Smoothed Analysis

Instead of having out \(\max_{I \cap n} \text{runtime}(I) \)

we consider \(\max_{I \cap n} \sum_{I' \in \text{neighborhood}(I)} \text{runtime}(I') \)

\[\text{Smooth out the runtime} \]

What is the definition of the neighborhood?

depends on the problem — but we want it to be

big enough to that we can smooth out the performance.

"If smooth complexity is small, means that the worst cases are isolated"

Major results: Spielman & Teng showed that a certain pricing rule for simplex has

polynomial smoothed complexity under a certain noise model.

Improvements by Deshpande & Spielman, and Veeravagu.

Results by Bans & Veeravagu for k-sparse and other problems.

Example: the 2OPT heuristic for TSP. (Local search).

\[\text{Start with an arbitrary tour. While } J \text{ a pair} \]

\[\text{Swap } (ac) \text{ with } (ad) \rightarrow (cd) \text{ gives a lower cost solution, take it.} \]

Knew that \(J \) exponentially long improving paths in some instances.

But does well in practice.

Simplified Smoothed Model: Fix a graph \(G = (V, E) \).

For each edge \(e \), give a density function \(f_e : E \rightarrow [0, 1] \).

\(\rightarrow \) the edge lengths are drawn independently from \(f_e \).

Now run the 2OPT heuristic. (On the graph, not metric completion).

Claim: longest path in the improvement graph is \(O(n \log n \cdot \Phi) \).

Directed edges are tours, 1-step from \(T_i \) to \(T_2 \) if fastest way to get

from \(T_i \) to \(T_2 \), which is improving.
N.B. this means that no matter where we start, after $O(n \log n)$ steps we get in a local optimum.

Pf: initial tour has $n = n$. Suppose the smallest improvement were Δ, then would take $\geq \frac{\Delta}{E}$ steps.

Claim: $P_{e \in E} \Delta \leq n^c \epsilon p$

$\Rightarrow Pr[T > t] \leq Pr[\Delta \leq n^c] \leq n^c \frac{\epsilon p}{t} \epsilon$

$E[T] = \sum_{t=0}^{n^c} Pr[T > t] \leq n^c \epsilon p \epsilon \ln(\epsilon n) \leq O(n^c \log n \epsilon^p)$.

Pf of claim: fix the 4 edges, n ways. Now have fixed the largest 3 edges,

$P_e \Delta \leq n^c \epsilon p \epsilon$

$\Rightarrow n^c \epsilon p$.

This was a simplified model ϵ-ipita.

in [ERV: Erglov, Boas, Vöck by] they construct for a smoothed model of choosing points in R^d Euclidean space R^d (for d constant),

$E[\text{length} + 20pT \epsilon \text{improving more}] \leq O(n^{4+\frac{1}{3}} \log(n\epsilon^p) \epsilon^p)$

And can ignore if choose start point smartly, etc.

Note: they find a local optimum, which may be quite bad. (but not too bad)

[ERV]: the expected approximation ratio for a locally optimal tour chosen from a distribution δ, where each point v is picked from $f_v : [0,1]^d \rightarrow [0,p]$ is $O(\sqrt{p})$. [local opt not 20p!]
Knapack: sizes/weights \(w_i \), profits \(p_i \), size \(= 1 \) (say).

[Nemhauser/Ullmann] Build the pareto curve and pick the best one from it.

- Pareto curve, \(x \in \mathbb{R}^{0 \times 1} \): on the pareto curve if \(\forall x', \quad w.x \leq w.x' \Rightarrow p.x \leq p.x' \)

\[\text{profit} \quad \text{empty} \quad x_2 \quad x_3 \]
\[\text{weight} \]

- Let \(\mathcal{P}(i) = \) pareto curve \(\Rightarrow \) solutions for items \([1..i] \).

Fact: \(\mathcal{P}(i+1) \subseteq \mathcal{P}(i) \cup \{ x + e_i | x \in \mathcal{P}(i) \} \)

\[\Rightarrow \text{can compute } \mathcal{P}(n) \text{ in time } O \left(\sum_{i=1}^{n} \mathcal{P}(i) \right) \].

- **Smoothing model:** say the weights are chosen randomly, with \(w_i \in [0,1] \) \(\rightarrow \) \([0,\phi] \).

\[\phi = \text{"smoothing parameter". Can generalize this to } w_i : [0,\phi] \rightarrow [0,\phi] \text{ etc., but see paper. (suggestions: this sounds?)} \]

Claim: \(E[\text{size of pareto curve on n items}] = O(n^2 \phi) \)

Proof: Let's break the weight axis into pieces of width \(\frac{1}{k} \), and hence the size of \(\mathcal{P}(n) \) can be written as
\[
(\star) \quad 1 + \lim_{k \to \infty} \sum_{i=0}^{k} \mathbb{I}(\text{there exists } x \in \mathcal{P}(n) \text{ with } w.x \in \left(\frac{i}{k}, \frac{i+1}{k} \right])
\]

Note: because smoothing, no two solution can have same weight (w/1).

Note 2: all weights \(\in [0,1] \) so total size \(\in [0,n] \).

\[
(\star) = 1 + \lim_{k \to \infty} \sum_{i=0}^{\left\lfloor \frac{n}{k} \right\rfloor} \mathbb{I}(\exists x \in \mathcal{P}(n) \text{ with } w.x \in \left(\frac{i}{k}, \frac{i+1}{k} \right])
\]

For any threshold \(t \), define \(\Delta(t) = \begin{cases} \infty & \text{if no such } x \text{ exists} \\ 0 & \text{for } x \text{ least upper bound } \leq t \end{cases} \)

at \(t \):
\[
2^* = \arg\max \left\{ w.x \left| x \in \mathbb{R}_{0 \times 1}^{n} \land w.x \leq t \right\} \] is winner
\[
2 = \arg\min \left\{ w.x \left| x \in \mathbb{R}_{0 \times 1}^{n} \land p.x > p.x^* \right\} \] is lower.
Note: many ways to define \(\text{inner} \& \text{outer}, \) these definitions are carefully chosen to make proofs work.

\[
\Rightarrow (\ast) = 1 + \lim_{k \to \infty} \sum_{i=1}^{\frac{n}{k}} \mathbb{1}(\Delta(i/k) \in [0, \varepsilon/k])
\]

Claim: \(\forall t \) \(\mathbb{P}[\Delta(t) \in (0, \varepsilon)] \leq n^2 \phi \).

\[
\Rightarrow \mathbb{E}[\text{Penetocurve}] \leq \sum_{k=n^{\phi}}^{n^2 \phi} \sum_{i=1}^{\frac{n}{k}} \mathbb{P}[\Delta(i/k) \in (0, \varepsilon/k)] \leq \sum_{k=n^{\phi}}^{n^2 \phi} \frac{n}{k} \leq n^2 \phi.
\]

Proof & Claim:

Define

\[
x^* = \arg\max \{ p \cdot x \mid x \geq 0 \land p \cdot x \leq t \}
\]

\[
x_i = \arg\min \{ w \cdot x \mid x \geq 1 \land p \cdot x > p \cdot x \}
\]

\[
\Delta(t) = \begin{cases}
 \sum_{i} w \cdot x_i - t & \text{if } x_i \text{ exists} \\
 \infty & \text{otherwise}
\end{cases}
\]

Subclaim: either \(\Delta(t) = \infty \) or \(\Delta(t) = \Delta^i(t) \) for some \(i \).

Proof: if there is some \(x^* \) and \(x_i^* \) at \(t \), then \(x_i \) is \(t \) \text{ not in } x^* \text{ (since } w_i \text{ are } 0) \text{.}

Now this will give \(x^* \) and \(x_i \). Details easy.

\[
\Rightarrow \sum_{\Delta(t) \in [0, \varepsilon]} \mathbb{P}
\]

Subclaim: \(\mathbb{P}[\Delta^i(t) \in (0, \varepsilon)] \leq \phi \).

Proof: fix \(w_i \) all except \(i \). Now \(x_i \) fixed. Also identify \(x_i \) at each \(t \) min money together. Chance that its weight falls into \(t \) within interval \(\leq \phi \).
Similarly can imagine profit is random, weight is adversarial.

- Now we did not really see that profit was generated by a modular (additive) function π_i, but just that there was a total ordering of solutions based on profit, and x^* was defined as the one higher in this total ordering than x. We did use that weights were additive.

- So can extend to model with general weights, but random profits (note that we now need a rank of n elements according to "weights", and we do need that profits are additive). This extends to any combinatorial optimization problem with solutions set $S \subseteq \{0, 1\}^n$, profit function $p(x) = \sum p_i x_i$ (with p_i's being ϕ-smooth).

- Roglin & Teng, Moitra & O'Donnell extend to multiobjective approx.

Finally: simplex smoothed analysis.

- Shadow vertex pivot rule. [Garey, Johnson]
- Smoothly rounded: given $\tilde{A}, \tilde{b}, c, \sigma$ we want to solve

$$\max c^T x$$
$$s.t. (\tilde{A} + \sigma G)x \leq (\tilde{b} + g)$$

G, g have independent Gaussian entries, mean 0, standard deviation σ. Max $\| (\tilde{A} + \sigma G) x \|_{\infty}$

[Like saying adversary can choose means for the random \tilde{A}, but not actual values.]

- ST showed: let \tilde{c}, \tilde{x} be vectors (fixed), $a_1, \ldots, a_n \in \mathbb{R}$ Gaussian vectors (independent) with means having norms ≤ 1, standard deviation σ.

$$\mathbb{R} \ni \tilde{x} = 1 \sum a_i x_i \leq 1 \forall i$$. Then P projected onto plane (\tilde{a}, \tilde{c}) has at most $\text{poly}(n^d, \sigma)$ vertices.

Problem: u is not indep of the a_i's, since it depends on starting point. How to find starting point anyways?

[STOC] and [Vershynin] handle these. Also, Vershynin shows: poly $(d, \log n, \epsilon)$!