
15-850: Advanced Algorithms CMU, Spring 2017
Lecture #11: Online Learning and Multiplicative Weights February 17, 2017
Lecturer: Anupam Gupta Scribe: Bryan Lee,Albert Gu, Eugene Choi

1 The Mistake Bound Model

Suppose there are N experts who make predictions about a certain event every day – for example,
whether it rains today or not. At the beginning of each time step t, the experts give their predictions
in a vector E t. We then also make a prediction about the outcome. Finally, we see the actual
outcome ot. The goal is to minimize the number of times our prediction differs from the outcome.

Example 11.1. Suppose E t = (0, 1, 0, 0, 0, 1, 1, 1, 0). We predict 0, but the actual outcome is
ot = 1, so this is a mistake.

Fact 11.2. If there is a perfect expert, then there is an algorithm that makes at most log2N
mistakes.

Proof. The algorithm is given by Littlestone and Warmuth [1]. At each step, look at the all the
experts who have made no mistakes so far. Predict what the majority of them predict. Note that
everytime we make a mistake, the number of experts who have not been wrong yet is cut in half.
Since there is at least one perfect expert, we can make at most logN mistakes.

Fact 11.3. If the best expert makes m mistakes, there is an algorithm that makes at most m(log2N+
1) + log2N mistakes.

Proof. Think of time as divided into “epochs”. In each epoch, we proceed as in the perfect expert
scenario, and keep track of all experts who have not made a mistake in that epoch. This set halves
with every mistake the algorithm makes. When this set becomes empty, we have made at most
log2N + 1 mistakes, and every expert has made a mistake. This epoch is over and we start the
next epoch.

Note that in each epoch, every expert makes a mistake. Therefore the number of completed
epochs is at most m, and the number of mistakes our algorithm makes in these epochs is at most
m(log2N + 1). In the last (current) epoch, the algorithm makes at most log2N mistakes as in
Fact 11.2.

2 The Weighted Majority Algorithm

• Assign a weight wi to expert i. Let w
(t)
i denote the weight of expert i at time t. Initially, all

weights are 1 (w
(1)
i = 1).

• At each time t, predict according to the weighted majority of experts using their weights. In
other words, choose the outcome that maximizes the sum of weights of experts that predicted
it.

• When we see the outcome, set w
(t+1)
i = w

(t)
i ·

{
1 if i was correct
1
2 if i was incorrect

.

Theorem 11.4. For all times t and experts i, the number of mistakes the weighted majority al-
gorithm (WM) makes is at most 2.41(mi + log2N), where mi is the number of mistakes expert i
makes.

1



Proof. The proof uses a potential function argument. Let Φt =
∑

i∈[N ]w
(t)
i . Note that

• Φ1 = N

• Φt+1 ≤ Φt for all t

• If WM makes a mistake at time t, then the sum of weights of the wrong experts is higher
than the sum of the weights of the correct experts. Then

Φt+1 =
∑

i wrong
w

(t+1)
i +

∑
i correct

w
(t+1)
i

=
1

2

∑
i wrong

w
(t)
i +

∑
i correct

w
(t)
i

= Φt − 1

2

∑
i wrong

w
(t)
i

≤ 3

4
Φt

Therefore if expert i makes mi mistakes and WM makes M mistakes, then(
1

2

)mi

= w
(t+1)
i ≤ Φt+1 ≤ Φ1

(
3

4

)M
= N

(
3

4

)M
=⇒ mi log2

(
1

2

)
≤ log2N +M log2

3

4

⇐⇒M ≤ mi + log2N

log2
4
3

≤ 2.41(mi + log2N)

Corollary 11.5. By changing the re-weighting process to

w
(t+1)
i = w

(t)
i ·

{
1 if i was correct

1− ε if i was incorrect

the bound in Theorem 11.4 is

2(1 + ε)mi +O

(
logN

ε

)

2



Proof. Using similar analysis, we have

(1− ε)mi ≤ N
(

1− ε

2

)M
≤ N

(
e−

εM
2

)
(Bernoulli’s Inequality)

mi log2(1− ε) ≤ −εM
2

+ log2N

M ≤ log2N −mi log(1− ε)
ε
2

≤ 2
log2N

ε
+ 2

mi log 1
1−ε

ε

≤ O
(

logN

ε

)
+ 2

miε+ ε2

ε

≤ O
(

logN

ε

)
+ 2mi(1 + ε)

since log2

(
1

1−ε

)
≈ ε+ ε2

2 ≤ ε+ ε2 for ε ∈ [0, 1].

Remark 11.6. No deterministic algorithm A can do better than a factor of 2 compared to the
best expert.

Proof. Then consider a scenario with 2 experts A,B, the first of whom always predicts 1 for each
time step t, and the second of whom always predicts 0 for each time step t. Since A is deterministic,
an adversary can fix all outcomes such that A’s predictions are always wrong. Then at least 1 of
A and B will have an error rate of ≤ 0.5, while A’s error rate is 1.

3 Randomized Weighted Majority

The randomized weighted majority algorithm (RMW) proceeds as MW, except the prediction is
probabilistic based on the current weights of the experts.

• As before, set w
(1)
i = 1 for all i.

• After time t, predict 
0 with probability

∑
i:Eti =0

w
(t)
i∑

i

w
(t)
i

1 otherwise

• After seeing ot, set w
(t+1)
i ← w

(t)
i ·

{
1 if i was correct

1− ε otherwise

Theorem 11.7. Given any input sequence of E and o, for any prefix of length T , and for all i, if
RWM makes M mistakes and expert i makes mi mistakes then

E[M ] ≤ (1 + ε)mi +O

(
logN

ε

)
3



Remark 11.8. The εmi +O
(

logN
ε

)
gap from the best expert is called the regret.

Remark 11.9. When describing randomized algorithms, we must be careful in defining what
adversaries can do.

Oblivious Adversary Plans entire sequence up front: The inputs E1, o1, E2, o2, · · · are pre-determined.

Adaptive Adversary Sees our prediction before producing output: In order, it creates E1 →
sees prediction→ ot → E · · ·

Semi-Adaptive Adversary Like the adaptive adversary, but our prediction happens in parallel
with the actual outcome; neither depends on the other.

The adversaries are equivalent on deterministic algorithms, because it always outputs the same
prediction and the oblivious adversary could have calculated that in advance when creating E t+1.

RWM works in the semi-adaptive model because predictions are not affected by the future. 1

Proof of Theorem 11.7. Define the potential Φt =
∑

iw
(t)
i as before. Let

F t =

∑
i incorrectw

(t)
i∑

iw
(t)
i

be the fraction of weight on incorrect experts at time t.

Because we predict proportionally to the weights of the experts, the probably that RWM makes a
mistake at time t is Ft. Therefore

E[M ] =
∑
t∈[T ]

Ft

By our re-weighting rules,

Φt+1 = Φt ((1− Ft) + Ft(1− ε)) = Φt(1− εFt)

Bounding the size of the potential after T steps,

(1− ε)mi = wT+1
i ≤ ΦT+1 = Φ1

T∏
t=1

(1− εFt) ≤ Ne−ε
∑
Ft = Ne−εE[M ]

=⇒ mi ln(1− ε) ≤ lnN − εE[M ]

=⇒ E[M ] ≤
mi ln

(
1

1−ε

)
+ lnN

ε

where we used the inequality 1+x ≤ ex in the first line. Finally, note that ln
(

1
1−ε

)
≈ ε+ ε2

2 ≤ ε+ε2

for ε ∈ [0, 1]. So we get the bound

E[M ] ≤ mi(1 + ε) +
lnN

ε

1In the literature, what we call the semi-adaptive adversary here is known as an adaptive adversary. There is no
common name for what we call the adaptive adversary.

4



4 Extending the “game”

We can generalize the notion of experts who are right or wrong to arbitrary gain/loss functions. At
each time t, suppose the algorithm produces a vector (of probabilities) p̄(t) = (pt1p

t
2 · · · ptN ) ∈ ∆N

(∆N is the probability simplex so pi ≥ 0 and
∑

i p
t
i = 1). In parallel, the adversary produces loss

vector ¯̀(t) = (`t1 · · · `tN ) ∈ [−1, 1]N . Our loss or cost is 〈p̄(t), ¯̀(t)〉.

Theorem 11.10. Consider a fixed ε ≤ 1. For all sequences of loss vectors, for all times T , and
for all indices i ∈ [N ], there exists a deterministic algorithm such that

T∑
i=1

〈p̄(t), ¯̀(t)〉 ≤
T∑
t=1

¯̀(t)
i + εT +

lnN

ε

Corollary 11.11. For all T ≥ 4 logN
ε2

, the average loss is bounded by

1

T

∑
t

〈p̄(t), ¯̀(t)〉 ≤ 1

T

∑
t

¯̀(t)
i + ε

Remark 11.12. In the scenario with experts, the loss vector can be thought of as a vector of 0
and 1 representing whether they are wrong. When the loss vector is non-negative, we can use the
multiplicative weights algorithm to get a slightly stronger bound.

Proof of Theorem 11.10. The Hedge algorithm [2] proceeds as follows for a fixed ε.

As usual, consider weights w
(t)
i initialized to w1

i = 1, and set Φt =
∑

iw
(t)
i . Choose probabilities

p
(t)
i =

wt
i

Φt , so that
∑

i p
(t)
i = 1.

After each round, set w
(t+1)
i ← w

(t)
i · e−ε`

(t)
i .

Note that Φ1 = N , and

Φt+1 =
∑

w
(t+1)
i =

∑
i

w
(t)
i e−ε

¯̀(t)
i

≤
∑
i

w
(t)
i

(
1− ε¯̀t

i + ε2
(
¯̀t
i)

2
))

(using the inequality ex ≤ 1 + x+ x2∀x ∈ [−1, 1])

≤
∑

w
(t)
i (1 + ε2)− ε

∑
w

(t)
i

¯̀(t)
i (because |¯̀(t)

i | ≤ 1)

= Φt(1 + ε2)− εΦt〈p̄(t), ¯̀(t)
i 〉

= Φt
(

1 + ε2 − ε〈p̄(t), ¯̀(t)
i 〉
)

≤ Φteε
2−ε〈p̄(t),¯̀(t)i 〉 (using 1 + x ≤ ex)

So

e−ε
∑ ¯̀(t)

i = w
(t+1)
i ≤ ΦT+1 ≤ Φ1eε

2T−ε
∑
〈p̄(t),¯̀(t)i 〉

=⇒ − ε
∑

¯̀(t)
i ≤ lnN + ε2T − ε

∑
t

〈p̄(t), ¯̀(t)
i 〉

=⇒
∑
t

〈p̄(t), ¯̀(t)
i 〉 ≤

∑
¯̀(t)
i + εT +

lnN

ε

5



Note that if we choose ε =
√

lnN
T , then εT + lnN

ε = 2
√
T lnN , so that the regret term is sublinear

in time T . This indicates that the average regret ≤ 2
√

lnN
T of Hedge(ε) converges towards the best

expert, so that Hedge(ε) is in some sense “learning”.

For future reference, we state the analogous result for gains gt instead of losses `t, i.e., gt = −`t.

Theorem 11.13. For every 0 < ε ≤ 1, there exists an algorithm Hedgeg(ε) such that for all times

T > 0, for every sequence of gain vectors (g1, . . . , gT ), and for every i ∈ {1, . . . , n}, at every time
t ≤ T , Hedgeg(ε) produces pt ∈ ∆N such that

T∑
t=1

〈gt, pt〉 ≥
T∑
t=1

〈gt, ei〉 − εT −
lnN

ε
,

where ei is the ith vector in the standard basis of RN . Note that the first term on the right hand
side represents the gain of the ith expert, and the last two terms represents the regret of not having
always chosen the ith expert.

We also state a corollary of 11.13 that we will use in a future lecture regarding zero-sum games.

Corollary 11.14. Let ρ ≥ 1. For every 0 < ε ≤ 1
2 , for all times T ≥ 4ρ2 lnN

ε2
, for all sequences of

gain vectors (g1, . . . , gT ) with each gt ∈ [−ρ, ρ]N , and for all i ∈ {1, . . . , N}, at every time t ≤ T ,
Hedgeg(ε) produces pt ∈ ∆N such that

1

T

T∑
t=1

〈gt, pt〉 ≥ 1

T

T∑
t=1

〈gt, ei〉 − ε.

5 Bandits

A further extension to this game occurs when one considers the scenario where the player, having

made a prediction it randomly based on p̄(t), is only given access to l
(t)
i instead of the entire loss

vector l̄(t). An example of a realization of this problem comes from the analysis of slot machines,
or as they are also affectionately known, ”one-armed bandits”.

Consider the following algorithm:

• We proceed as in the RWM algorithm in defining p̄(t).

• Upon seeing l̄
(t)
i for choice it, we construct l̃(t) as follows:

l̃
(t)
j =

0 if j 6= it
l
(t)
j

p
(t)
j

if j = it

It turns out that this approximate algorithm achieves a fairly good estimate of the underlying loss
vector. It can be shown that the following result holds:

Remark 11.15. E[l̃(t)] = l̄(t).

6



References

[1] Nick Littlestone, Manfred K. Warmuth The Weighted Majority Algorithm. Information and
Computation 108:212-261, 1994.
https://users.soe.ucsc.edu/ manfred/pubs/J24.pdf 1

[2] Yoav Freund, Robert E. Schapire A Decision-Theoretic Generalization of On-line Learning and
an Application to Boosting Journal of Computer and System Sciences 55:119-139, 1997.

4

7


	The Mistake Bound Model
	The Weighted Majority Algorithm
	Randomized Weighted Majority
	Extending the ``game''
	Bandits

