What about non-bipartite graphs?

Note: \(\sum_j x_{ij} = 1 \quad \forall i \in V, \quad x_{ij} \geq 0 \) is not the same as convex hull of all perfect matchings.

\(K = \{ x \in \mathbb{R}^{|E|} \mid \sum_j x_{ij} = 1 \quad \forall i \in V, \quad x_{ij} \geq 0 \} \quad \text{Edmonds': the perfect matching polytope (i.e. convex hull of all PMs in } G \text{)}

is given by

\[
K = \{ x \in \mathbb{R}^{|E|} \mid \sum_{j} x_{ij} = 1 \quad \forall i \in V, \quad x_{ij} \geq 1 \quad \forall \text{odd sets } S \subseteq E \}
\]

Proof: Different ways to do it. Can use Blossom algorithm. Here indirect proof.

Let \(\mathcal{C}^{pm} = \text{convex hull of all } X_M : M = \text{perfect matching in } G \).

Since each \(X_M \in K_{PM} \), \(C^{PM} \subseteq K_{PM} \). So now suffice to show that \(K_{PM} \subseteq C^{PM} \). We induct on \(1E_1 \).

Base case: \(1E_1 = 1 \) then must have 2 vertices, and \(x_{uv} = 1 \). \(\Rightarrow \) trivial.

Inductive step: \(X \in K_{PM} \). and \(X \) has a vertex \(A \in K_{PM} \).

Want to show \(X \in C^{PM} \). Then if all vertices \(A \in K_{PM} \) in \(CH \Rightarrow \) all \(A \in K \in CH \).

If \(x_e = 0 \) then induct on \(G \setminus e \).

If \(e = 1 \) then induct on \(G \setminus u, v, u, v \), since all other edges in \(du, dv = 0 \).

\(x_e > 0 \) then if all vertices have degree 2 \(\Rightarrow x \) cannot be a vertex \(\in K_{PM} \).

\(\Rightarrow \) cycles

\(\Rightarrow \) if vertex of degree 2 (and all else \geq 2) \(\Rightarrow 1E_1 > 1V_1 \). \(\Rightarrow \) \(\geq n + 1 \) tight constraints.

\(\Rightarrow \) one non-trivial constraint tight \(\Rightarrow x^*(A) = 1 \).
\[S = V \setminus S^* \]

\[G/3, G/3 \] by contracting one side or other to ver. \[x^*, \bar{x} \].

Since \(x(3U) = 1 \) both are in the KPM phytype of the respective graphs.

\[Z^* = \sum_{\text{N in G/3}} x_N X_N \]

\[X^* = \sum_{\text{N in G/3}} x_N X_N \]

Now match them up to get \[z = \frac{1}{N} \sum x x_i \]

Here's a different proof that for bipartite graphs, the perfect matching phytype is

\[K_P = \{ z \in \mathbb{R}^E \mid \sum_{x} x_{ij} = 1, \sum_{x} x_{ij} = 1, \exists \} \subseteq \mathbb{R}^m \]

Pf: Consider any vertex \(x \in K \). Want to show it is a perfect matching.

Since \(\forall M, x_M \in K \), this will prove that \(K = CH(CPMs) \).

\(X \in K \) is a vertex. So obtained by \(m \) tight constraints (linearly indep.)

There are \(2n + m \) constraints.

Also \(\leq (2n-1) + m \) LC constraints (since \(\sum_{x} x_{ij} = 1 \) \(\leq \sum_{x} x_{ij} = 1 \))

\(\Rightarrow \) at least most \(2n-1 \) of the interstig constraints are tight (and all others)

\(\Rightarrow \) at least \(m - (2n-1) \) of the tight constraints at \(x \) are \(x_{ij} = 0 \).

\(\Rightarrow \) at most \(2n-1 \) edges have non-zero values.

But \(\exists \) 2n vertices, and each vertex has \(2n-1 \) edge out of it

So this and there is a vertex with degree \(1 \).

\(\Rightarrow \) 1 edge with value \(= 1 \).

\[x_{12} = 1 \]

Now induct on the rest of the graph \(G/E, V \).