Static Single Assignment

15-411 Compiler Design
Redundancy elimination optimizations attempt to remove redundant computations.

Common redundancy elimination optimizations are:

- value numbering
- conditional constant propagation
- common-subexpression elimination (CSE)
- partial-redundancy elimination
What they do

read(i);
j = i + 1;
k = i;
l = k + 1;

\[i = 2; \]
\[j = i \times 2; \]
\[k = i + 2; \]

read(i);
l = 2 \times i;
if (i>0) goto L1;
j = 2 \times i;
goto L2;
L1: k = 2 \times i;
L2:

value numbering determines that \(j == l \)
constant propagation determines that \(j == k \)
CSE determines that 3rd “2*i” is redundant
Value numbering

Basic idea:

• associate a symbolic value to each computation, in a way that any two computations with the same symbolic value always compute the same value

• Then we never need to recompute (locally within a basic block at least)
Congruence of expressions

Define a notion of *congruence* of expressions to see if they compute the same

- $x \oplus y$ is congruent to $a \otimes b$ if \oplus and \otimes are the same operator, and x is congruent to a and y is congruent to b
- we may also take commutativity into account

In SSA form variables x and a are congruent only if they are both live, and they are the same variable, or if they are provably the same value (by constant or copy propagation)
Local value numbering

Suppose we have

- \(t_1 = t_2 + 1 \)

Look up the key “t2+1” in a hash table

- Use a hash function that assigns the same hash value (i.e., the same value number) to expressions \(e_1 \) and \(e_2 \) if they are congruent

If key “t2+1” is not in the table, then put it in with value “t1”

- Next time we hit on “t2+1”, can replace it in the IR with “t1”
Example

```
read(i);
j = i + 1;
k = i;
l = k + 1;
```

i=v1

j=v2

k=v1

Hash(v1+1)->j

Hash(v1+1)->j

Therefore l=j
Global value numbering?

Local value numbering (within a basic block) is easy

Global value numbering (within a procedure)?

```
read(i);
j = i + 1;
k = i;
```

```
l = k + 1;
```
In the global case, we must watch out for multiple assignments.

Could do dataflow analysis for global value numbering.

Use-def analysis:

```plaintext
read(i);
j = i + 1;
k = i;

l = k + 1;

k = ...;
```
Use-def information is central to many optimizations

The point of static single assignment (SSA) is to represent
Use-def information explicitly

$$L = \Phi(k_1, k_2) + 1;$$

```
read(i);
j = i + 1;
k2 = i;
```

```
k1 = ...;
```
SSA use-def

SSA reduces the representational complexity of use-defs

<table>
<thead>
<tr>
<th>Defs</th>
<th>*</th>
<th>Uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>k=...;</td>
<td>k=...;</td>
<td>k=...;</td>
</tr>
</tbody>
</table>

...=k;

<table>
<thead>
<tr>
<th>Defs</th>
<th>+</th>
<th>Uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>k1=...</td>
<td>k2=...</td>
<td>k3=...</td>
</tr>
</tbody>
</table>

k4=Φ(k1,k2,k3)

...=k4

...=k4
Local vs global

Many optimizations can be performed both locally and globally

- local: within a basic block
- global: across basic blocks

Typically, only the global version needs dataflow analysis. But it often needs a lot of def-use analysis.
Global value numbering

Goal: global value numbering across basic blocks.

This is where converting IR to *static single assignment* (SSA) form helps.
SSA Form
Static single-assignment (SSA) form

arranges for every value computed by a program to have a unique definition

SSA is a way of structuring the intermediate representation so that every variable is (statically) assigned exactly once (hence it is a dynamic constant)

Equivalent to continuation-passing style IR

Developed at IBM: Cytron, Ferrante, Rosen, Wegman, Zadeck
Why use SSA?

SSA makes use-def chains explicit in the IR, which in turn helps to simplify some optimizations.

Several important optimizations trivial on SSA: redundancy eliminations like

- Value numbering
- Conditional constant propagation
- Common subexpression elimination (SSA\rightarrowlocal trafo)
- Some parts of partial redundancy elimination
Example

entry

z > 1

x := 1
z > 2

y := x + 1

z := x - 3
x := 4

z := x + 7

exit

entry

z1 > 1

x1 := 1
z1 > 2

x2 := 2

y1 := x1 + 1

x3 := Φ(x1,x2)
z2 := x3 - 3
x4 := 4

z3 := x4 + 7

exit
Creating SSA form

Φ pseudofunctions select definition from actual control flow

To translate into SSA form:

- Insert trivial Φ functions
 - Φ(t,t,...,t), where the number of t’s is the number of incoming flow edges
- Globally analyze and rename definitions and uses of variables to establish SSA property

After optimizations, we discard Φ functions and replace by \(x_3 := x_2 \) on new blocks for back-edges. Then copy propagate & reg alloc
Minimal SSA form

For inserting Φ functions, we need to know the end of where our definitions surely reach. An SSA form with the minimum number of Φ functions can be created by using dominance frontiers.

Definitions:

- In a flowgraph, node a dominates node b ("$a \text{ dom } b$") if every possible execution path from node entry to b includes a.
- If a and b are different nodes, we say that a strictly dominates b ("$a \text{ sdom } b$")
- If $a \text{ sdom } b$, and there is no c such that $a \text{ sdom } c$ and $c \text{ sdom } b$, we say that a is the immediate dominator of b ("$a \text{ idom } b$" or, since a is unique: "$\text{idom}(b)=a$")
Dominance frontier

For a node \(a \), the dominance frontier of \(a \), \(DF[a] \), is the set of all nodes \(b \) such that \(a \) strictly dominates an immediate predecessor of \(b \) but not \(b \) itself. At DF we need some \(\Phi \) functions

\(DF[a] \) is border between dom / undom

More formally:

- \(DF[a] = \{ b \mid (\exists c \in \text{Pred}(b) \text{ such that } a \text{ dom } c \text{ but not } a \text{ sdom } b) \} \)
Computing $\text{DF}[a]$

A naïve approach to computing $\text{DF}[a]$ for all nodes a would require quadratic time

- $\text{DF}[a] = \{ b \mid (\exists c \in \text{Pred}(b) \text{ such that } a \text{ sdom } c \text{ but not } a \text{ sdom } b\}$

However, an approach that usually is linear time involves cutting into parts:

- $\text{DF}_{\text{local}}[a] = \{ b \in \text{Succ}(a) \mid \text{idom}(b) \neq a\}$
- $\text{DF}_{\text{up}}[a,c] = \{ b \in \text{DF}[c] \mid \text{idom}(c) = a \land \text{idom}(b) \neq a\}$

Then:

- $\text{DF}[a] = \text{DF}_{\text{local}}[a] \cup \bigcup_{c \in G \land \text{idom}(c) = a} \text{DF}_{\text{up}}[a,c]$
What we want, in the end, is the set of nodes that need Φ functions, for each variable, e.g., from the set S of nodes defining variable k.

So we define $DF[S]$, for a set of flowgraph nodes S:

- $DF[S] = \bigcup_{a \in S} DF[a]$
Iterated DF

Then, the iterated dominance frontier is defined as follows:

- \(DF^+[S] = \lim_{i \to \infty} DF^i[S] \)
- where
 - \(DF^1[S] = DF[S] \)
 - \(DF^{i+1}[S] = DF[S \cup DF^i[S]] \)

If \(S \) is the set of nodes that assign to variable \(k \), then \(DF^+[S \cup \{entry\}] \) is the set of nodes that need \(\Phi \) functions for \(k \)
Example

For k:

- $DF^1(\{\text{entry,B1,B3}\}) = \{\text{B2}\}$
- $DF^2(\{\text{entry,B1,B3}\}) = DF(\{\text{entry,B1,B2,B3}\}) = \{\text{B2}\}$
- Hence $k^2 := \Phi(k_1,k_3)$ at B2
Example

For i:

- $DF_1(\{\text{entry, B1, B3, B6}\}) = \{\text{B2, exit}\}$
- $DF_2(\{\text{entry, B1, B3, B6}\}) = DF(\{\text{entry, B1, B2, B3, B6, exit}\}) = \{\text{B2, exit}\}$

Hence $ij := \Phi(\ldots)$ at B2, exit
Example

For j:

- $DF^1(\{\text{entry}, B1, B3\}) = \{B2\}$
- $DF^2(\{\text{entry}, B1, B3\}) = DF(\{\text{entry}, B1, B2, B3\}) = \{B2\}$
- Hence $j_2 := \Phi(j_1, j_3)$ at B2

```
entry
   k := false
   i := 1
   j := 2
   i <= n
   j := j * 2
   k := true
   i := i + 1
   ...k...
   print j
   i := i + 1
   ...k...
   exit
```

B1

B2

B3

B4

B5

B6
Example, cont’d

So, Φ nodes for i, j, and k are needed in B_2, and i also needs one in exit

- exit Φ nodes are usually pruned
Other ways to get SSA

Although computing iterated dominance frontiers will result in the minimal SSA form, there are easier ways that work well for simple languages (good structure, no gotos)

Most translators always know when they are creating a join point in the control flow and can keep track of the immediate dominator

If so, it can also create the necessary Φ nodes during translation.

DF criterion too complicated to implement.
SSA by AST value numbering

Walk AST to assign value numbers

- If one predecessor, reuse number
- If more predecessors, add temp Φ' function add other arguments later
- Loops: complete temp Φ' in 2 rounds
- Finally convert $\Phi'=\Rightarrow\Phi$ or remove superfluous Φ, e.g.
 $a2:=\Phi(a1,a2)\Rightarrow a2:=a1\ a1:=\Phi(a1)\Rightarrow\varepsilon$
SSA by value number AST

For each $x = y @ z$ (some operator @):

- Compute $VN(y)$ and $VN(z)$
- Compute $VN(@, y, z)$ for $y @ z$
- New \implies add $VN(@, y, z) = VN(y) @ VN(z)$
- Put $VN(@, y, z)$ into $VN(x)$
- This performs CSE already
VN(y) implementation for SSA

- Basic block has value w for y => use
- Exactly one predecessor => reuse VN(y) of predecessor
- More predecessors =>
 - get wi=VN(y) at each predecessor pi
 - Add VN(Φ,y,y)=Φ(w1,w2,...,wn)
 Nice: VN only adds Φ if still live
 - Put VN(Φ,y,y) for y
a=1;
b=2;
while (true) {
 c=a+b;
 if (((d=c-a)!=0) {
 while((d=b*d)!=0) {
 d=a+b;
 e=e+1;
 }
 }
 b=a+b;
 if (((e=c-a)!=0) break;
}

a=b*d
b=a-d
SSA AST-walk construction (1)
SSA AST-walk construction (2)

VN(a) => Φ'

d=b*d
d=a+b
e=e+1
c=a+b
d=c-a

a=1
b=2

a1=1
b1=2

a2=Φ'(a)

c=a2+b

a=b*d
b=a-d
SSA AST-walk construction (2)

VN(a) => Φ'
VN(b) => Φ'

c = a^2 + b^2

\[a1 = 1 \]
\[b1 = 2 \]

\[a2 = \Phi'(a) \]
\[b2 = \Phi'(b) \]

\[c = a2 + b2 \]
SSA AST-walk construction (2)

VN(a) => Φ'
VN(b) => Φ'
VN(c)
VN for d=c-a

a1=1
b1=2

a2=Φ'(a)
b2=Φ'(b)
c1=a2+b2
d1=c1-a2
SSA AST-walk construction (3)

VN(b) => Φ'
VN(d) => Φ'

a1=1
b1=2

a2=Φ'(a)
b2=Φ'(b)
c1=a2+b2
d1=c1-a2

d2=Φ'(d)
d3=b3*d2

c=e+1

e=c-a

d=a+b
e=c-a

b=a+b
d=c-a

d=b*d

d=a+b

d=b*a

b3=Φ'(b)
SSA AST-walk construction (4)

VN(a) at 4
⇒ VN(a) at 3
⇒ \(\Phi' \) at 3

\[a_1 = 1 \]
\[b_1 = 2 \]
\[a_2 = \Phi'(a) \]
\[b_2 = \Phi'(b) \]
\[c_1 = a_2 + b_2 \]
\[d_1 = c_1 - a_2 \]
\[b_3 = \Phi'(b) \]
\[d_2 = \Phi'(d) \]
\[a_3 = \Phi'(a) \]
\[d_3 = b_3 \times d_2 \]
\[d_4 = a_3 + b_3 \]

a1=1
b1=2
a2=\Phi'(a)
b2=\Phi'(b)
c1=a2+b2
d1=c1-a2
b3=\Phi'(b)
d2=\Phi'(d)
a3=\Phi'(a)
d3=b3*d2
d4=a3+b3
SSA AST-walk construction (4)

VN(e) at 4 asks
⇒ VN(e) at 3
⇒ Φ' at 3

c1 = a2 + b2

d1 = c1 - a2

d3 = b3 * d2

d4 = a3 + b3

e4 = e3 + 1
Φ’ at 3 knows all predecs.
⇒ Φ’ => Φ
This calls VN(e) at 2 => Φ’ at 3
VN(a) at 5 has unique a2 when skipping copies
=> no Φ

\[
\begin{align*}
a1 &= 1 \\
b1 &= 2 \\
a2 &= \Phi'(a) \\
b2 &= \Phi'(b) \\
e2 &= \Phi'(e) \\
c1 &= a2 + b2 \\
d1 &= c1 - a2 \\
a3 &= a2 \\
e3 &= \Phi(e2, e4) \\
d2 &= \Phi(d1, d4) \\
b3 &= b2 \\
d3 &= b3 \cdot d2 \\
d4 &= a3 + b3 \\
e4 &= e3 + 1 \\
b &= a2 + b \\
\end{align*}
\]
VN(b) at 5 has unique b_2 when skipping copies
\Rightarrow no Φ
SSA AST-walk construction (5)

\[a_1 = 1 \]
\[b_1 = 2 \]
\[a_2 = \Phi'(a) \]
\[b_2 = \Phi'(b) \]
\[e_2 = \Phi'(e) \]
\[c_1 = a_2 + b_2 \]
\[d_1 = c_1 - a_2 \]

\[\begin{align*}
 d_2 &= \Phi(d_1, d_4) \\
 a_3 &= a_2 \\
 e_3 &= \Phi(e_2, e_4) \\
 d_3 &= b_3 \times d_2
\end{align*} \]

\[\begin{align*}
 b_4 &= a_2 + b_2 \\
 e_5 &= c_1 - a_2
\end{align*} \]
Φ’ at 2 knows all predecs.
⇒ Φ’ => Φ

SSA sees e?
uninitialized
SSA AST-walk construction (6)

VN(d) at 6 ask
⇒ VN(d) at 5
⇒ Φ at 5 as all preds known
SSA AST-walk construction (6)

\[a_1 = 1 \]
\[b_1 = 2 \]
\[a_2 = a_1 \]
\[b_2 = \Phi(b_1, b_4) \]
\[e_2 = \Phi(e_?, e_5) \]
\[c_1 = a_2 + b_2 \]
\[d_1 = c_1 - a_2 \]
\[b_3 = b_2 \]
\[d_2 = \Phi(d_1, d_4) \]
\[a_3 = a_2 \]
\[e_3 = \Phi(e_2, e_4) \]
\[d_3 = b_3 \cdot d_2 \]
\[d_4 = a_3 + b_3 \]
\[e_4 = e_3 + 1 \]
\[d_5 = \Phi(d_3, d_1) \]
\[b_4 = a_2 + b_2 \]
\[d_1 = c_1 - a_2 \]
\[a_4 = b_4 \cdot d_5 \]
\[b_5 = a_4 - d_5 \]
SSA AST-walk construction
SSA AST-walk constructed

\[a_1 = 1 \]
\[b_1 = 2 \]
\[a_2 = a_1 \]
\[b_2 = \Phi(b_1, b_4) \]
\[e_2 = \Phi(e_?, e_5) \]
\[c_1 = a_2 + b_2 \]
\[d_1 = c_1 - a_2 \]
\[b_3 = b_2 \]
\[d_2 = \Phi(d_1, d_4) \]
\[a_3 = a_2 \]
\[e_3 = \Phi(e_2, e_4) \]
\[d_3 = b_3 \cdot d_2 \]
\[d_4 = a_3 + b_3 \]
\[e_4 = e_3 + 1 \]
\[d_5 = \Phi(d_3, d_1) \]
\[b_4 = a_2 + b_2 \]
\[d_1 = c_1 - a_2 \]
\[a_4 = b_4 \cdot d_5 \]
\[b_5 = a_4 - d_5 \]
SSA Opt: copy propagate

substitute
a2 = a1
into all
dominated
nodes

da2 = a1
into all
dominated
nodes

a1 = 1
b1 = 2

a2 = a1
b2 = \Phi(\Phi(b1, b4), b4)

e2 = \Phi(e2, e4, e4)

c1 = a1 + b2

a3 = a1
e3 = \Phi(e2, e4)
d3 = b2 * d2

d2 = \Phi(d1, d4)

b3 = b2
d2 = \Phi(d1, d4)
a3 = a1
e3 = \Phi(e2, e4)
d3 = b2 * d2

d4 = a1 + b2

e4 = e3 + 1

d4 = a1 + b2

e4 = e3 + 1

d5 = \Phi(d3, d1)
b4 = a1 + b2
e5 = c1 - a1

a4 = b4 * d5
b5 = a4 - d5
SSA Opt: constant propagate

substitute
a1=1
into all
dominated
nodes
SSA Opt: eliminate dead code

\[a_1 \text{ never read then dead} \]

\[a_1 = b_2 = \Phi(2, b_4) \]
\[e_2 = \Phi(e?, e_5) \]
\[c_1 = 1 + b_2 \]
\[d_1 = c_1 - 1 \]
\[d_4 = 1 + b_2 \]
\[e_4 = e_3 + 1 \]
\[d_5 = \Phi(d_3, d_1) \]
\[b_4 = 1 + b_2 \]
\[e_5 = c_1 - 1 \]
\[a_4 = b_4 * d_5 \]
\[b_5 = a_4 - d_5 \]
reuse identical expression if dominated

d2 = \Phi(d1, d4)
e3 = \Phi(e2, e4)
d3 = b2 * d2

d4 = 1 + b2
e4 = e3 + 1

d5 = \Phi(d3, d1)
b4 = 1 + b2
e5 = c1 - 1

a4 = b4 * d5
b5 = a4 - d5
reuse identical expression if dominated

\[
b_2 = \Phi(2, b_4) \\
e_2 = \Phi(e?, e_5) \\
c_1 = 1 + b_2 \\
d_1 = c_1 - 1 \\
d_2 = \Phi(d_1, d_4) \\
e_3 = \Phi(e_2, e_4) \\
d_3 = b_2 \times d_2 \\
d_4 = c_1 \\
e_4 = e_3 + 1 \\
d_5 = \Phi(d_3, d_1) \\
b_4 = c_1 \\
e_5 = d_1 \\
a_4 = b_4 \times d_5 \\
b_5 = a_4 - d_5
\]
SSA Opt: copy propagate

c_1
=(1+b_2)-1
=(1-1)+b_2
=0+b_2
=b_2

good?

\[b_2 = \Phi(2, c_1) \]
\[e_2 = \Phi(e?, d_1) \]
\[c_1 = 1+b_2 \]
\[d_1 = c_1-1 \]

\[d_2 = \Phi(d_1, c_1) \]
\[e_3 = \Phi(e_2, e_4) \]
\[d_3 = b_2*d_2 \]

\[d_4 = c_1 \]
\[e_4 = e_3+1 \]

\[d_5 = \Phi(d_3, d_1) \]

\[a_4 = c_1*d_5 \]
\[b_5 = a_4-d_5 \]
SSA Opt: eliminate dead code

\[b_2 = \Phi(2, c_1) \]
\[e_2 = \Phi(e?, d_1) \]
\[c_1 = 1 + b_2 \]
\[d_1 = c_1 - 1 \]
\[d_2 = \Phi(d_1, c_1) \]
\[e_3 = \Phi(e_2, e_4) \]
\[d_3 = b_2 \times d_2 \]
\[a_4 = c_1 \times d_5 \]
\[b_4 = c_1 \]
\[e_5 = d_1 \]
\[b_5 = a_4 - d_5 \]
SSA Opt: eliminate dead code

\[
\begin{align*}
\Phi(2, c1) & = e2 \\
\Phi(e^?, d1) & = c1 = 1 + b2 \\
\Phi(d1, c1) & = d2 \\
\Phi(e2, e4) & = e3 \\
d2 & = b2 * d2 \\
e3 & = d3 + 1 \\
d3 & = b2 * d2 \\
d5 & = d2 * d1 \\
a4 & = c1 * d5 \\
b5 & = a4 - d5
\end{align*}
\]
c1
=(1+b2)-1
=(1-1)+b2
=0+b2
=b2

good?

b2 = \Phi(2,c1)
e2 = \Phi(e?,d1)
c1 = 1+b2
d1 = b2

d2 = \Phi(b2,c1)
e3 = \Phi(e2,e4)
d3 = b2*d2

d5 = \Phi(d3,b2)
a4 = c1*d5
b5 = a4 - d5

a1 = 1
b = 2

c = a + b
d = c - a

d = b*d
e = e + 1

a = b*d
b = a - d
SSA Optimized

\[
\begin{align*}
 b_2 &= \Phi(2, c_1) \\
 e_2 &= \Phi(e_?, d_1) \\
 c_1 &= 1 + b_2 \\
 d_1 &= b_2 \\
 d_2 &= \Phi(b_2, c_1) \\
 e_3 &= \Phi(e_2, e_4) \\
 d_3 &= b_2 \times d_2 \\
 e_4 &= e_3 + 1 \\
 d_5 &= \Phi(d_3, b_2) \\
 a_4 &= c_1 \times d_5 \\
 b_5 &= a_4 - d_5
\end{align*}
\]
DeSSA: get rid of Φ easy way

How to get rid of Φ the easy way?
DeSSA: get rid of Φ easy way

Just case split
Then do copy propagation again!
Register allocation merges var range
Fancy: critical edges

Critical edge in CFG where source has multiple successors and target multiple predecessors.

Critical edge makes optimal placement of k1=e assignment impossible
k1=e assignment is unnecessary for left succ but incorrect for right
Fancy: critical edges

Critical edge in CFG where source has multiple successors and target multiple predecessors.

Critical edge makes optimal placement of \(k1=e \) assignment impossible

\(k1=e \) assignment is unnecessary for left succ but incorrect for right

Solution: add block on critical edge
DeSSA: get rid of Φ elegant way

$\text{a}_3 = \Phi(\text{a}_1,\text{a}_2)$
$\text{b}_3 = \Phi(\text{b}_1,\text{b}_2)$
$\text{c}_3 = \Phi(\text{c}_1,\text{c}_2)$

all Φ by parallel copy of argument i

$\text{a}_3,\text{b}_3,\text{c}_3 = \text{a}_i,\text{b}_i,\text{c}_i$
DeSSA: get rid of Φ fancy way

each edge i is permutation on regs

- implementable?
DeSSA: get rid of Φ fancy way

Each edge i is permutation on regs

- Implementable with a temp register
- Impl by series of triple-xor swaps

\[
\begin{align*}
a_3 &= \Phi(a_1, a_2) \\
b_3 &= \Phi(b_1, b_2) \\
c_3 &= \Phi(c_1, c_2)
\end{align*}
\]

\[x = x \oplus y; \quad y = x \oplus y; \quad x = x \oplus y\]
XOR swap

\[x = X \]
\[x = X \oplus Y \]
\[y = X \oplus Y \]
\[y = (X \oplus Y) \oplus Y = X \text{ (a\&c)} \]
\[y = (X \oplus Y) \oplus X = Y \text{ (a\&c\&i)} \]
\[y = X \]
Register allocation is fast (polynomial) for programs with chordal interference graphs, e.g., SSA.

No edge \((a,e)\) can lead to a cycle. For that would need \(a\) live again. This violates SSA single assignment.
The bottom line for your project:

• You don’t need to generate SSA form for your project

• However, if you decide to do this, then it is advisable to simplify matters by generating SSA directly during AST translation, not working with DF
Summary

• SSA has had a huge impact on compiler design

• Most modern production compilers use SSA (including gcc, suif, llvm, hotspot, ...)

• Compiler frameworks (i.e., toolkits for creating compilers) all use SSA