
 1

Evaluating Dynamic Prefetching in a Software DSM
Xinghua An Ting Liu
Carnegie Mellon University

 Pittsburgh, PA 15213
{anxh, tingliu}@cs.cmu.edu

Abstract
 While software-controlled static prefetching in software DSMs appears to achieve
great performance on many applications, the results in investigating prefetching with
runtime information are not satisfied due to the formidable overhead. Seeking specific
prefetching mechanisms to reduce the execution time of a certain kind of applications,
however, is a promising work and will impact on SVMs and other fields. In this report,
an experimental work, adding dynamic prefetching in JIAJIA, a software DSM based
on scope consistency [Pal 96], has been proposed and evaluated. There are two features
in our prefetching algorithm: it’s sensitive to stride access pattern and can be combined
into JIAJIA’s lock-based coherency protocol without much modification. The test
results show that it has high prediction accuracy and achieves good overlap between
communication and computation in benchmark applications. This work gives a good
proof that study on software-based dynamic prefetching is reasonable, promising and
worth to make further steps.

1 Introduction

 Over the past decade, software Distributed Shared Memory (DSM) systems have
been extensively studied to provide a good compromise between programmability of
shared memory multiprocessors and hardware simplicity of message passing
multicomputers. In DSM systems, physical memories of multiple workstations are
combined to form a larger shared space. Many current software DSM systems, such as
Ivy[Li 88], Midway[Bershad 93], Munin[Carter 91], TreadMarks[Keleher 94], and
CVM[Keleher 96] have been implemented on the top of message passing hardware or
on network of workstations.
 Communication latency is generally much larger in a DSM system than it would be
in a multiprocessor system, and bandwidth generally much lower. This leads to
different design decisions in areas such as memory consistency and cache coherence
where the increased latency increases the cost of operations. Several relaxed memory
consistency models, such as release consistency (RC), lazy release consistency (LRC),
and entry consistency (EC) have been implemented in software DSM systems to reduce
communication latency. JIAJIA implements the scope consistency (ScC)[Singh 96] ,
which is even lazier than lazy release consistency (LRC). Adopting the ScC greatly
simplifies the lock-based cache coherence protocol of JIAJIA, and thus achieves a
higher performance.

 2

 While relaxed consistency models and coherence protocols enhance software DSMs
by reducing communication overhead as much as possible, prefetching provides an
alternative way to reach higher performance by overlapping computation with
communication. Hardware and software prefetch mechanisms speculatively bring data
to a processor that is likely to be accessed soon. Some attempts have been made on
software-controlled prefetching [Quoc 98]. With programmer -inserted prefetching and
compiler-inserted prefetching, it appears to achieve a better performance on many
applications. However, the results in investigating prefetching with runtime information
are not satisfied. Although using dynamic information to issue prefetching can
overcome some of the limitations of statically inserted prefetching, the overheads of
this approach often involve more small-sized message communications and more
complex coherency protocols that finally offset any gain in memory performance.
 Basically, seeking dynamic runtime prefetching mechanism suitable for all kinds of
applications is extremely difficult under current hardware and software technology. To
focus on solving some specific applications, however, is promising and worthful in real
world. Today, more and more scientific computation parallel algorithms have been
rewritten under software DSM due to the advantage of its large shared linear address
space. And statistic report shows most scientific applications have similar memory
access regularity such as consecutive, stride or nested-stride based data access patterns.
Thus accelerating such applications by prefetching is a valuable work and will make
deep impact on the fields of both SVM and scientific computing.
 In this report, an experimental work, adding a specific dynamic prefetching in
JIAJIA, has been introduced and evaluated. This prefetching algorithm is proposed to
be sensitive to those applications with stride access pattern (say, MM, LU and FFT).
Furthermore, it can be easily added into JIAJIA’s scope consistency model without
much modification. The test results show that it has high prediction accuracy and
achieves good overlap between communication and computation in some benchmark
scientific applications.
 The rest of the report is organized as follows. The following section introduces
background knowledge about JIAJIA. Section 3 describes our prefetching algorithms in
detail. Section 4 presents the key issues and data structures in our implementation.
Section 5 gives the performance tests and analysis on those results. Conclusions are
made in the end of this report.

2 Background Knowledge about JIAJIA

2.1 Memory Organization of JIAJIA
 Unlike other software DSMs that adopt the COMA -like memory architecture, JIAJIA
organizes the shared memory in a NUMA-like way. In JIAJIA, each shared page has a
fixed home node and homes of shared pages are distributed across all nodes.
References to local part of shared memory always hit locally. References to remote
shared pages cause these pages to be fetched from its home and cached locally. When

 3

cached, the remote page is kept at the same user space address as that in its home node.
In this way, shared address of a page is identical in all processors; no address
translation is required on a remote access. Figure 2.1 shows JIAJIA’s organization of
the shared memory.

P1 P3P2

home

home

home
cached

cached

cachedcached

cached

Interconnection Network

Figure 2.1. Memory Organization of JIAJIA

 With the above memory organization, JIAJIA is able to support shared memory that
is larger than physical memory of one machine. In other software DSMs such as
TreadMarks, CVM, and Quarks, the shared space is limited by the physical memory of
one machine because no cache replacing mechanism is implemented and hence each
host should have the capability of holding all shared pages.
 Another important feature of JIAJIA’s memory organization is that it allows the
programmer to flexibly control the initial distribution of homes of shared locations. The
basic shared memory allocation function of JIAJIA allows the programmer to allocate a
certain size of shared memory block by block across all processors.

2.2 Memory Consistency Model for JIAJIA

 Systems that maintain coherence at large granularity such as shared virtual memory
systems, suffer from false sharing and extra communication. Relax memory consistency
models have been used to alleviate these problems, but at a cost in programming
complexity. Release Consistency (RC) and Lazy Release Consistency (LRC) are
accepted to offer a reasonable tradeoff between performance and programming
complexity. Entry Consistency (EC) offers a more relaxed consistency model, but it
requires explicit association of shared data objects with synchronization variables. The
programming burden of providing such associations can be substantial.
 JIAJIA implements scope consistency model (ScC), which offers most of the
performance advantages of the EC model without variables. Instead, ScC dynamically
detects the associations implied by the programmer, using a programming interface
similar to that of RC or LRC.
 A consistency scope is a limited view of memory with respect to which memory
references are performed. That is, modifications to data performed within a scope are

 4

only guaranteed to be visible within that scope. We can think of a consistency scope as
consisting of all critical sections protected by the same lock. Additionally, barriers
define a global consistency scope, which includes the entire program. For each
consistency scope there is an open operation that opens the scope and a close operation
that closes the scope. The interval during which a consistency scope is open at a given
process (e.g. a given critical section protected by the lock) is called a session. Any
modifications made within a consistency scope session become visible to processes that
then enter new sessions of that scope (acquire that lock or pass a barrier). Modifications
made outside the scope session are not guaranteed to be visible. Figure 2.2 illustrates
consistency scopes. Memory is accessed through different perspective or scope is built
out of sessions, which occur on different processes. Sessions belonging to different
scopes can interleave in time or overlap in the code or memory. In addition to the
individual consistency scopes (whose sessions may be delineated by locks and unlocks,
say), there is also a global consistency scope with regard to which all memory
references are performed. The sessions of the global scope are typically delineated by
barriers.
 To define the model we need an additional de finition to distinguish a reference being
performed with respect to a process:
 A write that occurs in a consistency scope is performed with respect to that scope
when the current session of that scope closes.

The consistency rely for Scope Consistency are :
1. Before a new session of a consistency scope is allowed to open at process P, any

write previously performed with respect to that consistency scope must be
performed with respect to P.

2. A memory access is allowed to perform with respect to a process P only after all
consistency scope sessions previously entered by P (in program order) have been
successfully opened.

Shared Memory

Write X

Read X

 Consistency Scope 1 Consistency Scope 2
Figure 2.2 Consistency Scopes

 5

3 Prefetching Algorithm

3.1 Address-based Prefetching
 Hardware and software prefetch mechanisms speculatively bring data to a processor
that is likely to be accessed soon [Koppelman 00]. Two common prefetching methods
are sequential and stride [Fu 92]. Sequential prefetching is designed to exploit reference
(memory address) sequences of the form a… a+1 …a+2… The prefetching mechanism
may react to the use of an address a by fetching just a+1 or for systems where the fetch
latency is high, by fetching a+1, a+2 …a+d, where d>0 is the pr efetching degree. Such
sequences are of course quite common, generated, for example, by sequential access to
an array.
 In adaptive sequential prefetching (ASP) [Dahlgren 95] the degree is adjusted based
on the success of past prefetches. The hardware keeps track of the number of prefetched
line that have been used. After some number of prefetches, the number of used
prefetches is checked and the degree adjusted.
 Stride prefetching is designed to exploit reference sequences of the form
a…a+s…a+2s… , where s is the stride of the prefetch. Such sequences might be
generated by accessing an array at some stride (every s’ th element) or by sequential
access to an array of large elements, with only a part of each element being accessed.
 These address-based prefetching algorithms, however, can’t be directly used in
page-based software DSMs. The overhead will be extremely high if keeping track of
memory access operations by software. Since most SVMs implement remote memory
access by catching page faults, we can only exploit such information to make address
prediction. In the next subsection, our brand-new prefetching algorithm based on page
prediction is proposed and introduced.

3.2 Page-based Dynamic Prefetching Algorithm

 Our new algorithm aims at exploiting the page access patterns corresponding to the
consecutive stride based data access patterns.

We still assume the reference sequences pattern as a…a+s…a+2s… The
corresponding page references are b1… b2… b3… (bi is page number), and page size is d.

Theory: Assume rpds +×= (0≤r<d), here p and r are both integers, then the

difference of two consecutive page numbers bi and bi+1 is either p or p+1. Formulize as:
bi+1 - bi = p or bi+1 - bi = p+1.
Proof: Assume the base address of page bi is bi(a). According to the given

conditions, a falls in page b1, assume its offset within b1 is n. n satisfies: 0 ≤ n < d.
Then the address of the second data a+s satisfies:

a+s = (b1(a) + n) + (rpd +×) (1)

Here r and n satisfy 0 ≤ r < d and 0 ≤ n < d, according to the inequality property,
we can reason that 0≤ r + n < 2d, bring it into (1), we conclude that:

b1(a) + pd × ≤a + s < b1(a) + pd × +2d = b1(a) +)2(+× pd (2)

 6

When))1(,[)(1)(1 +×+×+∈+ pdbpdbsa aa , a+s falls in page b1 + p.

When))2(),1([)(1)(1 +×++×+∈+ pdbpdbsa aa , a+s falls in page b1 + p+1.

Thus we have proved b2 – b1 = p or b2 – b1 = p+1.
Using the same method, we conclude that for all consecutive access pages bi and bi+1,

either bi+1 - bi = p or bi+1 - bi = p+1 holds.
 Implementing this simple theory, we can do a perfect prediction for the access
pattern of the page sequences. The process is as following:
1) Prefetch will begin when two consecutive page faults have been detected. The page
numbers b1, b2 are recorded.
2) Calculate b2 - b1 , let k = b2 - b1
3) Prefetch three consecutive pages b2 + k – 1, b2 + k and b2 + k +1.
4) int i = 3, unsure = 1, state;
 while(hit in the prefetching queue)

{
if (unsure)
{

 if (bi == bi-1 + k – 1)
{

 set uns ure = 0;
 set state to –1;
 prefetch page bi + k – 1 and page bi + k;
 }
 else if (bi == bi -1 + k)
 {
 set unsure = 0;
 set state to 1;
 prefetch page bi + k and bi + k +1;

}
else

 prefetch page bi + k –1 and bi + k and bi + k +1;
 }
 if (!unsure)

{
if (state == -1)

 prefetch page bi + k – 1 and page bi + k;
if (state == 1)

 prefetch page bi + k and page bi + k+1;
 }

i++;
}

Analysis:

 7

In step (2), k = p or k = p+1. But we can’t tell the exact value of k at this time. If k =
p, then the next data will fall in page b2 + k or b2 + k + 1; If k = p+1, then the next data
will fall in page b2 + k - 1 or b2 + k. So if we are unsure of the value of k, to avoid miss,
we have to prefetch the next 3 pages b2 + k-1 , b2 + k and b2 + k + 1. Three pages
prefetching will continue until variable unsure change to 1 (see step(3)). After that, we
can continue prefetching 2 pages each time.
 Step(3) also shows that our prefetching will stop once the next data missed in the
prefeching queue.

3.3 Simplified Algorithm

Page-based prefetching has some constraints:
1) This prefetching algorithm will at least prefetch two pages each time in order to
achieve the maximum hit rate. This will cause three problems: the first is at least one
page is waste each time since the data could only reside in one page, if the data
sequence’s length is L, then at least L pages will be prefetched unused. These will lead
to at least double communication time than prefetching one page at a time.
1) Two pages prefetching also has the potential for false sharing, which will cause

more latency.
2) You can’t increase the prefetch degree. For example, if you try to extend the

prefetch degree to 2, assume now you hit page bi , then next time you have to
prefetch bi + p, bi+p+1, bi+2p, bi+2p+1, bi+2p+2, there will be 3 pages waste and 5
times communication and more potential of false sharing. You can imagine , when
the degree extends to n, one time prefetching number of pages will reach O(n2),
Compare this data, one degree prefetch is best in this algorithm, but the
performance improvement of prefetching will be limited.

For convenience, we introduce a new array c1,c2,c3… , where ci = bi+1-bi.. As we have

proved, ci = p or ci = p +1. Consider the page access pattern deeper, we found that
the sequence c1,c2,c3… , always appears in two patterns:

1) p, p… p, p+1, p, p… p, p+1… .
or
2) p+1, p+1… p+1, p, p+1, p+1… p+1

Let n = 





r
d , if n≥2, then the sequence of c1,c2,c3… will appear as: pp… p, p+1,

pp… , where the average number of every sequential p (which are concatenated by
single p+1) is n. The probability that p will happen is near n/(n+1), with the increase of
n, n/(n+1) will increase rapidly until it approaches to 1. On the other hand, if n = 1
c1,c2,c3… will appear as: p+1, p+1… p+1, p, p+1, p+1… p+1, p… , in this case, we will

consider m = 





− rd
r . The average number of every sequential p+1 is m. The

probability that p+1 will happen is near m/(m+1). Similar to the above analysis, with m

 8

increasing, m/(m+1) will increase rapidly until it approaches to 1. Then we conclude
that the chance that we will keep prefetching pages with same stride is high. So most of
the time, we can keep prefetching pages with the same stride successfully.

Then we get our optimized page-based prefetching algorithm:
1) Observe page fault and calculate stride p between two sequential fault pages
2) Not begin prefetching until k consecutive fault pages have the same stride p.
3) Prefetch the next page according to p.
4) If hit, turn to (3)
5) If miss, calculate the difference between the missed page bi’ and the newly

prefetched page bi , if bi’ - bi = 1 or –1, discard bi ,turn to (3) (notice, the next
prefeching page number is bi’ + p not bi + p).

6) If bi’ - bi ≠ 1 or -1, stop prefetching.
 Notice, in step (2), k is a parameter we can adjust to decide when to begin our
prefetching. We find that when k = 3, the prefetching effect is best. When the data
access doesn’t have an obvious stride pattern, we won’t call the prefetching mechanism,
in this way, we are protected from doing useless prefetching, and thus we can achieve at
least the same performance with JIAJIA without a prefetching mechanism.
 In step (6), as we have proved, the stride of two pages only have two possible
consecutive values, p or p+1, when detecting a distance not satisfying this rule, we can
conclude that the data access pattern has changed. The prefetching should stop now.

3.4 Keeping Memory Consistency with Prefetching
 Scope consistency model updates value s only when every process reaches the same
scope boundary. So prefetching might violate memory consistency when data are
prefetched in the current scope and accessed in the next scope. For example, we can see
the following code segments that when P1 executes Max = max(a[0],a[1],a[2]), it will
possibly prefetch a[3]. But at this time a[3] has not been updated by P2 yet. Then
memory consistency will be violated in the line Max = (Max, a[3]).

 Notice that such inconsistency only occurs at the scope boundary. So we simply
discard those pages already prefetched or currently under prefetching if they are
announced to be in invalid state during the scope update procedure. Reaping benefit
from scope consistency and lock-based coherency protocol, we can keep the
consistency model easily compared to ERC and LRC models.

P1: P2:

… … … … … … … .;
Max = max(a[0], a[1], a[2]) a[3] = max(a[3], a[4], a[5]);

Jia_barrier(); Jia_barrier ();

Max = max(Max, a[3]); ……

……

 9

4 Implementation Issues

 In this section, we first give a brief introduction to the page fault handling procedure,
and then illustrate some key data structures, functions and tricks used in our
implementation.

4.1 Page Fault Handler

 The whole page fault handling procedure is shown in Figure 4.1. First, the miss page
number is calculated and added to the history page table. Then it checks whether the
page is in the prefetch queue. If hit, it simply calls mmap to map the prefetched page in
its virtual address. Otherwise it sends a page request message to page’s home memory
and wait until the page is available. After mapping the miss page, it calls our prefetch
algorithm to prefetch pages to be possibly accessed soon.

Figure 4.1 Page Fault Handling Procedure

4.2 Distinguishing Different Shared Variables
 In most applications, stride pattern only occurs within a single variable (say, array
variable) ‘s data reference sequence but seldom occurs among different variables’
reference sequence. Then how to distinguish different shared variables so that our
prefetch prediction algorithm can make sense according to the page number? In JIAJIA,
shared variables are allocated only by calling jia_alloc. So we modified this function to
record each variable’s start page number and its range. For a given page number, it’s

start

Calculate the miss page number

Page in prefetch queue?

map the page to virtual space

Get the page from
remote memory

N

Y

use prefetching algorithm to

prefetch next possible pages

return

 10

easy to decide which variable it belongs to by calculating which variable range it falls
in.

4.3 Prefetch Queue
 A prefetch queue contains all the pages that have been prefetched yet not used. Each
element in the queue has three possible states:
 READY - the page is in the queue
 WAITING - the page has been requested for prefetching but not ready now.
 EMPTY - the cell isn’t occupied.
 It’s obvious that when a page prefetch request is sent out, the page number will be
added into the queue and its state will be set to WAITING and when the page is
prefetched from remote memory, its state will change to READY. But when a page
should be removed from prefetch queue? There are three cases in which the element
should be removed.

• When the page in the prefetching queue is hit, it will be mapped to the virtual
address and then should be removed from the queue.

• When a page isn’t hit in the prefetch queue, those pages belonging to the
same variable as this page should be removed. For stride pattern, it’s
reasonable to treat those pages as mispredicted ones and thus should no
longer exist.

• When the page has been updated by other processors at the boundary of a
scope , it should be removed.

 When the queue is full, adding a new page to the queue will fail and no prefetch
request will be launched because we have no reason to eliminate any pages currently in
the queue.

4.4 Tracing Memory Reference

 Is it a good idea for the prefetch queue to record only page numbers and their states?
Consider that when a page has been prefetched, it can be directly mapped into the
virtual address space. And the prefetch queue can also use page number to unmap a
page that should be removed from the queue. However, if we directly map a prefetched
page into a virtual address and assume it will be accessed in the next memory reference,
we can’t get this page number because accessing this page won’t incur a page fault any
more. That means a successful prediction will diminish our future prefetching
prediction accuracy due to the incomplete memory reference sequence. In our
implementation, we provide extra memory to store thos e prefetched pages and don’t
map them into virtual address until the application accesses this page.

5 Experimental Results and Analysis

 To evaluate the performance of our stride -based prefetching in JIAJIA, we ported
several widely accepted benchmarks for DSM system, including LU from SPLASH2,
IS from NAS and a matrix multiplication (MM) written by ourselves.
 Ideally, the evaluation should be done on a cluster of workstations or PCs connected

 11

by Myrinet or Ethernet. Being lack of such equipment, however, we only found five
PCs donated by my friends and did our experiments on SCS LAN. Fortunately, the
result shows that our prefetching strategy has effectively overlapped the computation
and communication in applications with stride-based data access pa ttern and thus
enhanced the whole DSM performance. Those PCs are connected by 1000Mb
Ethernet(I guess so) . Each node has a Pentuim III 1GHz processor with 512MB local
physical memory, running under RedHat Linux 7.0.

5.1 MM

 The MM is a matrix multiplication program using inner product algorithm. Arrays
are distributed uniformly among all processors in row order to reach good data locality.
Table 5.1 shows the execution time with no prefetching and stride-based prefetching
respectively under different number of processors and matrix sizes.
 Data in Table 5.1 depict that JIAJIA with prefetching does perform better over the
original one. The optimization become more obvious as the problem size increases.
Furthermore, we can see that the prefetching hit rate is extreamly high (around 98%)
due to the strict stride access pattern in MM. That is a good proof for the prediction
accuracy of our algorithm.
 Basically, the execution time saved by prefetching strategy depends on the
overlapped part of communication and computation. Therefore, total communication
time should be the maximum saved time by prefetching and the absolute speedup of
execution time might not be a proper gauge here. In order to evaluate the effectiveness
of our prefetching, we calculated the proportions of saved communication time
(overlapped by computation) to the total communication time (shown in Figure 5.1).
 This figure depicts that normally over 50% communication time has been overlapped
by computation, which seems a little far beyond our initial expectation. As the
number of processors increases, more and more data need to be transferred among
those nodes. We can see from the high hit rate that almost all the communication are
successfully predicted and prefetched by our algorithm. So it’s reasonable to expect a
better saved/total comm. time ratio if running under more processors. But why the ratio
still remains the same or even worse? In fact, it’s impossible to overlap communication
and computation perfectly. Consider that if a processor sends a prefetching request to
the other, the other processor has to stop its computation and handle the remote request.
We use signal to invoke such service in our implementation and thus we can’t execute
computation thread and network service simultaneously. Therefore, each processor will
suffer from heavy prefetching requests when communication becomes frequent. That’s
an obstacle to the scalability of prefetching if no mechanisms support true parallelism
between computation and network communication service.
 The other wired result is the performance on 5 processors isn’t so good as other cases.
As we know, in this case each processor will fetch 4/5*N rows (we can reasonably
consider them as 4/5*N pages because each float element takes 4 bytes and each row
contains at least 1024 elements, which has already exceeded a page size 4096) from
remote processors to compute the value of an element. However, the local memory may
not hold all the prefetched pages when N becomes large. Then some pages have to be

 12

pulled out and be prefetched when computing the next element and thus it needs extra
prefetch operations or communication, which leads to the reason discussed above.
Anyway, the speedup and absolute performance is acceptable.

Processors

2 3 4 5

Matrix

Size

no pre comm. no pre comm. no pre comm no pre comm.

1024 4.92 4.65*

(98.4%)

0.380 3.73 3.39

(98.83%)

0.506 3.20 2.81

(98.9%)

0.570 2.95 2.52

(99.0%)

0.609

2048 35.91 34.76

(99.6%)

1.524 26.25 24.38

(99.7%)

3.218 21.8 19.67

(99.7%)

3.914 18.8 16.46

(99.8%)

5.252

4096 271.54 266.21

(99.8%)

7.160 196.82 190.6

(99.8%)

10.501 155.6 147.08

(99.8%)

12.069 123.21 114.65

(99.8%)

23.008

 no ---- execution time (in seconds) without prefetching

 pre ---- execution time (in seconds) with pref etching

 comm. ---- total communication time (in seconds)

 * ---- prefetching hit rate is shown in parentheses

Table 5.1 Execution Time of MM Without Prefetching and With Prefetching

Figure 5.1 Saved Communication Time (Overlapped with Computation) vs Total
Communication Time (in seconds)

 Besides, software DSM page granularity seems not to be a neglectable factor as well as those

parameters discussed above. We tested 1024*1024 MM with different page sizes (shown in Table

5.2 and Figure 5.2) to evaluate how page size affects our prefetching strategy (say, it might reduce
prefetching frequency as page size increases) and thus the execution time.

Processors

2 3 4 5

Page

Size

no pre no pre no Pre no Pre

4096 5.24 4.89 4.11 3.68 3.61 3.32 3.71 3.45

8192 4.92 4.65 3.73 3.39 3.20 2.81 2.95 2.52

16384 4.82 4.59 3.53 3.27 2.97 2.66 2.73 2.47

Table 5.2 Execution Time (in seconds) of 1024*1024 MM under Different DSM

Matrix size = 1024 Matrix size = 2048 Matrix size = 4096

0

1

2

3

4

5

6

2 3 4 5

0

0.1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

2 3 4 5
0
5
10
15
20
25

2 3 4 5

Unoverlapped
Comm.Time

Overlapped
Comm. Time

 13

Page Size

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

sa
ve

d/
to

ta
l c

om
m

. t
im

e
2 3 4 5

Processors

4096
8192

16384

Figure 5.2 The Ratio of Saved Comm. Time to Total Comm. Time under
Different DSM Page Size

 The data shows the total execution time decreases as page size increases. For MM
problem, large page size will reduce remote memory access times (page fault) and thus
reduce execution time. But there is tradeoff between page size and saved/total
communication ratio . Small page size incurs frequent prefetchings while large size will
quickly exhausts the space of prefetching queue. We can conclude from the figure that
8192Bytes is more proper than 4096 and 16384 and consistent with JIAJIA’s default
page size.

5.2 LU

 The LU program factors a matrix into the product of a lower triangular and an upper
triangular matrix. To exploit temporal locality the matrix is split into B*B blocks of
submatrixes. The execution time is shown in Table 5.3. Because data access pattern in
each loop of LU is nearly stride but isn’t between two consecutive loops, our
prefetching prediction accuracy (the ratio pages by prefetching to total pages by remote
access) isn’t as high as MM. The saved/total communication ratio is similar to MM
though, which contributes to our conservative prefetching algorithm.

Processors

2 3 4

Matrix
 Size

no Pre no pre No Pre

512 8.21 8.08

(83.3%)

6.22 6.10

(78.6%)

5.94 5.72

(81.3%)

1024 51.46 50.86

(90.3%)

36.18 35.87

(82.5%)

28.28 27.50

(74.5%)

2048 402.38 394.78

(93.1%)

278.1 272.2

(90.9%)

207.80 203.69

(81.16%)

Table 5.3 Execution Time (in seconds) of LU

 14

5.3 IS

 IS ranks an unsorted sequence of keys using bucket sort algorithm. Keys are distributed among
processors and communication happens only at the end of each local sort. So no stride-based shared

memory access pattern exists in IS. We choose this program to test whether our prefetching

algorithm will greatly reduce JIAJIA’s performance under its worst case.

 Test results (Table 5.4) show that there is no much performance difference between prefetching
and no prefetching. As we mentioned before, our conservative prefetching algorithm won’t send
prefetching requests unless it believes current data access pattern is a stride. Thus there are no actual

prefetching operations performed in IS.

Processors

2 3 4

 Size

no Pre no Pre No Pre

222 1.42 1.377 1.792 1.834 1.953 1.996

223 2.622 2.570 2.443 2.494 2.591 2.619

224 6.061 5.890 5.833 5.805 5.708 5.699

Table 5.4 Execution Time (in seconds) of IS

6 Conclusions and Future Work
 Memory prefetching provides an efficient way to reduce application’s overall
execution time by overlapping communication with computation under DSM systems.
Software-based dynamic prefetching, however, is not satisfied due to its formidable
overhead. Avoiding seeking for a general solution, we focus on evaluating the
performance of some specific prefetching mechanism, which is suitable to a certain
class of applications, in a software DSM JIAJIA based on scope consistency. In this
report, we proposed a page-based, stride -sensitive prefetching algorithm. It can be
combined into JIAJIA’s scope consistency model without much modification of
coherency protocol. Then we ported three scientific applications from benchmark to
evaluate the performance of our prefetching algorithm. The experimental results show
that this algorithm has high prediction accuracy in applications with stride access
pattern. And in average more than 50% communication time is well overlapped with
computation time in MM and LU. For IS, an application with none-stride access pattern,
our conservative prefetching strategy also achieves similar performance compared to
the original JIAJIA system.
 Our current work is still very far to reach the final goal - software-based dynamic
prefetching. Inspired by this work, we are confident to make further steps in this
research. We aim our future work at three aspects: The first is to add and evaluate more
prefetching algorithms (say, algorithm sensitive to nested-stride access pattern) in
JIAJIA. The second is to seek for proper and efficient prefetching algorithms for
RC-based or EC-based SVMs. The third is to study on the scalability of software based
prefetching (say, can the scalability problem discussed in 5.1 be alleviated to some
extent?)

 15

Acknowledgement

 First of all, we would like to thank Prof. Todd C. Mowry for his kind help on our
project proposal and providing us related materials. Thanks also go to Hua, Yiheng and
Xuerui , who provided us their computers to perform our tests. Finally, we thank
JIAJIA develop group for giving us their source codes.

References

[Bershad 93] Brian N. Bershad, Matthew J. Zekauskas, and Wayne A. Sawdon. The
Midway Distributed Shared Memory System. In Proceedings of the 38th IEEE
Computer Society International Conference, pages 528--537. IEEE, February
1993.

[Carter 91] John B. Carter, John K. Bennett, and Willy Zwaenepoel. Implementation
and Performance of MUNIN. In Proceedings of the 13th ACM Symposium on
Operating Systems Principles, pages 152--164, October 1991.

[Dahlgren 95] F. Dahlgren, M. Dubois, and P. Stenstrom, Sequential Hardware
Prefetching in Shared-Memory Multiprocessors. IEEE Transactions on
Parallel and Distributed Systems, vol. 6, pp. 733--746, July 1995.

[Fu 92] John W. C. Fu, Janak H. Patel, and B. L. Janssens. Stride Directed Prefetching
in Scalar Processors. In MICRO-26, 1992.

[Hu 99] Weiwu Hu, Weisong Shi, Zhimin Tang . JIAJIA: An SVM System Based
on A New Cache Coherence Protocol.In Proceedings of the High Performance
Computing and Networking (HPCN'99) , LNCS 1593, pp. 463-472, Springer,
April, 1999, Amsterdam, Netherlands.

[Keleher 94] Pete Keleher, Sandhya Dwarkadas, Alan Cox, and Willy Zwaenepoel.
Treadmarks: Distributed shared memory on standard workstations and
operating systems. In Proceedings of the 1994 Winter Usenix Conference,
pages 115--131, January 1994.

[Keleher 96] Keleher, P. The Relative Importance of Concurrent Writers and Weak
Consistency Models. In Proceedings of the 16 th International Conference on
Distributed Computing Systems. 1996.

[Koppelman 00] D.M. Koppelman, Neighborhood prefetching on multiprocessors using
instruction history. To appear in Proceedings of the International Conference
on Parallel Architectures and Compilation Techniques, October 2000.

 16

[Li 88] Kai Li. IVY: A shared virtual memory system for parallel computing. In
International Conference on Parallel Processing, pages 94--101, 1988.

[Pal 96] Jaswinger Pal, Singh Liviu Iftode and Kai Li. Scope consistency: a bridge
between release consistency and entry consistency. Technical Report
TR-509-96, Princeton, NJ, January 1996.

[Quoc] Charles Quoc Cuong Chan. Graduate Department of Computer Science,
University of Toronto.

