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Abstract 
  While software-controlled static prefetching in software DSMs appears to achieve 
great performance on many applications, the results in investigating prefetching with 
runtime information are not satisfied due to the formidable overhead. Seeking specific 
prefetching mechanisms to reduce the execution time of a certain kind of applications, 
however, is a promising work and will impact on SVMs and other fields. In this report, 
an experimental work, adding dynamic prefetching in JIAJIA, a software DSM based 
on scope consistency [Pal 96], has been proposed and evaluated. There are two features 
in our prefetching algorithm: it’s sensitive to stride access pattern and can be combined 
into JIAJIA’s lock-based coherency protocol without much modification. The test 
results show that it has high prediction accuracy and achieves good overlap between 
communication and computation in benchmark applications. This work gives a good 
proof that study on software-based dynamic prefetching is reasonable, promising and 
worth to make further steps. 

 

1 Introduction 

  Over the past decade, software Distributed Shared Memory (DSM) systems have 
been extensively studied to provide a good compromise between programmability of 
shared memory multiprocessors and hardware simplicity of message passing 
multicomputers. In DSM systems, physical memories of multiple workstations are 
combined to form a larger shared space. Many current software DSM systems, such as 
Ivy[Li 88], Midway[Bershad 93], Munin[Carter 91], TreadMarks[Keleher 94], and 
CVM[Keleher 96] have been implemented on the top of message passing hardware or 
on network of workstations.  
  Communication latency is generally much larger in a DSM system than it would be 
in a multiprocessor  system, and bandwidth generally much lower. This leads to 
different design decisions in areas such as memory consistency and cache coherence 
where the increased latency increases the cost of operations. Several relaxed memory 
consistency models, such as release consistency (RC), lazy release consistency (LRC), 
and entry consistency (EC) have been implemented in software DSM systems to reduce 
communication latency. JIAJIA implements the scope consistency (ScC)[Singh 96] , 
which is even lazier than lazy release consistency (LRC). Adopting the ScC greatly 
simplifies the lock-based cache coherence protocol of JIAJIA, and thus achieves a 
higher performance.  
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  While relaxed consistency models and coherence protocols enhance software DSMs 
by reducing communication overhead as much as possible, prefetching provides an 
alternative way to reach higher performance by overlapping computation with 
communication. Hardware and software prefetch mechanisms speculatively bring data 
to a processor that is likely to be accessed soon. Some attempts have been made on 
software-controlled prefetching [Quoc 98]. With programmer -inserted prefetching and 
compiler-inserted prefetching, it appears to achieve a better performance on many 
applications. However, the results in investigating prefetching with runtime information 
are not satisfied. Although using dynamic information to issue prefetching can 
overcome some of the limitations of statically inserted prefetching, the overheads of 
this approach often involve more small-sized message communications and more 
complex coherency protocols that finally offset any gain in memory performance.  
  Basically, seeking dynamic runtime prefetching mechanism suitable for all kinds of 
applications is extremely difficult under current hardware and software technology. To 
focus on solving some specific applications, however, is promising and worthful in real 
world. Today, more and more scientific computation parallel algorithms have been 
rewritten under software DSM due to the advantage of its large shared linear address 
space. And statistic report shows most scientific applications have similar memory 
access regularity such as consecutive, stride or nested-stride based data access patterns. 
Thus accelerating such applications by prefetching is a valuable work and will make 
deep impact on the fields of both SVM and scientific computing. 
  In this report, an experimental work, adding a specific dynamic prefetching in 
JIAJIA, has been introduced and evaluated. This prefetching algorithm is proposed to 
be sensitive to those applications with stride access pattern (say, MM, LU and FFT). 
Furthermore, it can be easily added into JIAJIA’s scope consistency model without 
much modification. The test results show that it has high prediction accuracy and 
achieves good overlap between communication and computation in some benchmark 
scientific applications.  
  The rest of the report is organized as follows. The following section introduces 
background knowledge about JIAJIA. Section 3 describes our prefetching algorithms in 
detail. Section 4 presents the key issues and data structures in our implementation. 
Section 5 gives the performance tests and analysis on those results. Conclusions are 
made in the end of this report.  

 

2 Background Knowledge about JIAJIA 

2.1 Memory Organization of JIAJIA 
  Unlike other software DSMs that adopt the COMA -like memory architecture, JIAJIA 
organizes the shared memory in a NUMA-like way. In JIAJIA, each shared page has a 
fixed home node and homes of shared pages are distributed across all nodes. 
References to local part of shared memory always hit locally. References to remote 
shared pages cause these pages to be  fetched from its home and cached locally. When 
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cached, the remote page is kept at the same user space address as that in its home node. 
In this way, shared address of a page is identical in all processors; no address 
translation is required on a remote access. Figure 2.1 shows JIAJIA’s organization of 
the shared memory.  
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Figure 2.1.  Memory Organization of JIAJIA  

 
  With the above memory organization, JIAJIA is able to support shared memory that 
is larger than physical memory of one machine. In other software DSMs such as 
TreadMarks, CVM, and Quarks, the shared space is limited by the physical memory of 
one machine because no cache replacing mechanism is implemented and hence each 
host should have the capability of holding all shared pages. 
  Another important feature of JIAJIA’s memory organization is that it allows the 
programmer to flexibly control the initial distribution of homes of shared locations. The 
basic shared memory allocation function of JIAJIA allows the programmer to allocate a 
certain size of shared memory block by block across all processors. 

2.2 Memory Consistency Model for JIAJIA 

  Systems that maintain coherence at large granularity such as shared virtual memory 
systems, suffer from false sharing and extra communication. Relax memory consistency 
models have been used to alleviate these problems, but at a cost in programming 
complexity. Release Consistency (RC) and Lazy Release Consistency (LRC) are 
accepted to offer a reasonable tradeoff between performance and programming 
complexity. Entry Consistency (EC) offers a more relaxed consistency model, but it 
requires explicit association of shared data objects with synchronization variables. The 
programming burden of providing such associations can be substantial. 
  JIAJIA implements scope consistency model (ScC), which offers most of the 
performance advantages of the EC model without variables. Instead, ScC dynamically 
detects the associations implied by the programmer, using a programming interface 
similar to that of RC or LRC. 
  A consistency scope is a limited view of memory with respect to which memory 
references are performed. That is, modifications to data performed within a scope are 
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only guaranteed to be visible within that scope. We can think of a consistency scope as 
consisting of all critical sections protected by the same lock. Additionally, barriers 
define a global consistency scope, which includes the entire program. For each 
consistency scope there is an open operation that opens the scope and a close operation 
that closes the scope. The interval during which a consistency scope is open at a given 
process (e.g. a given critical section protected by the lock) is called a session. Any 
modifications made within a consistency scope session become visible to processes that 
then enter new sessions of that scope (acquire that lock or pass a barrier). Modifications 
made outside the scope session are not guaranteed to be visible. Figure 2.2 illustrates 
consistency scopes. Memory is accessed through different perspective or scope is built 
out of sessions, which occur on different processes. Sessions belonging to different 
scopes can interleave in time or overlap in the code or memory. In addition to the 
individual consistency scopes (whose sessions may be delineated by locks and unlocks, 
say), there is also a global consistency scope with regard to which all memory 
references are performed. The sessions of the global scope are typically delineated by 
barriers. 
  To define the model we need an additional de finition to distinguish a reference being 
performed with respect to a process: 
  A write that occurs in a consistency scope is performed with respect to that scope 
when the current session of that scope closes. 

The consistency rely for Scope Consistency are : 
1.  Before a new session of a consistency scope is allowed to open at process P, any 

write previously performed with respect to that consistency scope must be 
performed with respect to P.  

2.  A memory access is allowed to perform with respect to a process P only after all 
consistency scope sessions previously entered by P (in program order) have been 
successfully opened.  

Shared Memory

Write X

Read X

  

          Consistency Scope 1       Consistency Scope 2 
Figure 2.2 Consistency Scopes 
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3 Prefetching Algorithm 

3.1 Address-based Prefetching 
  Hardware and software prefetch mechanisms speculatively bring data to a processor 
that is likely to be accessed soon [Koppelman 00]. Two common prefetching methods 
are sequential and stride [Fu 92]. Sequential prefetching is designed to exploit reference 
(memory address) sequences of the form a… a+1 …a+2…  The prefetching mechanism 
may react to the use of an address a  by fetching just a+1 or for systems where the fetch 
latency is high, by fetching a+1, a+2 …a+d, where d>0  is the pr efetching degree. Such 
sequences are of course quite common, generated, for example, by sequential access to 
an array.  
  In adaptive sequential prefetching (ASP) [Dahlgren 95] the degree is adjusted based 
on the success of past prefetches. The hardware keeps track of the number of prefetched 
line that have been used. After some number of prefetches, the number of used 
prefetches is checked and the degree adjusted. 
  Stride prefetching is designed to exploit reference sequences of the form 
a…a+s…a+2s… , where s is the stride of the prefetch. Such sequences might be 
generated by accessing an array at some stride (every s’ th element) or by sequential 
access to an array of large elements, with only a part of each element being accessed.  
  These address-based prefetching algorithms, however, can’t be directly used in 
page-based software DSMs. The overhead will be extremely high if keeping track of 
memory access operations by software. Since most SVMs implement remote memory 
access by catching page faults, we can only exploit such information to make address 
prediction. In the next subsection, our brand-new prefetching algorithm based on page 
prediction is proposed and introduced.  

3.2 Page-based Dynamic Prefetching Algorithm 

  Our new algorithm aims at exploiting the page access patterns corresponding to the 
consecutive stride based data access patterns.  

We still assume the reference sequences pattern as a…a+s…a+2s…  The 
corresponding page references are b1… b2… b3…  (bi is page number), and page size is d.  

Theory:  Assume rpds +×=  (0≤r<d), here p and r are both integers, then the 

difference of two consecutive page numbers bi and bi+1  is either p or p+1. Formulize as:  
bi+1 - bi  = p or bi+1 - bi  = p+1.  
Proof:  Assume the base address of page bi is bi(a).  According to the given 

conditions, a  falls in page b1, assume its offset within b1 is n. n satisfies: 0 ≤ n < d. 
Then the address of the second data  a+s satisfies: 

a+s  = (b1(a) + n ) + ( rpd +× )                 (1) 

Here r and n satisfy 0 ≤ r < d and 0 ≤ n < d, according to the inequality property, 
we can reason that 0≤ r + n < 2d, bring it into (1), we conclude that: 

b1(a) + pd ×  ≤a + s < b1(a) + pd × +2d = b1(a) + )2( +× pd          (2) 
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When ))1(,[ )(1)(1 +×+×+∈+ pdbpdbsa aa , a+s falls in page b1 + p.  

When ))2(),1([ )(1)(1 +×++×+∈+ pdbpdbsa aa , a+s falls in page b1 + p+1. 

Thus we have proved b2 – b1 = p or b2 – b1 = p+1. 
Using the same method, we conclude that for all consecutive access pages bi and bi+1, 

either bi+1 - bi  = p or  bi+1 - bi  = p+1 holds. 
  Implementing this simple theory, we can do a perfect prediction for the access 
pattern of the page sequences. The process is as following:  
1) Prefetch will begin when two consecutive page faults have been detected. The page 
numbers b1, b2 are recorded. 
2) Calculate b2 - b1 , let k = b2 - b1 
3) Prefetch three consecutive pages b2 + k – 1, b2 + k and b2 + k +1.  
4) int i = 3, unsure = 1, state; 
  while( hit in the prefetching queue) 

{ 
if (unsure) 
{ 

   if (bi == bi-1 + k – 1) 
{ 

           set uns ure = 0; 
           set state to –1; 
           prefetch page bi + k – 1 and page bi + k; 
         } 
    else if (bi == bi -1 + k ) 
          { 
            set unsure = 0; 
            set state to 1; 
            prefetch page bi + k and bi + k +1; 

} 
else  

        prefetch page bi + k –1 and bi + k and bi + k +1; 
      } 
      if (!unsure) 

{ 
if (state == -1) 

      prefetch page bi + k – 1 and page bi + k; 
if (state == 1) 

      prefetch page bi + k and page bi + k+1; 
 } 

i++; 
} 

 
Analysis: 
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In step (2), k = p or k = p+1. But we can’t tell the exact value of k at this time. If k = 
p, then the next data will fall in page b2 + k or b2 + k + 1; If k = p+1, then the next data 
will fall in page b2 + k - 1 or b2 + k. So if we are unsure of the value of k, to avoid miss, 
we have to prefetch the next 3 pages b2 +  k-1 , b2 + k and b2 + k + 1. Three pages 
prefetching will continue until variable unsure change to 1 (see step(3)). After that, we 
can continue prefetching 2 pages each time. 
  Step(3) also shows that our prefetching will stop once the next data missed in the 
prefeching queue.  

3.3 Simplified Algorithm 

Page-based prefetching has some constraints: 
1) This prefetching algorithm will at least prefetch two pages each time in order to 
achieve the maximum hit rate. This will cause three problems: the first is at least one 
page is waste each time since the data could only reside in one page, if the data 
sequence’s length is L, then at least L pages will be prefetched unused. These will lead 
to at least double communication time than prefetching one page at a time. 
1) Two pages prefetching also has the potential for false sharing, which will cause 

more latency.  
2) You can’t increase the prefetch degree. For example, if you try to extend the 

prefetch degree to 2, assume now you hit page bi , then next time you have to 
prefetch bi + p, bi+p+1, bi+2p, bi+2p+1, bi+2p+2, there will be 3 pages waste and 5 
times communication and more potential of false sharing. You can imagine , when 
the degree extends to n, one time prefetching number of pages will reach O(n2), 
Compare this data, one degree prefetch is best in this algorithm, but the 
performance improvement of prefetching will be limited. 
 
For convenience, we introduce a new array c1,c2,c3… , where ci = bi+1-bi.. As we have 

proved, ci  = p or ci  = p +1. Consider the page access pattern deeper, we found that 
the sequence c1,c2,c3… , always appears in two patterns: 

1) p, p… p, p+1, p, p… p, p+1… .   
or 
2) p+1, p+1… p+1, p, p+1, p+1… p+1 

 

Let n = 





r
d , if n≥2, then the sequence of c1,c2,c3…  will appear as:  pp… p, p+1, 

pp… , where the average number of every sequential p (which are concatenated by 
single p+1) is n. The probability that p will happen is near n/(n+1), with the increase of 
n, n/(n+1) will increase rapidly until it approaches to 1. On the other hand, if n = 1 
c1,c2,c3…  will appear as: p+1, p+1… p+1, p, p+1, p+1… p+1, p…  , in this case, we will 

consider m = 





− rd
r . The average number of every sequential p+1 is m. The 

probability that p+1 will happen is near m/(m+1). Similar to the above analysis, with m 
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increasing, m/(m+1) will increase rapidly until it approaches to 1. Then we conclude 
that the chance that we will keep prefetching pages with same stride is high. So most of 
the time, we can keep prefetching pages with the same stride successfully. 

Then we get our optimized page-based prefetching algorithm: 
1) Observe page fault and calculate stride p between two sequential fault pages 
2) Not begin prefetching until k consecutive fault pages have the same stride p.  
3) Prefetch the next page according to p. 
4) If hit, turn to (3)  
5) If miss, calculate the difference between the missed page bi’ and the newly 

prefetched page bi , if  bi’ - bi = 1 or –1, discard bi ,turn to (3) (notice, the next 
prefeching page number is bi’ + p not bi + p). 

6) If bi’ - bi ≠ 1 or -1, stop prefetching. 
  Notice, in step (2), k is a parameter we can adjust to decide when to begin our 
prefetching. We find that when k = 3, the prefetching effect is best. When the data 
access doesn’t have an obvious stride pattern, we won’t call the prefetching mechanism, 
in this way, we are protected from doing useless prefetching, and thus we can achieve at 
least the same performance with JIAJIA without a prefetching mechanism. 
  In step (6), as we have proved, the stride of two pages only have two possible 
consecutive values, p or p+1, when detecting a distance not satisfying this rule, we can 
conclude that the data access pattern has changed. The prefetching should stop now. 

 

3.4 Keeping Memory Consistency with Prefetching 
  Scope consistency model updates value s only when every process reaches the same 
scope boundary. So prefetching might violate memory consistency when data are 
prefetched in the current scope and accessed in the next scope. For example, we can see 
the following code segments that when P1 executes Max = max(a[0],a[1],a[2]), it will 
possibly prefetch a[3]. But at this time a[3] has not been updated by P2 yet. Then 
memory consistency will be violated in the line Max = (Max, a[3]).  
 

  
  Notice that such inconsistency only occurs at the scope boundary. So we simply 
discard those pages already prefetched or currently under prefetching if they are 
announced to be in invalid state during the scope update procedure. Reaping benefit 
from scope consistency and lock-based coherency protocol, we can keep the 
consistency model easily compared to ERC and LRC models. 

P1:                           P2: 

… … … …                          … … … .; 
Max = max(a[0], a[1], a[2] )         a[3] = max(a[3], a[4], a[5]);                

Jia_barrier();                     Jia_barrier (); 

Max = max(Max, a[3]);              …… 

……  
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4 Implementation Issues 

  In this section, we first give a brief introduction to the page fault handling procedure, 
and then illustrate some key data structures, functions and tricks used in our 
implementation. 

4.1 Page Fault Handler 

  The whole page fault handling procedure is shown in Figure 4.1. First, the miss page 
number is calculated and added to the history page table. Then it checks whether the 
page is in the prefetch queue. If hit, it simply calls mmap to map the prefetched page in 
its virtual address. Otherwise it sends a page request message to page’s home memory 
and wait until the page is available. After mapping the miss page, it calls our prefetch 
algorithm to prefetch pages to be possibly accessed soon.  
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

 
 
 
 

Figure 4.1  Page Fault Handling Procedure  
 
 

4.2 Distinguishing Different Shared Variables 
  In most applications, stride pattern only occurs within a single variable (say, array 
variable) ‘s data reference sequence but seldom occurs among different variables’ 
reference sequence. Then how to distinguish different shared variables so that our 
prefetch prediction algorithm can make sense according to the page number? In JIAJIA, 
shared variables are allocated only by calling jia_alloc. So we modified this function to 
record each variable’s start page number and its range. For a given page number, it’s 

start  

Calculate the miss page number 

Page in prefetch queue? 

map the page to virtual space 

Get the page from 
remote memory 

N 

Y 

use prefetching algorithm to 

prefetch next possible pages 

return  
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easy to decide which variable it belongs to by calculating which variable range it falls 
in.  

4.3 Prefetch Queue 
  A prefetch queue contains all the pages that have been prefetched yet not used.  Each 
element in the queue has three possible states:  
  READY - the page is in the queue  
  WAITING - the page has been requested for prefetching but not ready now. 
  EMPTY - the cell isn’t occupied. 
  It’s obvious that when a page prefetch request is sent out, the page number will be 
added into the queue and its state will be set to WAITING and when the page is 
prefetched from remote memory, its state will change to READY. But when a page 
should be removed from prefetch queue? There are three cases in which the element 
should be removed.  

• When the page in the prefetching queue is hit, it will be mapped to the virtual 
address and then should be removed from the queue.  

• When a page isn’t hit in the prefetch queue, those pages belonging to the 
same variable as this page should be removed. For stride pattern, it’s 
reasonable to treat those pages as mispredicted ones and thus should no 
longer exist.  

• When the page has been updated by other processors at the boundary of a 
scope , it should be removed. 

  When the queue is full, adding a new page to the queue will fail and no prefetch 
request will be launched because we have no reason to eliminate any pages currently in 
the queue. 

4.4 Tracing Memory Reference  

  Is it a good idea for the prefetch queue to record only page numbers and their states? 
Consider that when a page has been prefetched, it can be directly mapped into the 
virtual address space. And the prefetch queue can also use page number to unmap a 
page that should be removed from the queue. However, if we directly map a prefetched 
page into a virtual address and assume it will be accessed in the next memory reference, 
we can’t get this page number because accessing this page won’t incur a page fault any 
more. That means a successful prediction will diminish our future prefetching 
prediction accuracy due to the incomplete memory reference sequence. In our 
implementation, we provide extra memory to store thos e prefetched pages and don’t 
map them into virtual address until the application accesses this page. 
  

5 Experimental Results and Analysis 

  To evaluate the performance of our stride -based prefetching in JIAJIA, we ported 
several widely accepted benchmarks for DSM system, including LU from SPLASH2, 
IS from NAS and a matrix multiplication (MM) written by ourselves.  
  Ideally, the evaluation should be done on a cluster of workstations or PCs connected 
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by Myrinet or Ethernet. Being lack of such equipment, however, we only found five 
PCs donated by my friends and did our experiments on SCS LAN. Fortunately, the 
result shows that our prefetching strategy has effectively overlapped the computation 
and communication in applications with stride-based data access pa ttern and thus 
enhanced the whole DSM performance. Those PCs are connected by 1000Mb 
Ethernet(I guess so) . Each node has a Pentuim III 1GHz processor with 512MB local 
physical memory, running under RedHat Linux 7.0.  

5.1 MM 

  The MM is a matrix multiplication program using inner product algorithm. Arrays 
are distributed uniformly among all processors in row order to reach good data locality. 
Table 5.1 shows the execution time with no prefetching and stride-based prefetching 
respectively under different number of processors and matrix sizes.  
  Data in Table 5.1 depict that JIAJIA with prefetching does perform better over the 
original one. The optimization become more obvious as the problem size increases. 
Furthermore, we can see that the prefetching hit rate is extreamly high (around 98%) 
due to the strict stride access pattern in MM. That is a good proof for the prediction 
accuracy of our algorithm.  
  Basically, the execution time saved by prefetching strategy depends on the 
overlapped part of communication and computation. Therefore, total communication 
time should be the maximum saved time by prefetching and the absolute speedup of 
execution time might not be a proper gauge here. In order to evaluate the effectiveness 
of our prefetching, we calculated the proportions of saved communication time 
(overlapped by computation) to the total communication time (shown in Figure 5.1).  
  This figure depicts that normally over 50% communication time has been overlapped 
by computation, which seems a little far beyond our initial expectation.  As the 
number of processors increases, more and more data need to be transferred among 
those nodes. We can see from the high hit rate that almost all the communication are 
successfully predicted and prefetched by our algorithm. So it’s reasonable to expect a 
better saved/total comm. time ratio if running under more processors. But why the ratio 
still remains the same or even worse? In fact, it’s impossible to overlap communication 
and computation perfectly. Consider that if a processor sends a prefetching request to 
the other, the other processor has to stop its computation and handle the remote request. 
We use signal to invoke such service in our implementation and thus we can’t execute 
computation thread and network service simultaneously. Therefore, each processor will 
suffer from heavy prefetching requests when communication becomes frequent. That’s 
an obstacle to the scalability of prefetching if no mechanisms support true parallelism 
between computation and network communication service.  
  The other wired result is the performance on 5 processors isn’t so good as other cases. 
As we know, in this case each processor will fetch 4/5*N rows (we can reasonably 
consider them as 4/5*N pages because each float element takes 4 bytes and each row 
contains at least 1024 elements, which has already exceeded a page size 4096) from 
remote processors to compute the value of an element. However, the local memory may 
not hold all the prefetched pages when N becomes large. Then some pages have to be 
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pulled out and be prefetched when computing the next element and thus it needs extra 
prefetch operations or communication, which leads to the reason discussed above. 
Anyway, the speedup and absolute performance is acceptable.  
 

Processors 

2 3 4 5 

Matrix 

Size 

no pre comm. no pre comm. no pre comm no pre comm. 

1024 4.92 4.65* 

(98.4%) 

0.380 3.73 3.39 

(98.83%) 

0.506 3.20 2.81 

(98.9%) 

0.570 2.95 2.52 

(99.0%) 

0.609 

2048 35.91 34.76 

(99.6%) 

1.524 26.25 24.38 

(99.7%) 

3.218 21.8 19.67 

(99.7%) 

3.914 18.8 16.46 

(99.8%) 

5.252 

4096 271.54 266.21 

(99.8%) 

7.160 196.82 190.6 

(99.8%) 

10.501 155.6 147.08 

(99.8%) 

12.069 123.21 114.65 

(99.8%) 

23.008 

 no        ---- execution time (in seconds) without prefetching 

 pre       ---- execution time (in seconds) with pref etching 

 comm.    ----  total communication time (in seconds) 

 *         ----  prefetching hit rate is shown in parentheses 

Table 5.1  Execution Time of MM Without Prefetching and With Prefetching  
 
 
 
 
 
 

 
 
 

Figure 5.1  Saved Communication Time (Overlapped with Computation) vs Total 
Communication Time (in seconds) 

 
  Besides, software DSM page granularity seems not to be a neglectable factor as well as those 

parameters discussed above. We tested 1024*1024 MM with different page sizes (shown in Table 

5.2 and Figure 5.2) to evaluate how page size affects our prefetching strategy (say, it might reduce 
prefetching frequency as page size increases) and thus the execution time.  

 

Processors 

2 3 4 5 

Page 

Size 

no pre no pre no Pre no Pre 

4096 5.24 4.89 4.11 3.68 3.61 3.32 3.71 3.45 

8192 4.92 4.65 3.73 3.39 3.20 2.81 2.95 2.52 

16384 4.82 4.59 3.53 3.27 2.97 2.66 2.73 2.47 

 
Table 5.2  Execution Time (in seconds) of 1024*1024 MM under Different DSM 
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Page Size  
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Figure 5.2  The Ratio of Saved Comm. Time to Total Comm. Time under 
Different DSM Page Size  

 

  The data shows the total execution time decreases as page size increases. For MM 
problem, large page size will reduce remote memory access times (page fault) and thus 
reduce execution time. But there is tradeoff between page size and saved/total 
communication ratio . Small page size incurs frequent prefetchings while large size will 
quickly exhausts the space of prefetching queue. We can conclude from the figure that 
8192Bytes is more proper than 4096 and 16384 and consistent with JIAJIA’s default 
page size.  

5.2 LU  

  The LU program factors a matrix into the product of a lower triangular and an upper 
triangular matrix. To exploit temporal locality the matrix is split into B*B blocks of 
submatrixes. The execution time is shown in Table 5.3. Because data access pattern in 
each loop of LU is nearly stride but isn’t between two consecutive loops, our 
prefetching prediction accuracy (the ratio pages by prefetching to total pages by remote 
access) isn’t as high as MM.  The saved/total communication ratio  is similar to MM 
though, which contributes to our conservative prefetching algorithm.  
 

Processors 

2 3 4 

Matrix 
 Size 

no Pre no pre No Pre 

512 8.21 8.08 

(83.3%) 

6.22 6.10 

(78.6%) 

5.94 5.72 

(81.3%) 

1024 51.46 50.86 

(90.3%) 

36.18 35.87 

(82.5%) 

28.28 27.50 

(74.5%) 

2048 402.38 394.78 

(93.1%) 

278.1 272.2 

(90.9%) 

207.80 203.69 

(81.16%) 

 

Table 5.3  Execution Time (in seconds) of LU 
 



 14 

5.3 IS 

  IS ranks an unsorted sequence of keys using bucket sort algorithm.  Keys are distributed among 
processors and communication happens only at the end of each local sort. So no stride-based shared 

memory access pattern exists in IS. We choose this program to test whether our prefetching 

algorithm will greatly reduce JIAJIA’s performance under its worst case.  

  Test results (Table 5.4) show that there is no much performance difference between prefetching 
and no prefetching. As we mentioned before, our conservative prefetching algorithm won’t send 
prefetching requests unless it believes current data access pattern is a stride. Thus there are no actual 

prefetching operations performed in IS.  
 

Processors 

2 3 4 

 Size 

no Pre no Pre No Pre 

222 1.42 1.377 1.792 1.834 1.953 1.996 

223 2.622 2.570 2.443 2.494 2.591 2.619 

224 6.061 5.890 5.833 5.805 5.708 5.699 

Table 5.4  Execution Time (in seconds) of IS 
 

6 Conclusions and Future Work 
  Memory prefetching provides an efficient way to reduce application’s overall 
execution time by overlapping communication with computation under DSM systems. 
Software-based dynamic prefetching, however, is not satisfied due to its formidable 
overhead. Avoiding seeking for a general solution, we focus on evaluating the 
performance of some specific prefetching mechanism, which is suitable to a certain 
class of applications, in a software DSM JIAJIA based on scope consistency. In this 
report, we proposed a page-based, stride -sensitive prefetching algorithm. It can be 
combined into JIAJIA’s scope consistency model without much modification of 
coherency protocol. Then we ported three scientific applications from benchmark to 
evaluate the performance of our prefetching algorithm. The experimental results show 
that this algorithm has high prediction accuracy in applications with stride access 
pattern. And in average more than 50% communication time is well overlapped with 
computation time in MM and LU. For IS, an application with none-stride access pattern, 
our conservative prefetching strategy also achieves similar performance compared to 
the original JIAJIA system. 
  Our current work is still very far to reach the final goal - software-based dynamic 
prefetching. Inspired by this work, we are confident to make further steps in this 
research. We aim our future work at three aspects: The first is to add and evaluate more 
prefetching algorithms (say, algorithm sensitive to nested-stride access pattern) in 
JIAJIA. The second is to seek for proper and efficient prefetching algorithms for 
RC-based or EC-based SVMs. The third is to study on the scalability of software based 
prefetching (say, can the scalability problem discussed in 5.1 be alleviated to some 
extent?) 
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