15-819/18-879: Logical Analysis of Hybrid Systems
05: Differential Equations

André Platzer

aplater@cs.cmu.edu
Carnegie Mellon University, Pittsburgh, PA
1 Differential Equations

- Intuition
- ODE & IVP
- Examples
- Peano Existence
- Picard-Lindelöf Uniqueness
Outline

1. Differential Equations
 - Intuition
 - ODE & IVP
 - Examples
 - Peano Existence
 - Picard-Lindelöf Uniqueness
How to describe continuous change?

Relate continuously changing quantity and its rate of change (derivative)
How to describe continuous change?

Relate continuously changing quantity and its rate of change (derivative)
How to describe continuous change?

Relate continuously changing quantity and its rate of change (derivative)

\[
\begin{align*}
y'(t) &= f(t, y) \\
y(t_0) &= y_0
\end{align*}
\]
How to describe continuous change?

Relate continuously changing quantity and its rate of change (derivative)

\[
\begin{align*}
y'(t) &= f(t, y) \\
y(t_0) &= y_0
\end{align*}
\]

in which direction \(y\) evolves as time \(t\) progresses

where \(y\) starts at time \(t_0\)
\[
\begin{aligned}
 x'(t) &= \frac{1}{4} x(t) \\
 x(t_0) &= 1
\end{aligned}
\]
\[x'(t) = \frac{1}{4}x(t) \]
\[x(t_0) = 1 \]
\[x'(t) = \frac{1}{4}x(t) \]
\[x(t_0) = 1 \]
Intuition for Differential Equations

\[
x' \left(t \right) = \frac{1}{4} x \left(t \right)
\]

\[
x(\ t_0) = 1
\]

\[
\Delta = 1 \quad \Delta = 2 \quad \Delta = 4
\]

André Platzer (CMU)
Intuition for Differential Equations

\[x'(t) = \frac{1}{4}x(t) \]
\[x(t_0) = 1 \]

\[\Delta = \frac{1}{2} \]
\[\Delta = 1 \]
\[\Delta = 2 \]
\[\Delta = 4 \]
\[x'(t) = \frac{1}{4}x(t) \]
\[x(t_0) = 1 \]
\[
x'(t) = \frac{1}{4}x(t) \\
x(t_0) = 1
\]
\[
\begin{align*}
\Delta = \frac{1}{2} & \\
\Delta = 1 & \\
\Delta = 2 & \\
\Delta = 4 & \\
\end{align*}
\]
\[
\begin{align*}
x(t + \Delta) & := x(t) + \frac{1}{4}x(t)\Delta \\
x(t_0) & := 1
\end{align*}
\]
Definition (Ordinary Differential Equation, ODE)

\[f : D \to \mathbb{R}^n \text{ on domain } D \subseteq \mathbb{R} \times \mathbb{R}^n \text{ (i.e., open connected). Then } \]

\[Y : I \to \mathbb{R}^n \text{ is solution of IVP} \]

\[\begin{bmatrix} y'(t) = f(t, y) \\ y(t_0) = y_0 \end{bmatrix} \]

on interval \(I \subseteq \mathbb{R} \), iff, for all \(t \in I \),
Definition (Ordinary Differential Equation, ODE)

\(f : D \rightarrow \mathbb{R}^n \) on domain \(D \subseteq \mathbb{R} \times \mathbb{R}^n \) (i.e., open connected). Then \(Y : I \rightarrow \mathbb{R}^n \) is solution of IVP

\[
\begin{bmatrix}
 y'(t) = f(t, y) \\
 y(t_0) = y_0
\end{bmatrix}
\]

on interval \(I \subseteq \mathbb{R} \), iff, for all \(t \in I \),

1. \((t, Y(t)) \in D \)
Definition (Ordinary Differential Equation, ODE)

Let $f : D \rightarrow \mathbb{R}^n$ be a function defined on the domain $D \subseteq \mathbb{R} \times \mathbb{R}^n$ (i.e., open connected). Then $Y : I \rightarrow \mathbb{R}^n$ is a solution of the initial-value problem (IVP)

\[
\begin{align*}
 y'(t) &= f(t, y) \\
 y(t_0) &= y_0
\end{align*}
\]

on interval $I \subseteq \mathbb{R}$, if and only if, for all $t \in I$,

1. $(t, Y(t)) \in D$
2. $Y'(t)$ exists and $Y'(t) = f(t, Y(t))$.

Accordingly, for higher-order differential equations, i.e., differential equations involving higher-order derivatives $y^{(n)}(t)$. If $f \in C(D, \mathbb{R}^n)$, then $Y \in C^1(I, \mathbb{R}^n)$.
Definition (Ordinary Differential Equation, ODE)

\[f : D \to \mathbb{R}^n \] on domain \(D \subseteq \mathbb{R} \times \mathbb{R}^n \) (i.e., open connected). Then \(Y : I \to \mathbb{R}^n \) is solution of IVP

\[
\begin{bmatrix}
y'(t) = f(t, y) \\
y(t_0) = y_0
\end{bmatrix}
\]

on interval \(I \subseteq \mathbb{R} \), iff, for all \(t \in I \),

1. \((t, Y(t)) \in D \)
2. \(Y'(t) \) exists and \(Y'(t) = f(t, Y(t)) \).
3. \(Y(t_0) = y_0 \)
Definition (Ordinary Differential Equation, ODE)

$f : D \to \mathbb{R}^n$ on domain $D \subseteq \mathbb{R} \times \mathbb{R}^n$ (i.e., open connected). Then $Y : I \to \mathbb{R}^n$ is solution of IVP

\[
\begin{bmatrix}
y'(t) = f(t, y) \\
y(t_0) = y_0
\end{bmatrix}
\]

on interval $I \subseteq \mathbb{R}$, iff, for all $t \in I$,

1. $(t, Y(t)) \in D$
2. $Y'(t)$ exists and $Y'(t) = f(t, Y(t))$.
3. $Y(t_0) = y_0$

Accordingly for higher-order differential equations, i.e., differential equations involving higher-order derivatives $y^{(n)}(t)$.
Definition (Ordinary Differential Equation, ODE)

\[f : D \rightarrow \mathbb{R}^n \] on domain \(D \subseteq \mathbb{R} \times \mathbb{R}^n \) (i.e., open connected). Then \(Y : I \rightarrow \mathbb{R}^n \) is solution of IVP

\[
\begin{bmatrix}
 y'(t) = f(t, y) \\
 y(t_0) = y_0
\end{bmatrix}
\]
on interval \(I \subseteq \mathbb{R} \), iff, for all \(t \in I \),

1. \((t, Y(t)) \in D \)
2. \(Y'(t) \) exists and \(Y'(t) = f(t, Y(t)) \).
3. \(Y(t_0) = y_0 \)

Accordingly for higher-order differential equations, i.e., differential equations involving higher-order derivatives \(y^{(n)}(t) \).

If \(f \in C(D, \mathbb{R}^n) \), then \(Y \in C^1(I, \mathbb{R}^n) \).
What is a solution of the following IVP?

\[
\begin{bmatrix}
 y'(t) = y^2 \\
 y(0) = 1
\end{bmatrix}
\]

Solution:

\[y(t) = 1 - t\]

Proof.

\[
y'(t) = \frac{d}{dt}(1 - t)^2 = 0
\]

\[
-2(1 - t)(-1) = y(t)
\]

\[
y(0) = 1
\]

André Platzer (CMU)
What is a solution of the following IVP?

\[
\begin{bmatrix}
y'(t) = y^2 \\
y(0) = 1
\end{bmatrix}
\]

Solution:

\[
y(t) = \frac{1}{1 - t}
\]
What is a solution of the following IVP?

\[
\begin{bmatrix}
y'(t) = y^2 \\
y(0) = 1
\end{bmatrix}
\]

Solution:

\[y(t) = \frac{1}{1-t}\]

Proof.

\[y'(t) = \frac{d}{dt} \frac{1}{1-t} = \frac{0 - \frac{d(1-t)}{dt}}{(1-t)^2} = \frac{1}{(1-t)^2} = y(t)^2\]

\[y(0) = \frac{1}{1-0} = 1\]
What is a solution of the following IVP?

\[
\begin{bmatrix}
 y'(t) = -2ty \\
 y(0) = 1
\end{bmatrix}
\]

Solution:

\[y(t) = e^{-t^2}\]

Proof.

\[y'(t) = de^{-t^2}/dt = e^{-t^2}(-2t) = -2ty\]

\[y(0) = e^{0^2} = 1\]
What is a solution of the following IVP?

\[
\begin{cases}
y'(t) = -2ty \\ y(0) = 1
\end{cases}
\]

Solution:

\[y(t) = e^{-t^2} \]
What is a solution of the following IVP?

\[
\begin{bmatrix}
 y'(t) = -2ty \\
 y(0) = 1
\end{bmatrix}
\]

Solution:

\[y(t) = e^{-t^2} \]

Proof.

\[
y'(t) = \frac{de^{-t^2}}{dt} = e^{-t^2}(-2t) = -2ty(t)
\]

\[y(0) = e^{-0^2} = 1 \]
<table>
<thead>
<tr>
<th>ODE</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x' = 1, x(0) = x_0)</td>
<td>(x(t) = x_0 + t)</td>
</tr>
<tr>
<td>ODE</td>
<td>Solution</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>$x' = 1, x(0) = x_0$</td>
<td>$x(t) = x_0 + t$</td>
</tr>
<tr>
<td>$x' = 5, x(0) = x_0$</td>
<td>$x(t) = x_0 + 5t$</td>
</tr>
</tbody>
</table>
ODE Examples

<table>
<thead>
<tr>
<th>ODE</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x' = 1, x(0) = x_0$</td>
<td>$x(t) = x_0 + t$</td>
</tr>
<tr>
<td>$x' = 5, x(0) = x_0$</td>
<td>$x(t) = x_0 + 5t$</td>
</tr>
<tr>
<td>$x' = x, x(0) = x_0$</td>
<td>$x(t) = x_0 e^t$</td>
</tr>
<tr>
<td>ODE</td>
<td>Solution</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>$x' = 1, x(0) = x_0$</td>
<td>$x(t) = x_0 + t$</td>
</tr>
<tr>
<td>$x' = 5, x(0) = x_0$</td>
<td>$x(t) = x_0 + 5t$</td>
</tr>
<tr>
<td>$x' = x, x(0) = x_0$</td>
<td>$x(t) = x_0 e^t$</td>
</tr>
<tr>
<td>$x' = x^2, x(0) = x_0$</td>
<td>$x(t) = \frac{x_0}{1 - t x_0}$</td>
</tr>
</tbody>
</table>
ODE Examples

<table>
<thead>
<tr>
<th>ODE</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x' = 1, x(0) = x_0)</td>
<td>(x(t) = x_0 + t)</td>
</tr>
<tr>
<td>(x' = 5, x(0) = x_0)</td>
<td>(x(t) = x_0 + 5t)</td>
</tr>
<tr>
<td>(x' = x, x(0) = x_0)</td>
<td>(x(t) = x_0 e^t)</td>
</tr>
<tr>
<td>(x' = x^2, x(0) = x_0)</td>
<td>(x(t) = \frac{x_0}{1 - tx_0})</td>
</tr>
<tr>
<td>(x' = \frac{1}{x}, x(0) = 1)</td>
<td>(x(t) = \sqrt{1 + 2t} \ldots)</td>
</tr>
<tr>
<td>ODE</td>
<td>Solution</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>$x' = 1, x(0) = x_0$</td>
<td>$x(t) = x_0 + t$</td>
</tr>
<tr>
<td>$x' = 5, x(0) = x_0$</td>
<td>$x(t) = x_0 + 5t$</td>
</tr>
<tr>
<td>$x' = x, x(0) = x_0$</td>
<td>$x(t) = x_0 e^t$</td>
</tr>
<tr>
<td>$x' = x^2, x(0) = x_0$</td>
<td>$x(t) = \frac{x_0}{1 - tx_0}$</td>
</tr>
<tr>
<td>$x' = \frac{1}{x}, x(0) = 1$</td>
<td>$x(t) = \sqrt{1 + 2t} \ldots$</td>
</tr>
<tr>
<td>$y'(x) = -2xy, y(0) = 1$</td>
<td>$y(x) = e^{-x^2}$</td>
</tr>
<tr>
<td>ODE</td>
<td>Solution</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>(x' = 1, x(0) = x_0)</td>
<td>(x(t) = x_0 + t)</td>
</tr>
<tr>
<td>(x' = 5, x(0) = x_0)</td>
<td>(x(t) = x_0 + 5t)</td>
</tr>
<tr>
<td>(x' = x, x(0) = x_0)</td>
<td>(x(t) = x_0 e^t)</td>
</tr>
<tr>
<td>(x' = x^2, x(0) = x_0)</td>
<td>(x(t) = \frac{x_0}{1-tx_0})</td>
</tr>
<tr>
<td>(x' = \frac{1}{x}, x(0) = 1)</td>
<td>(x(t) = \sqrt{1 + 2t} \ldots)</td>
</tr>
<tr>
<td>(y'(x) = -2xy, y(0) = 1)</td>
<td>(y(x) = e^{-x^2})</td>
</tr>
<tr>
<td>(x'(t) = tx, x(0) = x_0)</td>
<td>(x(t) = x_0 e^{\frac{t^2}{2}})</td>
</tr>
</tbody>
</table>
ODE Examples

<table>
<thead>
<tr>
<th>ODE</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x' = 1, x(0) = x_0)</td>
<td>(x(t) = x_0 + t)</td>
</tr>
<tr>
<td>(x' = 5, x(0) = x_0)</td>
<td>(x(t) = x_0 + 5t)</td>
</tr>
<tr>
<td>(x' = x, x(0) = x_0)</td>
<td>(x(t) = x_0 e^t)</td>
</tr>
<tr>
<td>(x' = x^2, x(0) = x_0)</td>
<td>(x(t) = \frac{x_0}{1-tx_0})</td>
</tr>
<tr>
<td>(x' = \frac{1}{x}, x(0) = 1)</td>
<td>(x(t) = \sqrt{1 + 2t} \ldots)</td>
</tr>
<tr>
<td>(y'(x) = -2xy, y(0) = 1)</td>
<td>(y(x) = e^{-x^2})</td>
</tr>
<tr>
<td>(x'(t) = tx, x(0) = x_0)</td>
<td>(x(t) = x_0 e^{t^2})</td>
</tr>
<tr>
<td>(x' = \sqrt{x}, x(0) = x_0)</td>
<td>(x(t) = \frac{t^2}{4} \pm t\sqrt{x_0} + x_0)</td>
</tr>
<tr>
<td>ODE</td>
<td>Solution</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>$x' = 1, x(0) = x_0$</td>
<td>$x(t) = x_0 + t$</td>
</tr>
<tr>
<td>$x' = 5, x(0) = x_0$</td>
<td>$x(t) = x_0 + 5t$</td>
</tr>
<tr>
<td>$x' = x, x(0) = x_0$</td>
<td>$x(t) = x_0 e^t$</td>
</tr>
<tr>
<td>$x' = x^2, x(0) = x_0$</td>
<td>$x(t) = \frac{x_0}{1-tx_0}$</td>
</tr>
<tr>
<td>$x' = \frac{1}{x}, x(0) = 1$</td>
<td>$x(t) = \sqrt{1 + 2t}$. . .</td>
</tr>
<tr>
<td>$y'(x) = -2xy, y(0) = 1$</td>
<td>$y(x) = e^{-x^2}$</td>
</tr>
<tr>
<td>$x'(t) = tx, x(0) = x_0$</td>
<td>$x(t) = x_0 e^{\frac{t^2}{2}}$</td>
</tr>
<tr>
<td>$x' = \sqrt{x}, x(0) = x_0$</td>
<td>$x(t) = \frac{t^2}{4} \pm t\sqrt{x_0} + x_0$</td>
</tr>
<tr>
<td>$x' = y, y' = -x, x(0) = 0, y(0) = 1$</td>
<td>$x(t) = \sin t, y(t) = \cos t$</td>
</tr>
</tbody>
</table>
ODE Examples

<table>
<thead>
<tr>
<th>ODE</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x' = 1, x(0) = x_0)</td>
<td>(x(t) = x_0 + t)</td>
</tr>
<tr>
<td>(x' = 5, x(0) = x_0)</td>
<td>(x(t) = x_0 + 5t)</td>
</tr>
<tr>
<td>(x' = x, x(0) = x_0)</td>
<td>(x(t) = x_0 e^t)</td>
</tr>
<tr>
<td>(x' = x^2, x(0) = x_0)</td>
<td>(x(t) = \frac{x_0}{1-tx_0})</td>
</tr>
<tr>
<td>(x' = \frac{1}{x}, x(0) = 1)</td>
<td>(x(t) = \sqrt{1 + 2t} \ldots)</td>
</tr>
<tr>
<td>(y'(x) = -2xy, y(0) = 1)</td>
<td>(y(x) = e^{-x^2})</td>
</tr>
<tr>
<td>(x'(t) = tx, x(0) = x_0)</td>
<td>(x(t) = x_0 e^{\frac{t^2}{2}})</td>
</tr>
<tr>
<td>(x' = \sqrt{x}, x(0) = x_0)</td>
<td>(x(t) = \frac{t^2}{4} \pm t\sqrt{x_0} + x_0)</td>
</tr>
<tr>
<td>(x' = y, y' = -x, x(0) = 0, y(0) = 1)</td>
<td>(x(t) = \sin t, y(t) = \cos t)</td>
</tr>
<tr>
<td>(x' = 1 + x^2, x(0) = 0)</td>
<td>(x(t) = \tan t)</td>
</tr>
</tbody>
</table>
ODE Examples

<table>
<thead>
<tr>
<th>ODE</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x' = 1, x(0) = x_0$</td>
<td>$x(t) = x_0 + t$</td>
</tr>
<tr>
<td>$x' = 5, x(0) = x_0$</td>
<td>$x(t) = x_0 + 5t$</td>
</tr>
<tr>
<td>$x' = x, x(0) = x_0$</td>
<td>$x(t) = x_0 e^t$</td>
</tr>
<tr>
<td>$x' = x^2, x(0) = x_0$</td>
<td>$x(t) = \frac{x_0}{1-tx_0}$</td>
</tr>
<tr>
<td>$x' = \frac{1}{x}, x(0) = 1$</td>
<td>$x(t) = \sqrt{1 + 2t}$</td>
</tr>
<tr>
<td>$y'(x) = -2xy, y(0) = 1$</td>
<td>$y(x) = e^{-x^2}$</td>
</tr>
<tr>
<td>$x'(t) = tx, x(0) = x_0$</td>
<td>$x(t) = x_0 e^{\frac{t^2}{2}}$</td>
</tr>
<tr>
<td>$x' = \sqrt{x}, x(0) = x_0$</td>
<td>$x(t) = \frac{t^2}{4} \pm t \sqrt{x_0} + x_0$</td>
</tr>
<tr>
<td>$x' = y, y' = -x, x(0) = 0, y(0) = 1$</td>
<td>$x(t) = \sin t, y(t) = \cos t$</td>
</tr>
<tr>
<td>$x' = 1 + x^2, x(0) = 0$</td>
<td>$x(t) = \tan t$</td>
</tr>
<tr>
<td>$x'(t) = \frac{2}{t^3} x(t)$</td>
<td>$x(t) = e^{-\frac{1}{t^2}}$</td>
</tr>
</tbody>
</table>

Note: The solution for $x'(t) = x^2 + x^4$ is non-analytic.
ODE Examples

<table>
<thead>
<tr>
<th>ODE</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x' = 1, x(0) = x_0)</td>
<td>(x(t) = x_0 + t)</td>
</tr>
<tr>
<td>(x' = 5, x(0) = x_0)</td>
<td>(x(t) = x_0 + 5t)</td>
</tr>
<tr>
<td>(x' = x, x(0) = x_0)</td>
<td>(x(t) = x_0 e^t)</td>
</tr>
<tr>
<td>(x' = x^2, x(0) = x_0)</td>
<td>(x(t) = \frac{x_0}{1-tx_0})</td>
</tr>
<tr>
<td>(x' = \frac{1}{x}, x(0) = 1)</td>
<td>(x(t) = \sqrt{1 + 2t} \ldots)</td>
</tr>
<tr>
<td>(y'(x) = -2xy, y(0) = 1)</td>
<td>(y(x) = e^{-x^2})</td>
</tr>
<tr>
<td>(x'(t) = tx, x(0) = x_0)</td>
<td>(x(t) = x_0 e^{\frac{t^2}{2}})</td>
</tr>
<tr>
<td>(x' = \sqrt{x}, x(0) = x_0)</td>
<td>(x(t) = \frac{t^2}{4} \pm t\sqrt{x_0} + x_0)</td>
</tr>
<tr>
<td>(x' = y, y' = -x, x(0) = 0, y(0) = 1)</td>
<td>(x(t) = \sin t, y(t) = \cos t)</td>
</tr>
<tr>
<td>(x' = 1 + x^2, x(0) = 0)</td>
<td>(x(t) = \tan t)</td>
</tr>
<tr>
<td>(x'(t) = \frac{2}{t^3}x(t))</td>
<td>(x(t) = e^{-\frac{1}{t^2}}) non-analytic</td>
</tr>
</tbody>
</table>
| \(x' = x^2 + x^4 \) | ???
<table>
<thead>
<tr>
<th>ODE</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x' = 1, x(0) = x_0$</td>
<td>$x(t) = x_0 + t$</td>
</tr>
<tr>
<td>$x' = 5, x(0) = x_0$</td>
<td>$x(t) = x_0 + 5t$</td>
</tr>
<tr>
<td>$x' = x, x(0) = x_0$</td>
<td>$x(t) = x_0e^t$</td>
</tr>
<tr>
<td>$x' = x^2, x(0) = x_0$</td>
<td>$x(t) = \frac{x_0}{1-tx_0}$</td>
</tr>
<tr>
<td>$x' = \frac{1}{x}, x(0) = 1$</td>
<td>$x(t) = \sqrt{1 + 2t} \ldots$</td>
</tr>
<tr>
<td>$y'(x) = -2xy, y(0) = 1$</td>
<td>$y(x) = e^{-x^2}$</td>
</tr>
<tr>
<td>$x'(t) = tx, x(0) = x_0$</td>
<td>$x(t) = x_0e^{\frac{t^2}{2}}$</td>
</tr>
<tr>
<td>$x' = \sqrt{x}, x(0) = x_0$</td>
<td>$x(t) = \frac{t^2}{4} \pm t\sqrt{x_0} + x_0$</td>
</tr>
<tr>
<td>$x' = y, y' = -x, x(0) = 0, y(0) = 1$</td>
<td>$x(t) = \sin t, y(t) = \cos t$</td>
</tr>
<tr>
<td>$x' = 1 + x^2, x(0) = 0$</td>
<td>$x(t) = \tan t$</td>
</tr>
<tr>
<td>$x'(t) = \frac{2}{t^3}x(t)$</td>
<td>$x(t) = e^{-\frac{1}{t^2}}$ non-analytic</td>
</tr>
<tr>
<td>$x' = x^2 + x^4$</td>
<td>non-elementary</td>
</tr>
<tr>
<td>$x'(t) = e^{t^2}$</td>
<td>}</td>
</tr>
</tbody>
</table>
Existence: Peano

Theorem (Existence theorem of Peano’1890)

\[f \in C(D, \mathbb{R}^n) \text{ on open, connected domain } D \subseteq \mathbb{R} \times \mathbb{R}^n \text{ with } (x_0, y_0) \in D. \]

Then, IVP has a solution. Further, every solution can be continued arbitrarily close to the border of D.

Example (Solvable)

\[
\begin{bmatrix}
 y' = \sqrt{|y|} \\
 y(0) = 0
\end{bmatrix}
\]

\[
\begin{bmatrix}
 y'(x) = 3x^2y - \frac{1}{y} \sin x \cos y \\
 y(0) = 1
\end{bmatrix}
\]
Example (Solvable but not uniquely)

\[
\begin{bmatrix}
y' = \sqrt{|y|} \\
y(0) = 0
\end{bmatrix}
\]

\[y_2(x) = \frac{x^2}{4}\]

\[y_1(x) = 0\]
Example (Solvable but not uniquely)

\[y' = \sqrt{|y|} \]
\[y(0) = 0 \]

\[y_2(x) = \frac{x^2}{4} \]

\[y_1(x) = 0 \]

Example (Solvable but not uniquely)

\[y' = \sqrt[3]{y} \]
\[y(0) = 0 \]

\(y(t) = \left(\frac{2}{3} t\right)^{\frac{3}{2}} \) or \(y(t) = 0 \)
Example (Continuable but limited)

\[
\begin{bmatrix}
y' &= 1 + y^2 \\
y(0) &= 0
\end{bmatrix}
\]

\[\Rightarrow y(t) = \tan(t)\]
Example (Continuable but limited)

\[
\begin{bmatrix}
 y' = 1 + y^2 \\
 y(0) = 0
\end{bmatrix} \implies y(t) = \tan t
\]
Lipschitz-Continuity

Definition (Lipschitz-continuous)

\(f : D \rightarrow \mathbb{R}^n \) with \(D \subseteq \mathbb{R} \times \mathbb{R}^n \) is Lipschitz-continuous for \(y \) iff there is an \(L \in \mathbb{R} \) such that for all \((x, y), (x, \bar{y}) \in D \):

\[
\| f(x, y) - f(x, \bar{y}) \| \leq L \| y - \bar{y} \|
\]
Definition (Lipschitz-continuous)

A function \(f : D \rightarrow \mathbb{R}^n \) with \(D \subseteq \mathbb{R} \times \mathbb{R}^n \) is \textit{Lipschitz-continuous} for \(y \) iff there is an \(L \in \mathbb{R} \) such that for all \((x, y), (x, \bar{y}) \) in \(D \):

\[
\|f(x, y) - f(x, \bar{y})\| \leq L\|y - \bar{y}\|
\]
Definition (Lipschitz-continuous)

A function \(f : D \rightarrow \mathbb{R}^n \) with \(D \subseteq \mathbb{R} \times \mathbb{R}^n \) is Lipschitz-continuous for \(y \) iff there is an \(L \in \mathbb{R} \) such that for all \((x, y), (x, \bar{y}) \in D \):

\[
\| f(x, y) - f(x, \bar{y}) \| \leq L \| y - \bar{y} \|
\]
Definition (Lipschitz-continuous)

A function \(f : D \rightarrow \mathbb{R}^n \) with \(D \subseteq \mathbb{R} \times \mathbb{R}^n \) is Lipschitz-continuous for \(y \) iff there is an \(L \in \mathbb{R} \) such that for all \((x, y), (x, \bar{y}) \in D \):

\[
\|f(x, y) - f(x, \bar{y})\| \leq L \|y - \bar{y}\|
\]
Definition (Lipschitz-continuous)

A function $f : D \to \mathbb{R}^n$ with $D \subseteq \mathbb{R} \times \mathbb{R}^n$ is **Lipschitz-continuous** for y if for all $(x, y), (x, \bar{y}) \in D$:

$$\|f(x, y) - f(x, \bar{y})\| \leq L \|y - \bar{y}\|$$

where $L \in \mathbb{R}$ is a constant.
Definition (Lipschitz-continuous)

$f : D \to \mathbb{R}^n$ with $D \subseteq \mathbb{R} \times \mathbb{R}^n$ is Lipschitz-continuous for y iff there is an $L \in \mathbb{R}$ such that for all $(x, y), (x, \bar{y}) \in D$:

$$\|f(x, y) - f(x, \bar{y})\| \leq L \|y - \bar{y}\|$$
Definition (Lipschitz-continuous)

$f : D \to \mathbb{R}^n$ with $D \subseteq \mathbb{R} \times \mathbb{R}^n$ is **Lipschitz-continuous** for \(y \) iff there is an $L \in \mathbb{R}$ such that for all $(x, y), (x, \bar{y}) \in D$:

$$
\|f(x, y) - f(x, \bar{y})\| \leq L\|y - \bar{y}\|
$$

If $\frac{\partial f(x,y)}{\partial y}$ exists and is bounded on D then f is Lipschitz-continuous. f is **locally Lipschitz-continuous** iff for each $(x, y) \in D$, there is a neighborhood in which f is Lipschitz-continuous.
Lipschitz-Continuity

Definition (Lipschitz-continuous)

Let $f : D \to \mathbb{R}^n$ with $D \subseteq \mathbb{R} \times \mathbb{R}^n$ be a function. f is **Lipschitz-continuous** for y iff there exists an $L \in \mathbb{R}$ such that for all $(x, y), (x, \bar{y}) \in D$:

$$
\|f(x, y) - f(x, \bar{y})\| \leq L \|y - \bar{y}\|
$$

If $\frac{\partial f(x,y)}{\partial y}$ exists and is bounded on D then f is Lipschitz-continuous. f is **locally Lipschitz-continuous** iff for each $(x, y) \in D$, there is a neighborhood in which f is Lipschitz-continuous.

If $f \in C^1(D, \mathbb{R}^n)$ then locally Lipschitz-continuous, as f' locally bounded.
Theorem (Uniqueness theorem of Picard-Lindelöf’1894)

In addition to Peano premisses, let f be locally Lipschitz-continuous for y (e.g. $f \in C^1(D, \mathbb{R}^n)$). Then, there is a unique solution of IVP.
Existence & Uniqueness: Picard-Lindelöf / Cauchy-Lipschitz

Theorem (Uniqueness theorem of Picard-Lindelöf’1894)

In addition to Peano premisses, let f be locally Lipschitz-continuous for y (e.g. $f \in C^1(D, \mathbb{R}^n)$). Then, there is a unique solution of IVP.

Proposition (Global uniqueness theorem of Picard-Lindelöf)

$f \in C([0, a] \times \mathbb{R}^n, \mathbb{R}^n)$ Lipschitz-continuous for y. Then, there is a unique solution of IVP on $[0, a]$.
Example (Unique solution but not global)

\[
\begin{bmatrix}
y' &= -y^2 \\
y(0) &= -1
\end{bmatrix}
\]
P. Hartman.
Ordinary Differential Equations.

A. Platzer.
Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics.

W. T. Reid.
Ordinary Differential Equations.

W. Walter.
Ordinary Differential Equations.