Lecture Notes on
Induction Variables

15-411: Compiler Design
André Platzer

Lecture 18
October 26, 2010

1 Introduction

More information can be found in [App98, Ch 18.1-18.3] and [Muc97].

Last lecture, we have seen strength reduction. In order to perform
strength reduction, however, we need to know which of the variables change
linearly in the loop. These are called induction variables.

2 Induction Variables

Once we have identified a loop, one of the central questions about it is,
which variables are induction variables of the loop. In for-loops, there are
syntactical indicators if the step is of the form $i + \cdot$. But that alone does
not make i a proper induction variable, because there could be further as-
signments to i. Furthermore, other variables could effectively be induction
variables, even if they are not written in the step part of a for-loop. Fi-
nally, induction variables are also of interest for while or repeat-until loops,
where they are not identified syntactically. Consequently, we need an anal-
ysis to identify induction variables. Generally, we will consider variables
to be induction variables if their value is linear in the number of loop itera-
tions.

We call a variable i a *basic induction variable* if the only assignments to i
in the loop body are of the form $i = i + c$ (or $i = i - c$) for a loop-invariant
expression c. We call variable j a *derived induction variable* if it only assumes
values of the form $j = a_j \cdot i + b_j$ for a basic induction variable i and loop-
invariant expressions a_j, b_j.
s = 0
i = 0
l1: if (i ≥ n) goto l2
j = 4*i // derived j=4*i+0
k = j + a // derived k=1*j+a=(1*4)*i+a
x = M(k)
s = s + x
i = i + 1 // basic
goto l1
l2:

Figure 1: Example computing sum of 32-bit array contents

In fact, both basic and derived induction variables are linear functions of the basic induction variable. All of them have the form \(j = a_j * i + b_j \) (where \(i = 1 * i + 0 \) is a special case).

There are several ways to find a derived induction variable \(j \) in a loop. We show one way following \[App98\]. Variable \(j \) is a derived induction variable if it is only defined once in the loop body with a definition \(j = a_j * k + b_j \) for a (derived or basic) induction variable \(k \) and loop-invariant expressions \(a_j, b_j \). If this variable \(k \) is a derived induction variable then we also require that its (unique) definition in the loop body is the only definition of \(k \) reaching the definition of \(j \) and that the corresponding basic induction variable \(i \) for \(k \) is not redefined on any path between the respective definitions of \(j \) and \(k \).

For computing induction variables, we proceed as follows. We first just assume that all variables were induction variables. Then we successively throw candidates out that do not match the conditions. For SSA programs, this is particularly easy.

\[
S = \text{set of all variables}
\]

repeat until fixedpoint:
remove \(j \) from \(S \) if \(j \) not computed as one of the forms
basic:
\[
j = i \pm c \text{ for an } i \in S \text{ and a loop-invariant } c
\]
derived:
\[
j = a_j * i \pm b_j \text{ for an } i \in S \text{ and loop-invariant } a_j, b_j
\]
flow:
\[
j = \Phi(i_1, \ldots, i_n) \text{ and each } i_k \text{ loop-invariant or basic} \in S
\]
3 Strength Reduction for Induction Variables

If we have found a basic induction variable i that is initialized to i_0 before the loop and a derived induction variable j, then we can replace j by a new induction variable j' as follows. Then we replace the loop

```plaintext
i = i_0
while (e) {
    ...
    j = a_j \times i + b_j
    ...
    j ...; i = i + c
    ...
    j ...
}
```

by

```plaintext
i = i_0
j' = a_j \times i_0 + b_j
while (e) {
    ...
    j = j'
    ...
    j ...
    i = i + c
    j' = j' + a_j \times c
    ...
    j ...
}
```

After every assignment to the basic induction variable i, we increment the new variable j'. And the (single) assignment $j = a_j \times i + b_j$ gets replaced by $j = j'$. Note that $a_j \times c$ can either be computed by constant folding or is loop-invariant and can be moved outside. Finally, we can rely on copy propagation to optimize j away as much as possible. We can also use reassociation and constant folding to accumulate successive increments of j' within the loop body into one assignment if that is permitted.

Figure 2 on p. 4 shows the result of strength reduction optimization of Fig. 1 on p. 2. Note that the variable j' is quite useless, because its only purpose has become to assign to itself. This is what the neededness analysis from lecture 5 on dataflow analysis can figure out and eliminate j'. The only use of j' is to define itself and it’s dead after the loop too.
\[s = 0\]
\[i = 0\]
\[j' = 0\] \hspace{1cm} // \ j' \ not \ needed \Rightarrow \ dead
\[k' = a\]
\[l1: \text{if } (i \geq n) \text{ goto } l2\]
\[j = j'\] \hspace{1cm} // \ dead
\[k = k'\]
\[x = M(k)\]
\[s = s + x\]
\[i = i + 1\]
\[j' = j' + 4\] \hspace{1cm} // \ not \ needed
\[k' = k' + 4\]
\[\text{goto } l1\]
\[l2:\]

Neededness analysis removes \(j'\) and copy propagation of \(k = k'\) gives

\[s = 0\]
\[i = 0\]
\[k' = a\]
\[l1: \text{if } (i \geq n) \text{ goto } l2\]
\[x = M(k')\]
\[s = s + x\]
\[i = i + 1\]
\[k' = k' + 4\]
\[\text{goto } l1\]
\[l2:\]

Figure 2: Example after strength reduction for \(j\) and \(k\).
4 Almost Useless Variables

If the induction variable i is still used in the loop body or loop test e then the assignments to i can either be kept, or, instead, uses of i can be recomputed from j and replaced by $(j - b_j) \div a_j$. The latter really only makes sense when this division can be simplified arithmetically. At least we know that j changes in multiples of a_j.

In Figure 2 there is an almost useless variable i. The reasoning is by using that k is derived from j by $k = a_k \ast j + b_k$, which is derived from i by $j = a_j \ast i + b_j$. Consequently,

$$i = (j - b_j) \div a_j = (((k - b_k) \div a_k) - b_j) \div a_j$$

Thus, $i \geq n$ is equivalent to

$$(((k - b_k) \div a_k) - b_j) \div a_j \geq n$$

Inserting the relations from Fig. 1, we get

$$(((k - a) \div 1) - 0) \div 4 \geq n$$

i.e.

$$(k - a) \div 4 \geq n$$

this is equivalent to the following, because we know that k will only change in multiples of its linear factor 4

$$k - a \geq 4 \ast n$$

i.e.,

$$k \geq 4 \ast n + a$$

This $4 \ast n + a$ is a loop-invariant expression that can be computed before the loop.

After optimizing the almost useless variable i away, we get Figure 3.

References

s = 0
k' = a
e = 4*n + a
11: if (k' ≥ e) goto 12
x = M(k')
s = s + x
k' = k' + 4
goto 11
12:

Figure 3: Example eliminating the almost useless variable i.