬ and ∀x, ∃x) bind stronger than binary.
2. ∧ binds stronger than ∨, which binds stronger than →, ↔
3. ; binds stronger than ∪
4. Arithmetic operators +, −, · associate to the left
5. Logical and program operators associate to the right

Example (Operator Precedence)

\[
\forall x P \land Q \equiv (\forall x P) \land Q \\
\alpha; \beta \cup \gamma \equiv (\alpha; \beta) \cup \gamma \\
\alpha \cup \beta; \gamma \equiv \alpha \cup (\beta; \gamma) \\
P \to Q \to R \equiv P \to (Q \to R).
\]

But →, ↔ expect explicit parentheses. Illegal: \(P \to Q \leftrightarrow R \) \(P \leftrightarrow Q \to R \)
1. Learning Objectives

2. Gradual Introduction to Hybrid Programs

3. Hybrid Programs
 - Syntax
 - Semantics
 - Notational Convention

4. Examples

5. Summary
Robot ≡ (ctrl ; drive)*

ctrl ≡ (?Q_A; a := A)
∪ (?Q_a; a := -b)

drive ≡ t := 0; {x' = v, v' = a, t' = 1 & v ≥ 0 ∧ t ≤ ε}
Robot ≡ (ctrl ; drive)*

ctrl ≡ (?Q_A; a := A)
 ∪ (?Q_b; a := −b)

drive ≡ t := 0; \{ x' = v, v' = a, t' = 1 & v \geq 0 \land t \leq \epsilon \}
Branching Transition Structure in Hybrid Programs

Robot ≡ (ctrl ; drive)∗

ctrl ≡ (?Q_A; a := A) ∪ (?Q_b; a := −b)

drive ≡ t := 0; \{ x' = v, v' = a, t' = 1 \& v ≥ 0 \& t ≤ ε \}
Robot \equiv (ctrl ; drive)^* \\
ctrl \equiv (?Q_A; a := A) \\
\quad \cup (?Q_b; a := -b) \\
drive \equiv t := 0; \{ x' = v, v' = a, t' = 1 \& v \geq 0 \land t \leq \varepsilon \}
Branching Transition Structure in Hybrid Programs

Robot \equiv (\text{ctrl} \; ; \text{drive})^* \\
\text{ctrl} \equiv (?Q_A; a := A) \\
\cup (\text{ctrl} \; ; a := A) \\
\text{drive} \equiv t := 0; \{ x' = v, v' = a, t' = 1 \& v \geq 0 \land t \leq \epsilon \}
Branching Transition Structure in Hybrid Programs

Robot \equiv (\text{ctrl} ; \text{drive})^* \\
\text{ctrl} \equiv (\text{?}Q_A; a := A) \\
\quad \cup (\text{?}Q_b; a := -b) \\
\text{drive} \equiv t := 0; \{x' = v, v' = a, t' = 1 \& v \geq 0 \land t \leq \varepsilon\}
Branching Transition Structure in Hybrid Programs

Robot \equiv (\text{ctrl}; \text{drive})^*

\text{ctrl} \equiv (\nabla Q_A; a := A)
\quad \cup (\nabla Q_b; a := -b)

\text{drive} \equiv t := 0; \{x' = v, v' = a, t' = 1 \land v \geq 0 \land t \leq \varepsilon\}
Branching Transition Structure in Hybrid Programs

Robot \equiv (\text{ctrl} ; \text{drive})^*

\text{ctrl} \equiv (?Q_A; a := A)
 \cup (?Q_b; a := -b)

\text{drive} \equiv t := 0; \{x' = v, v' = a, t' = 1 \& v \geq 0 \land t \leq \varepsilon\}
Branching Transition Structure in Hybrid Programs

Robot \equiv (\text{ctrl} ; \text{drive})^* \\
\text{ctrl} \equiv (?Q_A; a := A) \\
\quad \cup (?Q_b; a := -b) \\
\text{drive} \equiv t := 0; \{ x' = v, v' = a, t' = 1 \& v \geq 0 \land t \leq \varepsilon \}
Robot \equiv (ctrl; drive)^*

ctrl \equiv (?Q_A; a := A)
\quad \cup (?Q_b; a := -b)

drive \equiv t := 0; \{ x' = v, v' = a, t' = 1 \& v \geq 0 \& t \leq \varepsilon \}
Robot \equiv (ctrl \cdot drive)^*

ctrl \equiv (?Q_A; a := A)
\quad \cup (?Q_b; a := -b)

drive \equiv t := 0; \{ x' = v, v' = a, t' = 1 \& v \geq 0 \land t \leq \varepsilon \}
Robot ≡ (ctrl ; drive)*

ctrl ≡ (?QA; a := A)

∪ (?QB; a := −b)
drive ≡ t := 0; \{x' = v, v' = a, t' = 1 & v ≥ 0 \land t ≤ ε\}
Branching Transition Structure in Hybrid Programs

Robot \equiv (\text{ctrl} ; \text{drive})^* \\
\text{ctrl} \equiv (?Q_A; a \equiv A) \\
\quad \cup (?Q_b; a \equiv -b) \\
\text{drive} \equiv t \equiv 0; \{ x' = v, v' = a, t' = 1 \& v \geq 0 \& t \leq \varepsilon \}
Branching Transition Structure in Hybrid Programs

Robot $\equiv (\text{ctrl} ; \text{drive})^*$

\[
\text{ctrl} \equiv (? Q_A; a := A) \\
\cup (? Q_b; a := -b)
\]

\[
\text{drive} \equiv t := 0; \{ x' = v, v' = a, t' = 1 \& v \geq 0 \& t \leq \epsilon \}
\]
Robot $\equiv (ctrl \; ; \; drive)^*$

\begin{align*}
ctrl & \equiv (?Q_A; \; a := A) \\
& \quad \cup (?Q_b; \; a := -b)
\end{align*}

\begin{align*}
drive & \equiv t := 0; \{ x' = v, v' = a, t' = 1 \; \& \; v \geq 0 \; \& \; t \leq \epsilon \}
\end{align*}
Branching Transition Structure in Hybrid Programs

if \((Q)\alpha\) else \(\beta\) ≡

while \((Q)\alpha\) ≡

Robot ≡ (ctrl ; drive)∗

ctrl ≡ (?\(Q_A\); \(a := A\))

∪ (?\(Q_b\); \(a := -b\))

drive ≡ \(t := 0; \{x' = v, v' = a, t' = 1 \& v \geq 0 \land t \leq \varepsilon\}\)
Branching Transition Structure in Hybrid Programs

Robot \equiv (\text{ctrl} ; \text{drive})^*

\text{ctrl} \equiv (?Q_A ; a := A)
\quad \cup (?Q_b ; a := -b)

\text{drive} \equiv t := 0; \{x' = v, v' = a, t' = 1 & v \geq 0 \land t \leq \varepsilon\}

if(Q) \alpha \text{ else } \beta \equiv (?Q; \alpha) \cup (?\neg Q; \beta)

while(Q) \alpha \equiv

\begin{align*}
Q_A & \rightarrow a := A \\
Q_b & \rightarrow a := -b \\
t & := 0 \\
x'' & := a \\
t' & := 1 \\
& \land v \geq 0 \land t \leq \varepsilon
\end{align*}
Branching Transition Structure in Hybrid Programs

Robot ≡ (ctrl ; drive)*

\[
\text{ctrl} \equiv (?Q_A; \ a := A) \\
\quad \cup \ (?Q_b; \ a := -b)
\]

\[
\text{drive} \equiv t := 0; \ \{x' = v, v' = a, t' = 1 \ \& \ v \geq 0 \ \& \ t \leq \varepsilon\}
\]

if(\(Q\)) \(\alpha\) else \(\beta\) ≡ (?\(Q\); \(\alpha\)) \(\cup\) (?\(\neg Q\); \(\beta\))

while(\(Q\)) \(\alpha\) ≡ (?\(Q\); \(\alpha\))^*; ?\(\neg Q\)
Runaround Robot with Dubins Paths

\[
Q \equiv \frac{1}{2} \left((x + w \omega - o x)^2 + (y - v \omega - o y)^2 \right) \neq v^2 + w^2 \\
Q_0 \equiv (o x - x) w \neq (o y - y)v
\]

Obstacle not on tangential circle
Obstacle not on ray

Example (Runaround Robot)

\[
\omega \begin{aligned}
&:= -1 \cup \omega := 1 \cup \omega := 0 \\
\{ \begin{array}{l}
x' = v, \\
y' = w, \\
v' = \omega w, \\
w' = -\omega v
\end{array} \end{aligned}
\]

\[
\omega \begin{aligned}
&:= -1 \cup \omega := 1 \cup \omega := 0 \\
\{ \begin{array}{l}
x' = v, \\
y' = w, \\
v' = \omega w, \\
w' = -\omega v
\end{array} \end{aligned}
\]
Example (Runaround Robot)

\[
\left((\omega := -1 \cup \omega := 1 \cup \omega := 0); \right. \\
\left. \{ x' = v, y' = w, v' = \omega w, w' = -\omega v \} \right)^*
\]
Example (Runaround Robot)

\[((\unit{?Q}{-1}; \omega := -1 \cup \unit{?Q}{1}; \omega := 1 \cup \unit{?Q}{0}; \omega := 0); \\
\{x' = v, y' = w, v' = \omega w, w' = -\omega v\})^\ast\]
Example (Speedy the point)

$(\forall v < 4; a := a + 1 \cup a := -b)$;
\[\{x' = v, v' = a\} ;\]

$(\forall v < 4; a := a + 1 \cup a := -b)$;
\[\{x' = v, v' = a\} ;\]

$(\forall v < 4; a := a + 1 \cup a := -b)$;
\[\{x' = v, v' = a\} ;\]
Example (Speedy the point)

\[
\begin{align*}
?v &< 4; a := a + 1; \\
\{x' = v, v' = a\}; \\
?v &< 4; a := a + 1; \\
\{x' = v, v' = a\}; \\
?v &< 4; a := a + 1; \\
\{x' = v, v' = a\}
\end{align*}
\]
Example (Speedy the point)

\(?v < 4\); \(a := a + 1\);
\(\{x' = v, v' = a\}\);

No wait, now it’s a bad model! The HP assumes the test \(v < 4\) passes after each ODE. No other choices are available.

Don’t let your controller discard important cases!
Hybrid Programs: Syntax & Semantics

Definition (Syntax of hybrid program \(\alpha \))

\[
\alpha, \beta ::= \ x := e \mid ?Q \mid x' = f(x) \& Q \mid \alpha \cup \beta \mid \alpha;\beta \mid \alpha^*
\]

Definition (Semantics of hybrid programs) \(([\cdot] : HP \rightarrow \wp(\mathcal{S} \times \mathcal{S})) \)

\[
\begin{align*}
[x := e] &= \{(\omega, v) : v = \omega \text{ except } v[x] = \omega[e]\} \\
[?Q] &= \{(\omega, \omega) : \omega \models Q\} \\
[x' = f(x)] &= \{(\varphi(0), \varphi(r)) : \varphi \models x' = f(x) \text{ for some duration } r \geq 0\} \\
[\alpha \cup \beta] &= [\alpha] \cup [\beta] \\
[\alpha;\beta] &= [\alpha] \circ [\beta] \\
[\alpha^*] &= [\alpha]^* = \bigcup_{n \in \mathbb{N}} [\alpha^n]
\end{align*}
\]

compositional
André Platzer.

Logical Foundations of Cyber-Physical Systems.
URL: http://www.springer.com/978-3-319-63587-3, doi:10.1007/978-3-319-63588-0.

André Platzer.

Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics.
doi:10.1007/978-3-642-14509-4.

André Platzer.

Logics of dynamical systems.

André Platzer.

Differential dynamic logic for hybrid systems.
André Platzer.
A complete uniform substitution calculus for differential dynamic logic.