Lecture Notes on
Loop Transformations for Cache Optimization

15-411: Compiler Design
André Platzer
Lecture 24

1 Introduction

In this lecture we consider loop transformations that can be used for cache optimization. The transformations can improve cache locality of the loop traversal or enable other optimizations that have been impossible before due to bad data dependencies. Those loop transformations can be used in a very flexible way and are used repeatedly until the loop dependencies are well aligned with the memory layout and cache effects are optimal. What is most important, however, is to keep track carefully under which circumstances the loop transformations are actually correct. We will pay attention to that. The same loop transformations are needed for loop parallelization and vectorization.

2 Loop Permutation

Loop permutation swaps the order of loops. The purpose is to pull the loops out that actually carry the data dependencies, because the inner loops will then be parallelizable. Another purpose is to swap such that the inner loops traverse arrays according to the actual memory layout of the array to reduce cache misses. This can also help to enable optimizations with register use.

We assume Fortran-style column major order where B[i1,i2] is adjacent to B[i1+1,i2] in memory. Consider

```plaintext
for (i1 = 0; i1 < n1; i1++)
    for (i2 = 0; i2 < n2; i2++)
```

Lecture Notes
Lecture Notes

L24.2 Loop Transformations for Cache Optimization

\[A[i1] = A[i1] + B[i1, i2] \]

From the \(n1 \times n2 \) memory accesses to \(A[i1] \), we expect only \(n1 \) cache misses out of \(n1 \times n2 \) access. Here \(A[i1] \) can even constantly remain in a register for \(n2 \) iterations of the inner loop. For \(B[i1,i2] \), however, the iteration order is non-local compared to the memory layout, hence we expect \(n1 \times n2 \) cache misses for large data.

In contrast, when we swap loops

\[
\begin{align*}
&\text{for } (i2=0; i2<n2; i2++) \quad // \text{loops swapped} \\
&\quad \text{for } (i1=0; i1<n1; i1++) \\
&\quad \quad A[i1] = A[i1] + B[i1,i2]
\end{align*}
\]

For \(A[i1] \), we expect \(n1 \times n2 \times \frac{s}{\text{cache size}} \) cache misses, where \(s \) is the data size of the array elements, because we access \(n1 \times n2 \) times non-locally. For \(B[i1,i2] \), we similarly expect only \(n1 \times n2 \times \frac{s}{\text{cache size}} \) cache misses.

Loop permutation can have quite a remarkable effect.

\[
\begin{align*}
&\text{for } (i1=1; i1<=4; i1++) \\
&\quad \text{for } (i2=1; i2<=4; i2++) \\
&\quad \quad A[i1,i2] = A[i1,i2] + 5 \\
&\quad \text{for } (i2=1; i2<=4; i2++) \quad // \text{swap} \\
&\quad \quad \text{for } (i1=1; i1<=4; i1++) \\
&\quad \quad \quad A[i1,i2] = A[i1,i2] + 5
\end{align*}
\]

This loop iterates against the memory layout, which will lead to excessive cache misses on larger data.

Loop permutation doesn’t always have to be admissible, for instance, if we violate data dependencies by swapping loops. The dependency distance vector is permuted just like the iteration vector is. The important side
condition is that the first non-zero sign of a dependency distance vector is not allowed to change.

\[
\text{for } (i_1 = 1; i_1 \leq 4; i_1++) \quad \text{for } (i_2 = 1; i_2 \leq 4; i_2++)
\]
\[
A[i_1, i_2] = A[i_1 - 1, i_2 + 1] + 7
\]

\[
\text{Dependency distance } d = (1, -1)
\]

\[
\text{Dependency distance } d = (-1, 1)
\]

Has different signs, thus loop swap illegal.

3 Loop Reversal

The point of loop reversal is to change the order in which a loop iterates. The primary advantage is that data dependencies change, which may enable other optimizations. Another advantage can be that the special "jump if zero" (JMPZ) machine instructions can be used when loops iterate down to 0.

Loop reversal is admissible for loop \(q \) if all data dependencies are carried by outer loops, i.e.

\[
\forall d \text{ dependency distance} : \quad d_q = 0 \lor \exists k < q : \quad d_k \neq 0
\]

Otherwise, the direction of the dependency would be reversed by loop reversal. Take a look at the last loop permutation example again.
for (i1=1; i1 <= 4; i1++)
for (i2=1; i2 <= 4; i2++)
 A[i1, i2] = A[i1-1, i2+1] + 7

for (i1=1; i1 <= 4; i1++)
for (i2=4; i2 >= 1; i2--) // rev.
 A[i1, i2] = A[i1-1, i2+1] + 7

Dependency distance d=(1,-1)

Dependency distance d=(1,1)

Note that, unlike loop i2, the i1 loop cannot be reversed, because that would lead to the bad dependency distance d=(-1,-1).

4 Loop Skewing

Loop skewing by a factor f adds $f \times i_1$ to the upper and lower bounds of inner loop i_2 and makes up for that by subtracting $f \times i_1$ again from all array accesses of i_2. The advantage of doing so is that the data dependency direction changes from d to $(d_1, f \times (d_1 + d_2))$. By a smart choice of f, this change of the data dependency can enable other loop optimizations.

Lecture Notes
Loop Transformations for Cache Optimization

\[\text{for } (i_1 = 1; \quad i_1 \leq 4; \quad i_1++)\]
\[\text{for } (i_2 = 1; \quad i_2 \leq 4; \quad i_2++)\]
\[A[i_1, i_2] = \frac{(A[i_1 - 1, i_2] + A[i_1 + 1, i_2] + A[i_1, i_2 - 1] + A[i_1, i_2 + 1])}{4}\]

Dependency distances \(d=(1,0), d=(0,1)\).
Other dependencies \(d=(-1,0), d=(0,-1)\).
No loop can parallelize.
We cannot swap to fix this.

\[\text{for } (i_1 = 1; \quad i_1 \leq 4; \quad i_1++)\]
\[\text{for } (i_2 = 1+i_1; \quad i_2 \leq 4+i_1; \quad i_2++)\] // skew
\[A[i_1, i_2-i_1] = \frac{(A[i_1 - 1, i_2 - i_1] + A[i_1 + 1, i_2 - i_1] + A[i_1, i_2 - i_1 - 1] + A[i_1, i_2 - i_1 + 1])}{4}\]

Loop skew by factor \(f=1\)
Dependency distances \(d=(1,1), d=(0,1)\).
Other dependencies \(d=(-1,-1), d=(0,-1)\).
Swapping is admissible and leads to Dependency distances \(d=(1,1), d=(1,0)\).
Thus inner loop parallelizable.

\[\text{for } (i_2 = 2; \quad i_2 \leq 8; \quad i_2++)\] // skew, swap
\[\text{for } (i_1 = \max(1, i_2 - 4); \quad i_1 \leq \min(i_2 - 1, 4); \quad i_1++)\]
\[A[i_1, i_2-i_1] = \frac{(A[i_1 - 1, i_2 - i_1] + A[i_1 + 1, i_2 - i_1] + A[i_1, i_2 - i_1 - 1] + A[i_1, i_2 - i_1 + 1])}{4}\]
Quiz

1. Develop a loop optimization that ignores cache optimization and just uses loop reversal so that JMPZ instructions can be used. Give all side conditions.

2. For each of the loop transformations in this lecture, give a natural example where that loop transformation increases cache efficiency. Give another natural example where that loop transformation would be incorrect.

3. Give a natural example where multiple loop transformations are needed to optimize cache efficiency.

4. Develop loop optimizations for the special case of loops that are uniform and have $c = 0$ for all array accesses $A[Mi + c]$? What are the side conditions in those cases? For what kind of programs are these special optimizations worth implementing?

5. In what kinds of natural examples does loop skewing play an important role?