The Returning Rocket

Friend or Foe?

David Franklin & Philip Massey
Outline

● Introduction
 ○ Motivation
 ○ Safety
 ○ Physics

● Controllers
 ○ Strategy
 ○ Descent
 ○ Balance

● Conclusion
Outline

● **Introduction**
 ○ Motivation
 ○ Safety
 ○ Physics

● **Controllers**
 ○ Strategy
 ○ Descent
 ○ Balance

● **Conclusion**
Introduction

How do we make space exploration less expensive?

Possible answer:
- Reusability of launch vehicles
Introduction - Problem

http://youtu.be/0UjWqQPWmsY?t=40s
Introduction - Safety

● Descent
 ○ Must land with safe velocity

● Balance
 ○ Maintain a safe rotation
Introduction - Physics

- Descent
 \[\frac{d\vec{p}}{dt} = \vec{F}_g + \vec{F}_d + \vec{F}_r \]
Introduction - Physics

- Descent
 \[\ddot{a} = \dot{g} + \frac{F_d}{m} \]
Introduction - Physics

- **Descent**
 - $\ddot{a} = \ddot{g} + \frac{F_d}{m}$

- **Balance**
 - $\dot{\theta} = a \sin \theta + F_t$
Outline

● Introduction
 ○ Motivation
 ○ Safety
 ○ Physics

● Controllers
 ○ Strategy
 ○ Descent
 ○ Balance

● Conclusion
Controllers - Strategy

- Use two time-based controllers
 - One controller for descent
 - One controller for balance
 - Either can be changed without need to reprove other controller.
 - Cannot take advantage of particular descent strategy.
Controllers - Descent

- **Safety:**
 - At height $h = 0$, ensure $v < v_{\text{safe}}$

- **Cased solution:**
 - If speed greater than max:
 - $F_d := m \cdot \left(\frac{v_{\text{safe}}^2 - v^2}{2h} + g \right)$
 - Else if speed less than max and can free fall:
 - $F_d := 0$
 - Else:
 - $F_d := m \cdot \left(\frac{v - v_{\text{safe}}}{T} + g \right)$
Controllers - Balance

- Safety:
 - Maintain a bound on rotation
- Idea:
 - Non-deterministically assign F_d
- Simple Solution:
 - Set $F_t = \frac{\sin \theta}{l} F_d$
 - Keep $\dot{\theta} = 0$
 - Use $\sin \theta \approx \theta$
Conclusion

- **Safety**
- **Physics**
- **Controllers**
 - Strategy
 - Descent
 - Balance
- **Importance**

"SpaceX Landing Rendering" Jon Rosszlsa
Questions?