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Learning Objectives
Differential Equations & Differential Invariants

CT

M&C CPS

discrete vs. continuous analogies
rigorous reasoning about ODEs
induction for differential equations
differential facet of logical trinity

understanding continuous dynamics
relate discrete+continuous

semantics of ODEs
operational CPS effects
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Differential Facet of Logical Trinity
Axiomatics

Syntax Semantics

Syntax defines the notation
What problems are we allowed to write down?

Semantics what carries meaning.
What real or mathematical objects does the syntax stand for?

Axiomatics internalizes semantic relations into universal syntactic
transformations.
How does the semantics of e = ẽ relate to the semantics of
e− ẽ = 0, syntactically? What about derivatives?
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ODE Examples Solutions more complicated than ODE
ODE Solution

x ′ = 1,x(0) = x0 x(t) = x0 + t
x ′ = 5,x(0) = x0 x(t) = x0 + 5t
x ′ = x ,x(0) = x0 x(t) = x0et

x ′ = x2,x(0) = x0 x(t) = x0
1−tx0

x ′ = 1
x ,x(0) = 1 x(t) =

√
1 + 2t . . .

y ′(x) =−2xy ,y(0) = 1 y(x) = e−x2

x ′(t) = tx ,x(0) = x0 x(t) = x0e
t2
2

x ′ =
√

x ,x(0) = x0 x(t) = t2

4 ± t
√

x0 + x0

x ′ = y ,y ′ =−x ,x(0) = 0,y(0) = 1 x(t) = sin t,y(t) = cos t
x ′ = 1 + x2,x(0) = 0 x(t) = tan t

x ′(t) = 2
t3 x(t) x(t) = e−

1
t2 non-analytic

x ′ = x2 + x4 ???

x ′(t) = et2
non-elementary
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Global Descriptive Power of Local Differential Equations

You also prefer loop induction to unfolding all loop iterations, globally . . .

Descriptive power of differential equations

1 Descriptive power: differential equations characterize continuous
evolution only locally by the respective directions.

2 Simple differential equations describe complicated physical processes.
3 Complexity difference between local description and global behavior
4 Analyzing ODEs via their solutions undoes their descriptive power.
5 Let’s exploit descriptive power of ODEs for proofs!

x ′′ =−x x(t) = sin(t) = t− t3

3!
+

t5

5!
− t7

7!
+

t9

9!
− . . .

x ′′(t) = et2
no elementary closed-form solution
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Intuition for Differential Invariants

Differential Invariant

Γ ` F ,∆ F ` ???F F ` P

Γ ` [x ′ = f (x)]P,∆

Want: formula F remains true
in the direction of the dynamics

¬ ¬FF F

[′] [x ′ = f (x)]P↔∀t≥0 [x := y(t)]P (y’ =f(y), y(0)=x)

Next step is undefined for ODEs. But don’t need to know where exactly the
system evolves to. Just that it remains somewhere in F .
Show: only evolves into directions in which formula F stays true.
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Guiding Example

: Rotational Dynamics

v2 +w2 = r2→ [v ′ = w ,w ′ =−v ]v2 +w2 = r2

∗

R ` 2v(w) + 2w(−v) = 0

[:=] ` [v ′:=w ][w ′:=−v ]2vv ′+ 2ww ′−2rr ′ = 0

dI v2+w2−r2=0 ` [v ′ = w ,w ′ =−v ]v2 + w2− r2 = 0

→R ` v2+w2−r2=0→ [v ′ = w ,w ′ =−v ]v2+w2−r2=0

Simple proof without solving ODE, just by differentiating
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v

w

w
=

rc
os

ϑ

v
r sinϑ

r
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Syntax With Primes

Syntax e ::= x | c | e + k | e− k | e · k | e/k

Derivatives

(e + k)′ =

(e)′+ (k)′

(e− k)′ =

(e)′− (k)′

(e · k)′ =

(e)′ · k + e · (k)′

(e/k)′ =

(
(e)′ · k−e · (k)′

)
/k2 same singularities

(c())′ =

0

for constants/numbers c()

. . . What do these primes mean? . . .
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Syntax With Primes

Syntax e ::= x | c | e + k | e− k | e · k | e/k | (e)′

Derivatives

(e + k)′ = (e)′+ (k)′

(e− k)′ = (e)′− (k)′

(e · k)′ = (e)′ · k + e · (k)′

(e/k)′ =
(
(e)′ · k−e · (k)′

)
/k2 same singularities

(c())′ = 0 for constants/numbers c()

. . . What do these primes mean? . . .

internalize primes into dL syntax
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The Meaning of Primes

Differential Forms

Semantics ω[[(e)′]] =

∑
x

ω(x ′)
∂ [[e]]

∂x
(ω)

Partial
∂ [[e]]

∂x
(ω) = lim

κ→ω(x)

ωκ
x [[e]]−ω[[e]]

κ−ω(x)

what’s the time derivative? what’s the time?
depends on the differential equation? Not compositional!
well-defined in isolated state ω at all? No time-derivative without time!
meaning is a function of x and x ′. Differential form!
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The Meaning of Primes

Differential Forms

Semantics ω[[(e)′]] =
dω[[e]]

dt
nonsense!

∑
x

ω(x ′)
∂ [[e]]

∂x
(ω)

Partial
∂ [[e]]

∂x
(ω) = lim

κ→ω(x)

ωκ
x [[e]]−ω[[e]]

κ−ω(x)

what’s the time derivative? what’s the time?
depends on the differential equation?

Not compositional!
well-defined in isolated state ω at all? No time-derivative without time!
meaning is a function of x and x ′. Differential form!

→ R
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Differential Dynamic Logic dL: Semantics

Definition (Hybrid program semantics) ([[·]] : HP→℘(S×S))

[[x ′ = f (x)&Q]] = {(ϕ(0)|{x ′}{ ,ϕ(r)) : ϕ(z) |= x ′ = f (x)∧Q for all 0≤z≤r
for a solution ϕ : [0, r ]→S of any duration r ∈ R}

where ϕ(z)(x ′)
def
= dϕ(t)(x)

dt (z)

t

x

Q

ν

ω

0 r
x ′ = f (x)&Q

Initial value of x ′ in ω is irrelevant since defined by ODE.
Final value of x ′ is carried over to the final state ν .
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Differential Substitution Lemmas

Lemma (Differential lemma) (Differential value vs. Time-derivative)
If ϕ |= x ′ = f (x)∧Q for duration r>0, then for all 0≤z≤r , FV(e)⊆ {x}:

Syntactic ′ ϕ(z)[[(e)′]] =
dϕ(t)[[e]]

dt
(z) Analytic ′

Lemma (Differential assignment) (Effect on Differentials)
If ϕ |= x ′ = f (x)∧Q then ϕ |= P↔ [x ′ := f (x)]P

Lemma (Derivations) (Equations of Differentials)

(e + k)′ = (e)′+ (k)′

(e · k)′ = (e)′ · k + e · (k)′

(c())′ = 0 for constants/numbers c()

(x)′ = x ′ for variables x ∈ V
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Axiomatics

DE [x ′ = f (x)&Q]P↔ [x ′ = f (x)&Q][x ′ := f (x)]P

DI
(
[x ′ = f (x)]e = 0↔ e = 0

)
← [x ′ = f (x)](e)′ = 0
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rate of change of e along ODE is 0
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Differential Invariants for Differential Equations

Differential Invariant

dI
` [x ′ := f (x)](e)′ = 0

e = 0 ` [x ′ = f (x)]e = 0

DI
(
[x ′ = f (x)]e = 0↔ e = 0

)
← [x ′ = f (x)](e)′ = 0

DE [x ′ = f (x)]P↔ [x ′ = f (x)][x ′ := f (x)]P

Proof (dI is a derived rule).

` [x ′ := f (x)](e)′ = 0

G ` [x ′ = f (x)][x ′ := f (x)](e)′ = 0

DE ` [x ′ = f (x)](e)′ = 0

DI e = 0 ` [x ′ = f (x)]e = 0

G
P

[α]P
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Guiding Example: Rotational Dynamics
v2 +w2 = r2→ [v ′ = w ,w ′ =−v ]v2 +w2 = r2

v

w

w
=

rc
os

ϑ

v
r sinϑ

r

∗

R ` 2v(w) + 2w(−v) = 0

[:=] ` [v ′:=w ][w ′:=−v ]2vv ′+ 2ww ′−2rr ′ = 0

dI v2+w2−r2=0 ` [v ′ = w ,w ′ =−v ]v2 + w2− r2 = 0

→R ` v2+w2−r2=0→ [v ′ = w ,w ′ =−v ]v2+w2−r2=0

Simple proof without solving ODE, just by differentiating
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dI
Q ` [x ′ := f (x)](e)′ = 0

e = 0 ` [x ′ = f (x)&Q]e = 0
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Example Proof

∗

R ` 2x(−x2)y + x2(2xy) = 0

[:=] ` [x ′:=−x2][y ′:=2xy ]2xx ′y + x2y ′−0 = 0

dI x2y−2 = 0 ` [x ′ =−x2,y ′ = 2xy ]x2y−2 = 0

→R ` x2y−2 = 0→ [x ′ =−x2,y ′ = 2xy ]x2y−2 = 0

-��� ��� ��� ��� ��� ���

-���

-���

���

���

���

���

�

�

-��� ��� ��� ��� ��� ���

-���

-���

���

���

���

���

�

�

André Platzer (CMU) LFCPS/10: Differential Equations & Differential Invariants LFCPS/10 15 / 19

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_10
http://lfcps.org/lfcps/


Example Proof

∗

R ` 2x(−x2)y + x2(2xy) = 0

[:=] ` [x ′:=−x2][y ′:=2xy ]2xx ′y + x2y ′−0 = 0

dI x2y−2 = 0 ` [x ′ =−x2,y ′ = 2xy ]x2y−2 = 0
→R ` x2y−2 = 0→ [x ′ =−x2,y ′ = 2xy ]x2y−2 = 0
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Differential Substitution Lemmas

Lemma (Differential lemma) (Differential value vs. Time-derivative)
If ϕ |= x ′ = f (x)∧Q for duration r>0, then for all 0≤z≤r , FV(e)⊆ {x}:

Syntactic ′ ϕ(z)[[(e)′]] =
dϕ(t)[[e]]

dt
(z) Analytic ′

Lemma (Differential assignment) (Effect on Differentials)
If ϕ |= x ′ = f (x)∧Q then ϕ |= P↔ [x ′ := f (x)]P

Lemma (Derivations) (Equations of Differentials)

(e + k)′ = (e)′+ (k)′

(e · k)′ = (e)′ · k + e · (k)′

(c())′ = 0 for constants/numbers c()

(x)′ = x ′ for variables x ∈ V
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Soundness Proof
Lemma (Differential lemma) (Differential value vs. Time-derivative)

If ϕ |= x ′ = f (x)∧Q for duration r>0, then for all 0≤z≤r , FV(e)⊆ {x}:

ϕ(z)[[(e)′]] =
dϕ(t)[[e]]

dt
(z)

Lemma (Differential assignment) (Effect on Differentials)
If ϕ |= x ′ = f (x)∧Q then ϕ |= P↔ [x ′ := f (x)]P

Semantics ω[[(e)′]] = ∑
x

ω(x ′)
∂ [[e]]

∂x
(ω)

Definition (Hybrid program semantics) ([[·]] : HP→℘(S×S))

[[x ′ = f (x)&Q]] = {(ϕ(0)|{x ′}{ ,ϕ(r)) : ϕ(z) |= x ′ = f (x)∧Q for all 0≤z≤r

for a ϕ : [0, r ]→S where ϕ(z)(x ′)
def
= dϕ(t)(x)

dt (z)}
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Differential Invariants for Differential Equations

Differential Invariant

dI
` [x ′ := f (x)](e)′ = 0

e = 0 ` [x ′ = f (x)]e = 0

DI
(
[x ′ = f (x)]e = 0↔ e = 0

)
← [x ′ = f (x)](e)′ = 0

DE [x ′ = f (x)]P↔ [x ′ = f (x)][x ′ := f (x)]P

Proof (dI is a derived rule).

` [x ′ := f (x)](e)′ = 0

G ` [x ′ = f (x)][x ′ := f (x)](e)′ = 0

DE ` [x ′ = f (x)](e)′ = 0

DI e = 0 ` [x ′ = f (x)]e = 0

G
P

[α]P
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Differential Equations vs. Loops

Lemma (Differential equations are their own loop)
[[(x ′ = f (x))

∗
]] = [[x ′ = f (x)]]

loop α∗ ODE x ′ = f (x)
repeat any number n ∈ N of times evolve for any duration r ∈ R
can repeat 0 times can evolve for duration 0
effect depends on previous loop iteration effect depends on the past solution
local generator is loop body α local generator x ′ = f (x)
full global execution trace global solution ϕ : [0, r ]→S
unwinding proof by iteration [∗] proof by global solution with [′]
inductive proof with loop invariant proof with differential invariant
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Generalizing Differential Invariants: Stronger

∗

R ` 4x3(4y3) + 4y3(−4x3) = 0

[:=] ` [x ′:=4y3][y ′:=−4x3](4x3x ′+ 4y3y ′) = 0

dI x4 + y4 = 0 ` [x ′ = 4y3,y ′ =−4x3]x4 + y4 = 0

cut,MRx2 + y2 = 0 ` [x ′ = 4y3,y ′ =−4x3]x2 + y2 = 0

→R ` x2 + y2 = 0→ [x ′ = 4y3,y ′ =−4x3]x2 + y2 = 0

Theorem (Sophus Lie)

DIc
` [x ′:=f (x)](e)′ = 0

` ∀c
(
e = c→ [x ′ = f (x)]e = c

)
premise and conclusion are equivalent on mathematical domains, i.e.,
connected open sets.

Clou: (e− c)′ = (e)′ independent of additive constants
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Generalizing Differential Invariants: Stronger

∗
R ` 4x3(4y3) + 4y3(−4x3) = 0
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Theorem (Sophus Lie)

DIc
` [x ′:=f (x)](e)′ = 0

` ∀c
(
e = c→ [x ′ = f (x)]e = c

)
premise and conclusion are equivalent on mathematical domains, i.e.,
connected open sets.
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Strengthening Induction Hypotheses

Stronger Induction Hypotheses

1 As usual in math and in proofs with loops:
2 Inductive proofs may need stronger induction hypotheses to succeed.
3 Differentially inductive proofs may need a stronger differential inductive

structure to succeed.
4 Even if {(x ,y) ∈ R2 : x2 + y2 = 0}= {{(x ,y) ∈ R2 : x4 + y4 = 0}

have the same solutions, they have different differential structure.
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