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1 Sparsest Cut: Problem Definition

We will be studying the Sparsest cut problem in this lectumehis context we will see how metric
methods help in the design of approximation algorithms. Weged to define the problem and
briefly give some motivation for studying the problem.

The input to theSparsest Cuproblem is

e A weighted graphG = (V, E) with positive edge weights (or costs or capacities, as they a
called in this context), for every edge: € E. Asis usualp = |V|.

e A set of pairs of vertice$(s1,t1), (s2,t2) . .. (s, t)}, with associated demands between
s; andt;.

Given such a graph, we defigparsityof a cutS C V' to be

¢(S,S)
d(S) = —
)= D5 5)
where B
c(S, §) = > c(e)
e S.t. e crosses the cu$, S
and

D(S,S) = Z D;
i s.t.s;,t; are separated hy,S
The objective of the Sparsest Cut problem is to find afutvhich minimizes; let is define
d* = ¢(5*) = mingcy P(5). As an example, see Figure 1. The dashed edges are the demand
edges of demand value 1. The solid edges are edges of thewithptapacity 1. The sparsest cut
value for this graph is 1.

2 Motivation

Consider the special case of the Sparsest Cut problem whéraveeunit demand between every
pair of vertices: i.e., the demands consist of all p@r}s andD,, = 1forallz # y € V. Then we
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Figure 1. Example illustrating the Sparsest Cut problem

are minimizing the following quantity:

_c(S,9)

If |.S] < n/2, thenn/2 < |S| < n, then the expression (1) is the same (upto a factdng®, n} )
as

miny c(S,5)/15]. 2
The above quantity—the cost of the cut edges divided by treecfithe separated s&t—is called
the “expansion” of the sef in a weighted graph. (In unit weight graphs, this corresgoexhctly
to the notion of edge-expansion of graphs). Having a goodoegpation for this problem enables
us to find good balanced separators, which are extremelylutef“divide-and-conquer” type
of algorithms on graphs. See, e.g. [5] for a survey on how t fialanced separators using the
sparsest cut problem as a subroutine, and for applicateapgroximation algorithms.

2.1 Expander Graphs

As mentioned above, for unit demands and unit edge-weigissparsity is approximately the
same as the edge-expansion of a graph. Graphs with high-jeggansion are often callezk-
panders

Examples of expanders are

e Forexample,, has©(n) expansion; however, this is not surprising, since the degféhe
graph is also large.

¢ Infinite 3-regular tree: this has finite degree, but is an itdigraph. See Figure 2.

The challenge is in constructing families of finite expasdeith bounded-degree—i.e., we
want to construct a family of grapHs~,,} whereG,, hasn vertices, for infinitely many values of
n, such that the expansion of graphs in this family is boundadovb by a constant, and the degree
is bounded above by a constant. It is not difficult to show taatlom bounded-degree graphs are
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Figure 2: Infinite 3-regular tree

expanders with high probability, but how does one conseypticit expanders? By now there are
many constructions known (see, e.g., the survey by Hoonyal,iand Wigderson [3]). Here is one
such construction due to Margluis.

e Consider then x n grid graph. For every vertek, j), add edges to four other vertices :
(i,1+27), (1,9 4+ 25 + 1), (i + 24, 7), (i + 25 + 1, j). The proof that this is an expander is
quite non-trivial, but the intuition comes from consideyithe uniform unit square ifk?,
considering two mappindgs(z, y) = (x + 2y,y) andT’(z,y) = (z,x + 2y), and showing
that if we take any regio®, such thatirea(R) < 1, thenT'(R) UT'(R) is large.

3 Algorithms for Sparsest Cut

Here is a simple claim for sparsest cuts.

Claim 3.1. There exists a sparsest cif, S), such that the graph&/[S] and G[S] are connected.
(We assume that the graph was connected to begin with.)

Proof. WLOG, assume=|[S] is not connected. Say it has componefts ..C;. Let the total

capacity of edges fror@); to C; bec; and the demand b&. The sparsity of cuf is Ccllj Zit.

Now since all the quantities;, d; are non-negative, by simple arithmetic, there exisssich
thate; /d; < cé—:_ fff This implies that the cuf’; is at least as good & O

3.1 Sparsest Cut on Trees

Using claim 3.1, we know that the sparsest cut on trees withtsectly one edge. Therefore, the
sparsest cut problem on trees becomes easy to solve in poighiime.

3.2 Metric Spaces - A Digression

A metric space on a séf is defined as a distance measdrel x V' — R, with 3 properties:

1. d(z,y)=0iff z =y



2. d(z,y) = d(y, v)
3. d(z,y) +d(y, z) = d(z, 2)
Typical examples ar&?, equipped with thé, norms. Recall that thé, norm is the following -

d(z,y) = (00, o — yilP)?.

3.2.1 Cut Metrics

Another example is that associated with “cuts” (i.e., stdsél’): given a cutS C V, the “cut
metric” associated witly' is §5, where

[0 ifz,yeSorz,ye S
Os(2,y) = { 1 otherwise
3.2.2 Viewing Metrics as Vectors iR (2)

Any n-point metric can be associated with vector@’ﬂﬂ), with each coordinate corresponding to
a pair of vertices from the metric space. Given the metyiee refer to the corresponding vector
asd. In this setting, the following facts are trivial :

1. ad + (1 — a)disametricforalld < a <1
2. For alla > 0 and metricsl, ad is a metric.

Therefore, the set of all metrics forms a convex con&fn). In this setting the Sparsest Cut
problem can be restated as

. ¢ 0g
min = =
all cut metricsS D - g

3)

wherez is the vector inR(3) with ¢;; being the capacity of the edge between veitexd;, and
D;; being the demand between verteand j; of courseg - 65 denotes the dot product of the two
corresponding vectors.

Let us denote the positive cone generated by all cut metyicsihr,,, i.e.,

CUT, ={dld =) asds, a>0}

SCv

Since the optimum of (3) will be achieved at an extreme pantr{ this case, aextreme ray, we
have
— . 57
& — min — 23 (4)
dECUTn D * 55’




3.2.3 WhatisCUT,?

It turns out that the set'UT,, is the same as a natural class of metric spaces.
Fact 3.2. CUT,, = all n-point subsets dk’ under the/; norm.

Proof. Consider any metric i®'UT,,. For everyS with ag > 0, we have a dimension and in that
dimension we put value for € S andag for z € S. This showsCUT,, C ¢, metrics.

For the other direction, consider a set of n-points friifh Take one dimensioa and sort the
points in increasing value along that dimension. Say weyget . , v, as the set of distinct values.
Definek — 1 cut metricsS; = {z|ry < v} Also leta; = v;.1 — v;. Now along this dimension,
|xq —ya| = Zle a;0s,. We can construct cut metrics for every dimension. Thus we laametric
in CUT, for every n-point metric irt;. 0J

Note that the above proof can easily be made algorithmic:

Lemma 3.3. Given a metriq: € ¢; with D dimensions, there is a procedure taking tipagy (n, D)
that outputs a set of at mosi) valuesas > 0 for S C V such that

W= Z aglg.

3.2.4 Rewriting ®* as optimizing overCUT,,

So we can rewrite (4) as

. . C0g
¢ =min 5 ®)

Since the sparsest cut problem is NP-hard, we can’t hopdte Hte above optimization problem
over metrics in¢;. Hence we consider a relaxation of this problem. We relaxditr@ain ofd to
the set of all metrics

— . 67
A" := min ¢ % (6)
dmetric D - dg
Clearly, this quantity\* < ®*. Moreover, we can compute it via a linear program.
min Cijdij
subjectto d;; < di + dy, )
Dijdij - 1
dij Z 0



3.3 Metric Embeddings

Suppose we solve the LP to find the mettithat achieves the optimal valueé in (6): how can we
obtain a cuf.S, S) such thatb(S) is close tod*?

The plan is to embed the metric returned by the linear progahave into arf; metric so that
the distances are not changed by too much. Then if we can samrelsover a cut metric from the
¢; metric with the same objective, then we would be done (moddiat we lose because of the
embedding). More formally, we have the following theorem:

Theorem 3.4. Suppose for each metri#, d), there exists a metrig = p(d) € ¢, such that
d(z,y) < p(z,y) < ad(z,y)
forall x,y € V. Then the Sparsest cut LP (7) has an integrality gap of at most

Proof. Take the metriel returned by the linear program and consider the metri /1, such that
d < pu < ad. Then

c-pn<ac-d (8)
using the fact that < «d. Moreover
D-p>D-d (9)
sincey > d. Hence
() = ?5 < af A aX < ad*. (10)

In other words, we have found a solution to (5) with value astaotimes the (optimal) sparsest
cut, implying that the integrality gap of the LP is at mast 0J

We have the following embedding theorem due to Bourgain\y&fh(the claim about the di-
mensions due to Linial et al. [4]):

Theorem 3.5. For all metricsd, there existg € ¢, such thatx = O(logn). Moreover, the number
of dimensions needed is at méxflog® n).

Corollary 3.6. The LP relaxation of Sparsest Cut has integrality gap¢fog n).

3.4 How do we find the Sparsest Cut?

We have shown that the integrality gap between (5) and (éh&ldy taking the metrid obtained
by (6) and embedding it inté;. However,we want a cuf.S, S) with small®(S) — how do we
obtain that?To put in this final piece of the solution, we need to constauctit(S, S) from the/,
metric . such that

(S) < ().
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To do this, recall Fact 3.2 which says that any metrié,igcan be written as a positive linear com-
bination of cuts. l.e., the metrjc can be written a3 asds with ag >. Given this representation,
we get,

_c-p ¢ (Y asds)
) = D-fi  D-(X asds) -
_ > as(c-ds)
— —Z ws(D - 53) (12)
min as(e-9s) = min P(9). (13)

- S,ag>0 as(D . 63) S,ag>0

So, we can simply pick the best ctiamongst the ones with non-zetg in the cut-decomposition
of .

Finally, we use Lemma 3.3 and Theorem 3.5 to argue that thregeptation of: as a positive
linear combination of cut metrics can be foundgaly(n) time, with at mostO(nlog? n) cuts.
This finally proves the result that not only is the integsaibip small (Corollary 3.6), but

Theorem 3.7. Given a metrial that is a solution to the LP (6), we can efficiently find a GitS)
such that®(S) < O(logn)x LP-value.
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