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Abstract The Cunei Machine Translation Platform is an open-source system for data-

driven machine translation. Our platform is a synthesis of the traditional Example-

Based MT (EBMT) and Statistical MT (SMT) paradigms. What makes Cunei unique

is that it measures the relevance of each translation instance with a distance function.

This distance function, represented as a log-linear model, operates over one translation

instance at a time and enables us to score the translation instance relative to the spec-

ified input and/or the current target hypothesis. We describe how our system, Cunei,

scores features individually for each translation instance and how it efficiently performs

parameter tuning over the entire feature space. We also compare Cunei with three other

open-source MT systems (Moses, CMU-EBMT, and Marclator). In our experiments in-

volving Korean-English and Czech-English translation Cunei clearly outperforms the

traditional EBMT and SMT systems.

Keywords Machine Translation · SMT · EBMT · Data-Driven · Open-Source

1 Introduction

The Cunei Machine Translation Platform is an open-source system for data-driven ma-

chine translation. Our platform is a synthesis of the traditional Example-Based MT

(EBMT) and Statistical MT (SMT) paradigms. In particular, our approach moves be-

yond the notion of modeling each translation as a combination of independent models.

Instead, we treat each piece of the translation process as belonging to a broader web

of information. The motivation is that this approach allows for a more robust and

contextual data-driven translation model.

Cunei provides an open platform for exploring and experimenting with machine

translation. In addition to an extensive suite of command line utilities, Cunei includes

a simple graphical user interface (Figures 1, 2, and 3). This interface allows the user to

visually inspect the translation process and learn what features cause a translation to

receive its respective score. The software distribution also includes Apache Ant build
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Fig. 1 Cunei’s Graphical Workbench

scripts that can acquire freely available corpora (such as the Europarl) and automati-

cally build a complete MT system. In conjunction, our website includes a tutorial that

acquaints new users with Cunei and teaches them how to use it. Our code has been

developed for research purposes and we understand that it may contain some rough

edges so we also offer a mailing list for support. We take seriously our commitment to

open-source and have released the software under the permissive MIT license. Unlike

the GPL or LGPL, Cunei can be extended and integrated with academic and commer-

cial software. As open-source software, we welcome contributions of code and ideas at

http://www.cunei.org/.

2 The Problem

A static, log-linear model encoded in a phrase-table provides a convenient format for

representing how translations are modeled. This strategy embraced by SMT is easy to

understand and conceptually simple to extend or modify. Unfortunately, new features

usually need to be carefully crafted to have impact on the translation process. This

task of feature engineering is complex, involves significant trial and error, and is often

language-dependent. Even worse, without properly engineered features otherwise good

research often fails to show improvement.

Consider a situation where additional contextual information is available. For ex-

ample, assume we have been provided a corpus where each sentence is annotated with

a document name, genre, and sentence-level alignment probability. When we model

each phrase-pair, it would be beneficial to incorporate the following features:

1. Similarity between the input document and each document in which the phrase-pair

is located

2. Similarity between the input genre and the genre of each phrase-pair

3. A preference for phrase-pairs extracted from sentences with high alignment prob-

abilities

http://www.cunei.org/
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It is important to recognize that SMT models phrase-pairs with each log-linear

model. Phrase pairs are abstract units of translation whose features are computed

based on the occurrences of that phrase-pair in the corpus. In practice it is common

to assume the features are independent. Thus, we would compute Feature 1 without

regard to Features 2 or 3. In some situations this may be ‘good enough’, but it obviously

fails to account for joint dependencies. When joint dependencies are desired, a new

feature must be introduced for each possible dependency. For example, adding a binary

feature will double the size of the feature space if all joint dependencies are modeled.

Furthermore, real-valued features cannot be modeled jointly until they are first made

discrete (which creates even more issues). As a result, joint dependencies are often not

used at all or used very selectively because they dramatically increase the complexity

and size of models.

Unfortunately, knowing which features and dependencies to use and which to ignore

is not well-defined in SMT. While one might argue that this is the role of parameter

tuning, minimum error rate training (MERT) is known to fail when there are more

than a few dozen features (Chiang et al, 2008; Och et al, 2004). More sophisticated

approaches and increased randomization help, but do not completely alleviate the

problem as the error surface contains many local minima. In addition, the cost of

calculating all of these joint features and storing them in memory can be equally

prohibitive.

As mentioned earlier, a phrase-pair is an abstraction over many translation in-

stances. Yet, the additional context information we have is specific to each translation

instance. Going back to our example, there is, thus, no straightforward understand-

ing of how to even represent the document name, genre, or alignment probability for

a phrase-pair when these values change from instance to instance of translation. Of-

ten, the solution is to take the average over the set of translation instances, but this

approach discards precisely that information which our model is attempting to capture–

that some translation instances are more relevant than others. Thus, the traditional

SMT features for a phrase-pair are by definition more limited in scope because they

are an abstract representation of many translation instances.

These two issues–which features and dependencies are important to maintain and

what level of abstraction for the phrase-pair is most appropriate–place a heavy burden

on the user in determining the ‘right’ structure of the model. It is deeply unsatisfying

that in SMT, which prides itself on well-defined statistical models, the process for

incorporating new features into these models relies on heuristics, intuition, and trial-

and-error. An illustrative example is the paper by (Shen et al, 2009) that states clearly

their unique contribution is that “Feature functions defined in this way are robust and

ideal for practical translation tasks.” The types of linguistic and contextual information

their features capture is not new, but as they demonstrate, other approaches have

been imperfect and have struggled to incorporate it. In a complex system like machine

translation, we do not always know a priori what information is useful and how it

should be expressed; we would prefer if the model took care of this automatically.

3 Approach

Due to ever-increasing bilingual corpora, data-driven machine translation is able to lo-

cate many potential translation instances associated with each input phrase. Yet, these

translation instances are not all equally suitable for the translation task at hand. Each
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translation instance retrieved from the corpus occurs within a unique linguistic context.

For example, each translation instance–even if it predicts the same target hypothesis–

may be associated with a different parse tree or morpho-syntactic information. What

makes Cunei unique is that it is able to score this information (by comparing it to the

input or target hypothesis) individually for each instance of translation. We exploit this

per-instance information to model that some translation instances are more relevant

than others.

The translation process begins by encoding in a lattice all possible contiguous

phrases from the input. For each source phrase in the lattice, Cunei locates instances

of it in the corpus and then identifies the aligned target phrase(s). Each occurrence

of an aligned source and target phrase is extracted as a unique translation instance.

A distance function, represented by a log-linear model, scores the relevance of each of

these translation instances. The model then sums the scores of translation instances

that predict the same target hypothesis.

3.1 Formalism

In order to compose a complete sentence, data-driven machine translation systems

identify small units of translation and select the fragments that when combined together

yield the best score. The decision rule given the source sequence s1, s2...sn is:

t̃ = arg max
t1,t2...tn

n∑
i=0

m(si, ti, λ) (1)

Here a model m scores the translation unit which consists of a target phrase ti
and the corresponding source span si. The sequence of target phrases ti, t2, ...tn that

maximize the score compose the target sentence t̃.

A typical SMT model will score each translation unit using a log-linear model with

features θ and weights λ:

m(s, t, λ) =
∑
i

λiθi(s, t) (2)

An EBMT system identifies features for each example in the corpus. There is no

prototypical model for EBMT, but Equation 3 demonstrates one method that calculates

the total score by summing over all examples with source s′ and target t′ that are

consistent with the phrase pair being modeled. In the strictest form s = s′ and t = t′,
but typically an EBMT system will have some notion of similarity and use examples

that do not exactly match the input. Notice that the feature function φ in this model

is provided a specific example (s′, t′).

m(s, t, λ) = ln
∑
s′,t′

e
∑
i λiφi(s,s

′,t′,t) (3)

Finding the derivative of the above model or recomputing the score for a new λ′

(necessary during optimization) requires the system to retain the features φ for every

example used in translation. This is unfeasible for a real-world translation system

as even an artificially small corpus will contain an enormous number of translation

examples.
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Even though the summation of multiple log-linear models is no longer log-linear,

we can approximate the summation with another log-linear model. Cunei’s approach,

as shown below, is to approximate the EBMT model in Equation 3 with a first-order

Taylor series. (Similarly, we could also extend this to a higher-order Taylor approxi-

mations.)

m(s, t, λ′) ≈ m(s, t, λ) +
∑
q

(λ′q − λq)
∂

∂λq
m(s, t, λ)

≈ ln
∑
s′,t′

e
∑
i λiφi(s,s

′,t′,t) +
∑
q

(λ′q − λq)
∑
s′,t′ φq(s, s

′, t′, t)e
∑
i λiφi(s,s

′,t′,t)∑
s′,t′ e

∑
i λiφi(s,s

′,t′,t)

By rearranging the terms, we can simplify Cunei’s model to Equation 4, which

is simply another log-linear model. The offset δ is dependent on the original λ, com-

puted once, and does not change with λ′. While the new feature function ψ initially

appears complex, it is simply the expectation of each feature under the distribution of

translation instances and can be efficiently computed with an online update.

m(s, t, λ′) = δ +
∑
q

λ′qψq (4)

δ = ln
∑
s′,t′

e
∑
i λiφi(s,s

′,t′,t) −
∑
q

λqψq

ψq =

∑
s′,t′ φq(s, s

′, t′, t)e
∑
i λiφi(s,s

′,t′,t)∑
s′,t′ e

∑
i λiφi(s,s

′,t′,t)

Reducing the collection of instances to one log-linear model considerably simplifies

decoding and optimization. Furthermore, this approximation exactly represents the

score and the gradient of the entire collection of log-linear models when λ = λ′. Only

during optimization, when the parameters are modified, will the reduced model be an

approximation.

Interestingly, calculating the model in this manner ties together the two differ-

ent modeling approaches pursued by SMT and EBMT. First, our model allows us to

integrate instance-specific features φ(s, s′, t′, t) while maintaining the simplicity of a

log-linear model. Second, the SMT model of Equation 2 is merely a special case of

our model when the features for all instances of a translation are constant such that

φk(s, s′, t′, t) = θk(s, t) ∀s′, t′.

4 Run-Time Execution

Sufficient statistics for each instance of a translation could be computed off-line, but the

space requirements would be quite large. Furthermore, most of the model is unnecessary

for a particular input. As a result, Cunei delays as much computation as possible until

run-time. In particular, translations are not retrieved from a pre-built phrase-table, but

rather generated dynamically at run-time. The remainder of this section will describe

in detail how these translations are constructed.
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4.1 Locating Matches

In order to compose a translation, Cunei must be able to locate instances of translation

that match the input. To support this retrieval, Cunei constructs a suffix array index

for each type of sequence present in the parallel corpus. Suffix arrays provide a compact

and efficient data structure for locating arbitrary sequences of tokens within a large

corpus (Yamamoto and Church, 2001). The search algorithm has a worst-case time

complexity of O(m log2 n) where n is the number of tokens in the index and m is

the number of tokens in the phrase being looked up.1 As evidenced by the work of

Brown (2004), Zhang and Vogel (2005), Callison-Burch et al (2005), and Lopez (2008),

suffix arrays are also increasingly popular in machine translation. Furthermore, Cunei

is capable of maintaining multiple indexes if we want to store and query additional

information from the corpus. For example, one might index lemmas, part-of-speech, or

statistical cluster labels in addition to the lexical type sequence.

When Cunei is presented with a sentence to translate, the corpus is scoured for

all partial matches of the input. For each type of sequence present in the input, the

respective suffix array for that type of sequence is queried. A match may contain as

few as one of the tokens from the input or exactly match the entire input. We start

searching for the smallest possible match–one token–and incrementally add one more

token to the sequence. We are able to efficiently search for additional tokens by storing

with each match its bounds in the suffix array. Furthermore, once we are no longer able

to locate a particular sequence of tokens in the corpus, we can also stop searching for

any sequences that subsume it. The collection of corpus matches is stored in a lattice

with each entry indexed by the span of the input it covers.

In addition, Cunei is capable of locating translation instances that are not exact

matches of the input. For example, a source phrase retrieved by matching only a part-

of-speech sequence may be structurally similar to the input, but it is likely to be

semantically unrelated. Matches such as these do not as-is provide valid translations,

but they do still contain useful information about the translation process. This has not

been a focus of our present research, but in the future we plan to exploit this capability

to model similar and discontiguous phrases.

4.2 Sampling Matches

The process of locating all matches in the corpus is relatively cheap, but what we

do with each match–notably perform alignment and generate a translation instance–is

expensive. Furthermore, we have found in practice that using every last match is overkill

and an adequate model can be constructed using a much smaller sample. Without an

alignment, there is very little we can do to determine the relevance of a translation

instance. As a result, we simply sample the matches uniformly. The exception is that

all complete matches (i.e. those whose prefix is the start-of-sentence marker and whose

suffix is the end-of-sentence marker) are selected first. When there are fewer matches

in the corpus than the desired sample size, then we select all of them. Conveniently,

this means only high-frequency words and phrases will be sampled. Typically we will

1 By storing an additional data structure for the longest common prefix between neighboring
rows in the suffix array, it is possible to reduce the search time to O(m+ log2 n) (Manber and
Myers, 1990), but this is not currently implemented in our system.
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Fig. 2 Word Alignment Visualization. Alignment in a single direction is represented by a
triangle; when an entire cell is shaded then both directions of the GIZA++ alignments agree.

extract a few hundred matches (this is configurable by the user) and the reduced set

is then passed on for alignment and scoring.

4.3 Identifying Aligned Phrase(s)

After a match is found on the source-side of the corpus, Cunei determines possible

target phrase alignments. Ideally, the complete alignment process would be computed

on-demand at run-time, but this is prohibitively expensive even with a simple IBM

Model-1. Instead, we run a word-aligner once while building the system and store the

word alignments as part of the indexed corpus. Phrase alignment is then performed

at run-time and is incorporated as part of the translation instance’s log-linear model.

The saved word alignments are used to generate the features for phrase alignment.

While the calculations are not exactly the same, conceptually this work is modeled

after Vogel (2005).

For each source-side match in the corpus, we load the alignment matrix for the com-

plete sentence in which the match resides. The alignment matrix, as visually depicted

in Figure 2, contains scores for all possible word correspondences in the sentence-pair.

Each word alignment link maintains two scores: αs and αt. When using GIZA++

(Och and Ney, 2003) to generate the initial word alignments, P (si|tj) will be stored as

αs(i, j) and P (tj |si) as αt(i, j). Cunei also supports initializing the alignment matrix

using the Berkeley aligner (Liang et al, 2006) which symmetrizes the probability model.

In this case, αs(i, j) and αt(i, j) will both be set to P (si, tj). While both GIZA++ and

Berkeley model probability distributions, the αs and αt scores need not be normalized

for our calculations.



8

Let αs(i, j) and αt(i, j) be the alignment score between the source word at position i
and target word at position j (from the external word aligner).

Outside Probability

Let the set of positions in the source phrase and target phrase that are outside the
phrase alignment be, respectively, sout and tout.

Alignment.Weights.Outside.Source.Probability
∑
i∈sout log

ε+
∑
j∈tout αt(i,j)

ε+
∑
j αt(i,j)

Alignment.Weights.Outside.Target.Probability
∑
j∈tout log

ε+
∑
i∈sout αs(i,j)

ε+
∑
i αs(i,j)

Inside Probability

Let the set of positions in the source phrase and target phrase that are inside the
phrase alignment be, respectively, sin and tin.

Alignment.Weights.Inside.Source.Probability
∑
i∈sin log

ε+
∑
j∈tin

αt(i,j)

ε+
∑
j αt(i,j)

Alignment.Weights.Inside.Target.Probability
∑
j∈tin log

ε+
∑
i∈sin

αs(i,j)

ε+
∑
i αs(i,j)

Inside Unknown

The user-defined threshold θ identifies the value below which an an alignment score
is considered uncertain.

Alignment.Weights.Inside.Source.Unknown
∑
i∈sin max(0,

θ−
(
ε+
∑
j αt(i,j)

)
θ

)

Alignment.Weights.Inside.Target.Unknown
∑
j∈tin max(0,

θ−(ε+
∑
i αs(i,j))
θ

)

Table 1 Description of Phrase Alignment Features

Using this alignment matrix, each source phrase is modeled as having some proba-

bility of aligning to every possible target phrase within a given sentence. When a source

phrase is aligned to a target phrase, it not only implies that words within the source

phrase are aligned to words within the target phrase, but also that the remainder of

the source sentence not specified by the source phrase is aligned to the remainder of the

target sentence not specified by the target phrase. As detailed in Table 1, we define sep-

arate features to model the probability that the alignment links for tokens within the

phrase are concentrated within the phrase boundaries and that the alignment links for

tokens outside the phrase are concentrated outside the phrase boundaries. In addition,

tokens within the phrase that are not aligned or have weak alignments demonstrate

uncertainty in modeling. To capture this effect, we incorporate two more features that

measure the number of uncertain alignment links included within the phrase alignment

boundaries.
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Phrase Coverage

Let s and t represent the source and target for this translation instance and S rep-
resent the entire input sentence.

Translation.Weights.Spans 1

Translation.Weights.Coverage log
|s|
|S|

Translation.Weights.Null

{
1 if |t| = 0
0 otherwise

Phrase Frequency

The function c(x) returns the number of occurrences in the corpus of the phrase x.

Translation.Weights.Frequency.Correlation
(c(s)−c(t))2

(c(s)+c(t)+1)2

Translation.Weights.Frequency.Source − log(c(s))

Translation.Weights.Frequency.Target − log(c(t))

Lexical Probability

Let xi denote the word at position i in phrase x. P (si|tj) and P (ti|sj) are relative
frequency counts over all word alignments in the corpus.

Lexicon.Weights.Lexical.Source
∑|s|
i=0 max

|t|
j=0 logP (si|tj)

Lexicon.Weights.Lexical.Target
∑|t|
i=0 max

|s|
j=0 logP (ti|sj)

Table 2 Description of Static, SMT-like Features

For each match in the corpus, Cunei uses these feature functions to extract a scored

n-best list of possible phrase alignments. The size of the n-best list is controlled by two

user-defined pruning parameters: a maximum number of elements and a maximum ratio

between the best and worst score. In practice, 3 to 6 phrase alignments are typically

selected. Each possible alignment forms a new instance of translation between the

source and target phrase.

4.4 Additional Static Scores

Once all translation instances are retrieved from the corpus, we can also apply more

general, static, SMT-like features. This is possible because our distance function for

each translation instance takes the same form as a standard SMT log-linear model.

We simply perform the standard SMT feature calculations over the set of retrieved

translation instances and then apply those feature uniformly to all the instances. Cunei

currently computes the features detailed in Table 2 which model a translation’s overall
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Fig. 3 A lattice of translations

frequency in the corpus, lexical probability, and coverage. These particular features are

static in the sense that they do not change from instance to instance if they share the

same source and target phrases. We include these to ensure that our model has no

less discriminative power than a standard SMT system. While the emphasis is placed

on Cunei’s ability to use per-instance features, in this manner, Cunei can also take

advantage of features computed over sets of instances or loaded from external models.

4.5 Combining Partial Translations

Cunei synthetically combines a lattice of partial translations into a complete sentence

using a statistical decoder. Recall that the set of matches retrieved from the corpus

particular to the input sentence are stored in a lattice. These matches are aligned to

form partial translations which are in turn stored in another lattice as illustrated in

Figure 3. The decoder then searches this latter lattice for a set of partial translations

with the minimum score that completely cover the input.

The decision of which partial translations to combine is informed by the scores

of the partial translations and the decoding features detailed in Table 3. In order

to compensate for divergences between the source and target language, Cunei may

need to reorder the partial translations. Reordering is modeled by counting the total

number of re-orderings and by keeping track of the total distance that words have been
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Reordering

Let the first position of the source span for the current partial translation be i and
the last position of the source span for the previous partial translation be j.

Hypothesis.Weights.Reorder.Count

{
1 if i− j 6= 1
0 otherwise

Hypothesis.Weights.Reorder.Distance |i− j − 1|

Language Model

Multiple language models can be used; these refer to the model identified as Default.
Let the order of the language model be denoted by n and the target sequence be
represented as w0w1w2...wn.

LanguageModel.Default.Weights.Probability
∑n
i=0 logP (wi|wi−iwi−2...wi−n+1)

LanguageModel.Default.Weights.Unknown
∑n
i=0

{
1 if wi is unknown
0 otherwise

Sentence Length

Let the phrase x contain |x|word words and |x|char characters. The mean, µ, and
variance, σ2, of both word and character lengths are calculated over the corpus.

Sentence.Weights.Length.Words |t|word

Sentence.Weights.Ratio.Word − (|s|word∗µword−|t|word)2
σ2(|s|word∗µword+|t|)

Sentence.Weights.Ratio.Character − (|s|char∗µchar−|t|char)2
σ2(|s|char∗µchar+|t|)

Table 3 Description of Decoder Features

moved. Additionally, the probability of the complete target sequence is estimated with a

statistical language model. Any number of language models can be used simultaneously

during decoding and each will generate its own set of features. In order to offset the

tendency of the language model(s) to prefer short output, we balance the overall score

by including a feature that simply counts the number of words present in the target. The

complete sentence length is also modeled based on the ratio of source words to target

words. When combined, these features instruct the decoding process which composition

of partial translations to select.

5 Optimization

Because Cunei uses a log-linear model, we can optimize it using the same approaches

developed for SMT. The most common technique, Minimum Error Rate Training
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(MERT), iteratively generates an n-best list of translations from one set of weights

and finds a new set of weights that maximize an objective function (typically BLEU)

(Och, 2003). Due to pruning and the beam search within the decoder, the new weights

may yield different translations in the n-best list. This is traditionally remedied by

merging the n-best lists after each iteration to obtain a larger representation of the

search space. In Cunei, new weights can also change what translations are modeled at

run-time and the translation’s estimated feature scores. Recall that Cunei’s model is

only an approximation once the weights are modified. In order to manage this variabil-

ity, we discount models that were estimated far from the current set of weights.

Because Cunei must also manage a large feature space, MERT is not actually an

ideal choice. Instead, Cunei’s optimization code closely follows the approach of Smith

and Eisner (2006). Conceptually, this approach is similar to MERT except it uses an

objective function that minimizes the expected loss over the distribution of translations

present in the entire n-best list. In its default configuration, Cunei will optimize toward

BLEU using the following objective function that in log-space sums the expected value

of BLEU’s brevity penalty and precision score:

(1 + eµ(h)−µ(r))(
µ(|r|)
µ(h)

e
σ(h)

2µ(h)2
− σ(r)

2µ(r)2 − 1)

+

∑4
n=1 log(µ(tn))− σ(tn)

2µ(tn)2
− log(µ(cn)) +

σ(cn)
2µ(cn)2

4

pi =
eγmi∑
k e

γmk
µ(x) =

∑
i

pixi σ(x) =
∑
i

pi(xi − µ(x))2

mi Log-score of hypothesis i in the n-best list

γ Gamma (used for annealing)

h Length of the hypothesis

r Length of the selected (shortest or closest) reference

cn “Modified count” of matching n-grams according to BLEU

tn Total number of n-grams present in the hypothesis

Following Smith and Eisner (2006), the distribution of the n-best list is slowly

annealed in order to avoid local minima. This is carried out by multiplying the log-

score of each translation by a γ parameter; the default schedule initializes γ to 0.25

and doubles it after convergence. Hence, we begin with a mostly flat distribution and

mildly peak the distribution each time the objective function converges. Eventually this

process reaches a distribution where, for each sentence, nearly all of the probability

mass resides on one translation. In the early stages, sharpening the distribution is often

the quickest way to minimize the expected loss. While γ is fixed until convergence, the

same effect can be achieved by uniformly increasing the magnitude of all the other

weights. To address this weight creep, Cunei augments the objective function with

an L2 normalization term. In addition, Cunei supports the ability during decoding

to select hypotheses that are most similar to a particular set of references. Often we

will initialize the n-best list with these translations to guide the optimization process

toward high-scoring, obtainable translations.



13

Korean English
Size of Vocabulary 34,635 10,584
Number of Words 172,641 252,982
Number of Sentences 26,719

Table 4 Korean-English Corpus Statistics

6 Experiments

Our evaluation was performed in two scenarios that offer unique challenges–translating

from Korean to English and from Czech to English. In addition, we compare Cunei with

three alternative open-source machine translation systems: Moses, CMU-EBMT, and

Marclator. Moses2 is a widely-used SMT system with many extensions (Koehn et al,

2007). We built Moses using its default configuration which includes a phrase-based

model and bidirectional lexicalized reordering. CMU-EBMT3 is a shallow EBMT sys-

tem from Carnegie Mellon University (Brown, 1996, 2004). This system does not require

examples to be linguistic constituents and weights each example based on document

similarity and local context. Marclator is another EBMT system developed by Dublin

City University and available as part of OpenMaTrEx (Stroppa and Way, 2006)4. It

is more limited than the other systems in that it can only generate monotonic output

(no reordering). However, Marclator is perhaps the most traditional EBMT system in

this mix as it identifies translation chunks based on the Marker Hypothesis (Green,

1979). Unfortunately, the Marclator distribution does not include marker information

for Korean, so we could only include this system in the Czech to English experiments.

In order to build comparable systems, we managed the training resources and

provided the same files to each system. All the training resources were processed with

our own simple normalization and tokenization routines. Using the parallel resources

and GIZA++ (Och and Ney, 2003), we trained IBM Model-4 word alignments in both

directions. Using the monolingual resources and the SRILM toolkit (Stolcke, 2002),

we trained a 5-gram English language model with Kneser-Ney smoothing. Each MT

system was provided the tokenized corpus, word alignments, and language model. The

systems then used their respective phrase extraction, model estimation routines, and

tuning methods. Evaluation scores were computed with BLEU (Papineni et al, 2002)

and NIST (Doddington, 2002).

Our Korean-English parallel text is quite small, weighing in at just over 25,000

sentences. This particular scenario challenges an MT systems to work with very little

information. The corpus consists of conversational sentences related to business and

travel. From the same domain we withheld 966 sentences for development and 1170

sentences for testing. Lacking additional in-domain text, we trained the English lan-

guage model solely on the English half of the parallel corpus. Statistics describing the

training corpus are shown in Table 4 and the results of our experiments are in Table 5.

The scores for all three systems are low due to the extremely limited training

data, but Moses is clearly the weakest contender. The occurrences of phrase-pairs are

far too sparse for accurate relative frequency estimation (the basis of Moses’ feature

functions). In addition, Cunei’s model has allowed it to select longer translations.

Cunei’s output closely matches the length of the references, whereas CMU-EBMT uses

2 http://www.statmt.org/moses/
3 http://sourceforge.net/projects/cmu-ebmt/
4 http://www.openmatrex.org/

http://www.statmt.org/moses/
http://sourceforge.net/projects/cmu-ebmt/
http://www.openmatrex.org/
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Development Test
BLEU NIST BLEU NIST

Moses 0.1431 3.7208 0.1278 3.5973
CMU-EBMT 0.1888 4.2893 0.1923 4.3560
Cunei 0.2095 4.5291 0.2200 4.6919

Table 5 Korean-English Evaluation

approximately 5% fewer words and Moses has 10% fewer words. This situation results

in Cunei producing the best output and, more generally, EBMT systems outperforming

SMT.

Next we trained each system for Czech to English translation. We created a parallel

corpus by combining text from version 6 of the Europarl (Koehn, 2005), the 2011 edition

of parallel news commentary released by the 2011 Workshop on Statistical Machine

Translation5 (WMT’11), and CzEng 0.9 (Bojar and Žabokrtský, 2009). CzEng is a

large collection of many different texts including works of fiction, websites, subtitles,

and technical documentation. The motivation for this scenario is that it offers the MT

systems multiple genres to translate. We created a 763 sentence development set and

1506 sentence test set by uniformly sampling each genre from a held-out portion of

CzEng. As shown in Table 6, we also sampled from the parallel text to create two sizes

of parallel training data. With both sizes of training data, we used the same language

model trained on over 500 million English words. The monolingual text included the

English half of the parallel corpora and years 2010 and 2011 of web-crawled news text

released by WMT’11.

Our experiments are presented in Table 7 and examples of translations from all four

systems can be found in Tables 8, 9, and 10. Marclator is at a disadvantage because

it does not allow chunk re-ordering, but it also tends to select chunks that contain

extraneous words. Now with a reasonable quantity of training data, Moses performs

quite well and bests CMU-EBMT, but not Cunei.

All of these systems incorporate a language model, but Moses and Cunei seem

to be slightly more biased toward fluency. For example, the CMU-EBMT translation

in Table 10 contains more key concepts, but the overall translation is stilted by the

frequent insertion of determiners. Moses and Cunei provide translations that lose a

little in adequacy, but yield greater fluency. The right balance between adequacy and

fluency is debatable, but the behavior of Moses and Cunei is likely due to these two

systems more closely matching BLEU during training.

Table 9 illustrates an obvious discrepancy between the three EBMT systems and

Moses (the one SMT system). Moses is attempting to cobble together a (mostly) word-

by-word translation, while the EBMT systems have either matched the entire sentence

or are using much longer phrases. Matching extremely long phrases is the exception,

5 http://www.statmt.org/wmt11/

Small Large
Czech English Czech English

Size of Vocabulary 252,982 162,199 601,286 343,262
Number of Words 9,310,976 10,579,280 37,230,252 42,321,891
Number of Sentences 829,403 3,317,055

Table 6 Czech-English Corpus Statistics

http://www.statmt.org/wmt11/
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Small Large
Development Test Development Test
BLEU NIST BLEU NIST BLEU NIST BLEU NIST

Marclator 0.1463 5.1988 0.1412 5.2789 0.1809 5.5969 0.1822 5.7488
CMU-EBMT 0.2753 6.0908 0.2457 6.2206 0.3149 6.5265 0.2890 6.7069
Moses 0.2805 6.4915 0.2580 6.6857 0.3377 7.0828 0.3146 7.3120
Cunei 0.3073 6.7194 0.2943 7.0738 0.3752 7.4062 0.3624 7.7838

Table 7 Czech-English Evaluation

but a more general improvement in phrase selection and matching is still present in

the other examples. In Table 8, Cunei selects the phrase “raised his eyes from the

instrument panel”. Cunei’s output is the most fluent, but the same idea is also present

in Marclator and CMU-EBMT. On the other hand, Moses uses “glanced up from the

the instrument panel” which is also fluent, but does not match the reference. Perhaps

more clearly, in Table 10 Cunei generates “when i leave dance floor” while Moses simply

has “to leave dance floor” which is neither more fluent or more adequate.

We found that Cunei and Moses often render similar output that differs in the

lexical selection of one or two words per sentence. Unlike Moses, Cunei’s model enables

it to selectively weight instances of translation based on their relevance. Overall, we

find Cunei’s translations to form a balance between the strengths of traditional SMT

and EBMT systems.

7 Summary

As illustrated in both Table 5 and Table 7, Cunei is state-of-the-art across several

language-pairs and bests its competition. In recent years SMT has dominated the field

of machine translation research. Even though SMT in many respects grew from the

data-driven focus of EBMT, the concept of modeling each translation instance indi-

Reference slowly , he raised his eyes from the instrument board and
stared out the window .

Marclator slowly up eyes the pilot oswaldo zileri and looked out the
window

CMU-EBMT slowly his eyes from the instrument board and , from windows .

Moses slowly he glanced up from the the instrument panel he looked
out the window .

Cunei slowly raised his eyes from the instrument panel and looked out
of the window .

Table 8 Czech-English (Large) Translation Example 1

Reference rich is the guy behind the cream team , is that correct ?

Marclator rich is the guy behind the cream team is that correct ?

CMU-EBMT rich is the guy behind the cream team , is that correct ?

Moses so cream team put together rich ?

Cunei rich is the guy behind the cream team , is that correct ?

Table 9 Czech-English (Large) Translation Example 2



16

Reference when i leave the dance floor , go upstairs with carina to
distract the security guards .

Marclator to i floor go upstairs with carinou away guardian

CMU-EBMT to leave a dance floor , go upward with carinou a distraction a
guardian .

Moses to leave dance floor , go up with carinou away the guard .

Cunei when i leave dance floor , go up with carinou away bodyguard .

Table 10 Czech-English (Large) Translation Example 3

vidually has been lost. Cunei’s translation model that incorporates instance-specific

features outperforms comparable SMT and EBMT systems. We are encouraged by

these results as our approach opens the door for new sources of knowledge that de-

scribe each instance of translation individually. Ultimately, Cunei should be able to

use any available information, be it lexical, syntactic, semantic, grammatical, prag-

matic, contextual, etc., to make a case-by-case selection of the best possible instance

of translation in its corpus–fulfilling the goal of true ‘data-driven’ machine translation.
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