
- G: undirected graph \((V,E)\).
- Matching: set of edges \(M \subseteq E\) s.t. every node has degree \(\leq 1\).
- Max cardinality matching in \(G\) or max weight matching.
- "Perfect" matching = every node has degree = 1.

Some examples

- jobs & machines
- boys & girls

Bipartite matching is a simpler case. Existence proofs, "Fast" algorithms, etc.

1. Via a reduction to maximum flows.

\[
\text{Max flow} = \text{max cardinal matching}.
\]

\[
\text{Max flow} \leq \text{Augmenting paths}.
\]

\[
\text{run in time } O(mf) = O(mn).
\]

Even, Tarjan, and Dinic showed that for unit capacity graphs, the
runtime is \(O(m \min\{m^{1/2}, n^{3/4}\})\).

2. Via direct algorithms (also known as "augmenting paths").

- Given a matching \(M \subseteq E\) (technically means \(M \subseteq E(G)\)).
- An augmenting path alternates between \(M\) and \(\overline{M}\) edges,
- an open vertex is not matched in \(M\).
- An augmenting path is an alternating path \(P\) between 2 open vertices. (must be odd length)

\[
\Rightarrow M \cup P \text{ is also an matching, of greater cardinality.}
\]

A symmetric difference

Fact [Berge] \(M\) is a maximum cardinality matching if and only if
no augmenting path with respect to \(M\).
Proof: if I any path ≠ clearly M not maximum.

Sp M maximum not max. let M* be maximum.
allowing
M ∩ M* = a path and cycles.

Since |M*| > |M| must have at least one odd length alternating path w/o M.
into both ends open in M ⇒ M-augment path.

⇒ just find M-augment patho until reach max matching.

How to do this?

Bipartite Case is easier. G = (V, R, E)

N.B. showing that M is a max matching is tricky using this characterization. Have to show a "co-NP type" certificate. Here's another way to show that M is Max matching.

Konig's theorem: G, let MN(G) = max matching

then MM(G) = VCC(G).

[it is easy to show that #VC, #matchings, M ≤ VC]

So we could also show a VC if cardinality |M| and hence prove optimality.

Very good. But how to find true matching?

Idea basically looks like FFon the red/oriograph.

Take all open vertices level 0. (marked).

Then at level i, (open), ≤ L

must be

level i-2 = all unmarked vertices connected to level i-1 vertices by non-M edges.

level i-1 = if we see an open vertex at level i-1, then found an odd length alt path b/w 2 open => augment.
(where can edge from level \(i \) (even) go?)

not to \(L \), because bipartite so to \(R \).

(to previous odd levels, or to unmarked
new vertices)

level \(i \geq 2 \): take matched edge out of
the level \(i \) vertices. Since we
did not find any open \(|L| \)-level nodes, must do this.

Do until all vertices matched or unreachable.

Note: if \(\Gamma \) an \(M \)-augmenting path, we will find it this way, in \(O(\text{m}) \) time.

\(\Rightarrow \) total time \(O(\text{mn}) \).

([Really just doing Ford-Fulkerson].)

Can we use König's theorem to prove optimality?

Sure. Let \(X \) = marked vertices. Then

Claim: \(C^* := (L - X) \cup (R \cap X) \) is a vertex cover of size \(M \).

\(\text{Pt}: \) if \(e \) not covered \(\Rightarrow \) \(e \) is marked

\(= (L, r) \) but \(r \) is not marked.

\(\Rightarrow \) \(e \) cannot be in matching else when \(r \) is marked,

\(\text{next } x \text{ would be marked.} \)

\(\text{would just have been marked.} \)

\(\text{when } r \text{ is marked, } x \text{ would be marked next.} \)

\(\Rightarrow \) no such \(e \) exists.

Next: \(|C^*| \leq |M| \)

- Every vertex in \(ROX \) has a matching edge incident to it. (else augment \(\Gamma \)!)
- Every vertex in \(L - X \) has (else would be picked in level 0).
- There are no edges between \(L - X \) and \(ROX \), so distinct edges.

\(\Rightarrow \) \(|C^*| \leq |M| \).
Not true in non-bipartite graphs

For general graphs this theory is richer/looser.

Tutte-Berge: Suppose pick a set $U \subseteq V$, and delete it from G.

* set components K_1, K_2, \ldots, K_k

How big a matching can graph have?

$$|U| + \sum_{i=1}^{k} \left\lfloor \frac{|K_i|}{2} \right\rfloor = |U| + \frac{(|V|/2) - \#\text{odd comp.}}{2}$$

One edge per vertex in U

if $\text{odd}(G \setminus U) = \#\text{odd components in } G \setminus U$,

$$|M| \leq \min_{U \subseteq V} \left| U \right| + \frac{|V| - \text{odd}(G \setminus U)}{2}$$

Theorem: for a graph G,

$$[\text{Tutte-Berge}] \quad |MM(G)| = \min_{U \subseteq V} \left| U \right| + \frac{|V| - \text{odd}(G \setminus U)}{2}$$

Observation: If G is bipartite, let $U = \text{vertex cover of } G$. ($G \setminus U$) has only isolated vertices (no edges), so $\text{odd}(G \setminus U) = |V| - |U|$.

$$\Rightarrow \text{RHS} \leq \left| U \right| = |V| = 1 + \text{VC}^*.$$

This is clearly a bond stronger than $MM^* \leq \text{VC}^*$.

Take $U = \emptyset$ \Rightarrow \text{RHS} = \frac{0 + 3 - 1}{2} = 1 = MM^*.$
How to prove this? Via an algorithm [Edmonds Blossom Alg].

Again: want to find M-augmenting path (if one exists).

Ead: find M-aug path, P, M ⊆ MASP, repeat.

Unfortunately: can only show:

Theorem 1: Suppose G contains an M-augmenting path P. Then

any algorithm that finds either

(a) an M-augmenting path or
(b) a blossom.

What's a blossom?

A blossom

(an alternating path

starting at open vertex)

and a blossom (an almost alternating cycle) of odd length)

If we find a blossom (with stem S and blossom B)

(i) toggle edges on stem (i.e., M ⊆ MASP)

as set flower into empty stem

(open!!)

(ii) Shrink B into new vertex V. Call graph G/B.

(iii) Find a (M/B)-augmenting path in G/B (recursively)

just drop the edges of M on B. Keep all others.

(iv) Extend P' to an M-augmenting path P, in G.

Hence: in either case find M-augmenting path. ⇒ make progress.
Q1: How does this also work?
Q2: Why is this OK? For this we need Thm 2.

Theorem 2:

If a M-ary path in \(G \) \(\iff \) a M/bay path in \(G/B \).

Pf:

- If M-ary path \(P \) does not hit \(B \) \(\Rightarrow \) Still in \(G/B \).
- Else: at least one end of \(P \) not on \(B \).
 - \(P \) has 2 ends open, \(B \) has one open node.
 - Say \(u \). Let \(v \) be first node on \(P/B \). Then
 - \(P[B] \leftarrow u \rightarrow v \) is M/bay path in \(G/B \).

[Recall: \(v_B \) is open in \(G/B \)].

\(\Leftarrow \):

Consider \(P \) in \(G/B \). Either misses \(v_B \) then in \(G \) also

Or, one end is \(v_B \). Then extend.

Now to theorem 1.

Also: Start with all open guys in level 0. (Mark them).

Do a simultaneous "BFS" from \(L0 \) as follows.

Given \(L(2i) \), do the following:

look for all unmatched edges from \(L2i \). Say \(u \in L2i \), \(v \) end.

(i) if \(v \) unmarked, \(v \in L(2i+1) \), mark. (Even odd)

(ii) if \(v \) at same level, aug or blossom!

Why? Look at paths open \(
\overrightarrow{u} \) \(\in \) \(u \) and \((uv) \) & M.
(iii) If \(v \) at previous odd level \(\text{OK} \). (e-o).

(iii) If \(v \) at previous even level \(L_{2j} \) \((j<i)\). Not possible! else \(u \) would be at level \(2j+1 < 2i \).

\[\Rightarrow \text{either success or all edges (even-odd)} \]

Given \(L_{2i+1} \), get \(L_{2i+2} \) as follows: \(u \in L_{2i+1} \) \((u,v) \in EM\). Match \(j \) edges, nyj!

(4) If \(v \) unmarked, \(v \in L_{2i+2} \), mark. \([0-e] \)

(iii) If \(v \in L_{2i+1} \), aug or blossom!!

(iii) \(v \) cannot be at previous levels.

\[\Rightarrow \text{Continue until level} \equiv \text{empty} \]

No. if no success \(\Rightarrow \) all edges even-odd.

Now ARSOC: \(M \)

- Augment path \(P \) in \(G \), and we don't find aug or blossom.

- Want a contradiction:-

- Label each vertex with parity (even/odd).
 - Ends have parity \(E \) (open \(\Rightarrow \text{Lo} \Rightarrow \text{even} \)).
 - Endpoints of edges have opposite parity.
 - But path of odd length \(\Rightarrow \) even \# 4 vertices.

\[\text{E \quad \bigcirc \quad E \]
Finally: Tutte-Berge

\[G \mapsto G' \] and here submends did not find any cross edge ("success")

If odd vertices in \(G' \) are bipartite graph

\[\Rightarrow \text{take all odd vertices. Each one has a successor matched edge} \Rightarrow U = \text{odds} \]

And all unmarked nodes are matched (not open)

So \((G' \setminus U) \) has 1 Even components all singletons = odd

all other components matched up = even

\[\Rightarrow \frac{|V'| + |U| - \text{odd}(G' \setminus U)}{2} = \frac{2n' + |\text{odd}| - \text{Even}}{2} \]

\[= \frac{n' + |\text{odd}| - (n' - |\text{odd}| + \text{rest})}{2} \]

\[= \frac{2 \cdot \text{odd} + \text{rest}}{2} = \text{odd} + \text{rest} \]

\[= M' \]
Now pull back to G:

- For each u', we have
 \[M' = \frac{n' + |u' - \text{odd}(u')|}{2} \]

- Want to extend back to U.
 \[M = M' + \frac{B - 1}{2} \]

Note: V_B was even \Rightarrow not in U' (and in fact in odd component) and open

\Rightarrow replace V_B by B still means in odd component (size increases by $B - 1 = \text{even}$).

\[|M| = M' + \frac{B - 1}{2} = \frac{n' + |u| - \text{odd}(u)}{2} + \frac{B - 1}{2} = \frac{n + |u| - \text{odd}(u)}{2} \]

Tutte's Perfect Matching Thm: $\begin{array}{c} G \text{ has a PM } \iff \ O(G \setminus U) \leq |U| + |U_{\bar{V}}| \end{array}$

decrease: find alternating path in time $O(mn)$

total: $O(mn^2)$.

Can do better: [Micali Vazirani] $O(m \sqrt{n})$

[Müsch Taubalowski] $O(n^3)$.