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1 Sparsest Cut: Problem Definition

We will be studying the Sparsest cut problem in this lecture.In this context we will see how metric
methods help in the design of approximation algorithms. We proceed to define the problem and
briefly give some motivation for studying the problem.

The input to theSparsest Cutproblem is

• A weighted graphG = (V, E) with positive edge weights (or costs or capacities, as they are
called in this context)ce for every edgee ∈ E. As is usual,n = |V |.

• A set of pairs of vertices{(s1, t1), (s2, t2) . . . (sk, tk)}, with associated demandsDi between
si andti.

Given such a graph, we definesparsityof a cutS ⊆ V to be

Φ(S) =
c(S, S̄)

D(S, S̄)

where
c(S, S̄) =

∑

e s.t.e crosses the cutS,S̄

c(e)

and
D(S, S̄) =

∑

i s.t.si,ti are separated byS,S̄

Di

The objective of the Sparsest Cut problem is to find a cutS∗ which minimizes; let is define
Φ∗ = Φ(S∗) = minS⊆V Φ(S). As an example, see Figure 1. The dashed edges are the demand
edges of demand value 1. The solid edges are edges of the graphwith capacity 1. The sparsest cut
value for this graph is 1.

2 Motivation

Consider the special case of the Sparsest Cut problem when wehave unit demand between every
pair of vertices: i.e., the demands consist of all pairs

(

V

2

)

andDxy = 1 for all x 6= y ∈ V . Then we
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Figure 1: Example illustrating the Sparsest Cut problem

are minimizing the following quantity:

Φunit = min
S⊆V

c(S, S̄)

|S||S̄|
. (1)

If |S| ≤ n/2, thenn/2 ≤ |S̄| ≤ n, then the expression (1) is the same (upto a factor of{n/2, n} )
as

min
|S|≤n

2

c(S, S̄)/|S|. (2)

The above quantity—the cost of the cut edges divided by the size of the separated setS—is called
the “expansion” of the setS in a weighted graph. (In unit weight graphs, this corresponds exactly
to the notion of edge-expansion of graphs). Having a good approximation for this problem enables
us to find good balanced separators, which are extremely useful for “divide-and-conquer” type
of algorithms on graphs. See, e.g. [5] for a survey on how to find balanced separators using the
sparsest cut problem as a subroutine, and for applications to approximation algorithms.

2.1 Expander Graphs

As mentioned above, for unit demands and unit edge-weights,the sparsity is approximately the
same as the edge-expansion of a graph. Graphs with high (edge-)expansion are often calledex-
panders.

Examples of expanders are

• For example,Kn hasΘ(n) expansion; however, this is not surprising, since the degree of the
graph is also large.

• Infinite 3-regular tree: this has finite degree, but is an infinite graph. See Figure 2.

The challenge is in constructing families of finite expanders with bounded-degree—i.e., we
want to construct a family of graphs{Gn} whereGn hasn vertices, for infinitely many values of
n, such that the expansion of graphs in this family is bounded below by a constant, and the degree
is bounded above by a constant. It is not difficult to show thatrandom bounded-degree graphs are
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Figure 2: Infinite 3-regular tree

expanders with high probability, but how does one constructexplicit expanders? By now there are
many constructions known (see, e.g., the survey by Hoory, Linial, and Wigderson [3]). Here is one
such construction due to Margluis.

• Consider then × n grid graph. For every vertex(i, j), add edges to four other vertices :
(i, i + 2j), (i, i + 2j + 1), (i + 2j, j), (i + 2j + 1, j). The proof that this is an expander is
quite non-trivial, but the intuition comes from considering the uniform unit square inℜ2,
considering two mappingsT (x, y) ⇒ (x + 2y, y) andT ′(x, y) ⇒ (x, x + 2y), and showing
that if we take any regionR, such thatarea(R) ≤ 1

2
, thenT (R) ∪ T ′(R) is large.

3 Algorithms for Sparsest Cut

Here is a simple claim for sparsest cuts.

Claim 3.1. There exists a sparsest cut(S, S̄), such that the graphsG[S] andG[S̄] are connected.
(We assume that the graph was connected to begin with.)

Proof. WLOG, assumeG[S] is not connected. Say it has componentsC1 . . . Ct. Let the total
capacity of edges fromCi to C̄i beci and the demand bedi. The sparsity of cutS is c1+...+ct

d1+...dt
.

Now since all the quantitiesci, di are non-negative, by simple arithmetic, there existsi such
thatci/di ≤

c1+...+ct

d1+...dt
. This implies that the cutCi is at least as good asS.

3.1 Sparsest Cut on Trees

Using claim 3.1, we know that the sparsest cut on trees will beexactly one edge. Therefore, the
sparsest cut problem on trees becomes easy to solve in polynomial time.

3.2 Metric Spaces - A Digression

A metric space on a setV is defined as a distance measured : V × V → ℜ, with 3 properties:

1. d(x, y) = 0 iff x = y

3



2. d(x, y) = d(y, x)

3. d(x, y) + d(y, z) ≥ d(x, z)

Typical examples areℜd, equipped with theℓp norms. Recall that theℓp norm is the following -

d(x, y) = (
∑d

i=1
|xi − yi|

p)
1

p .

3.2.1 Cut Metrics

Another example is that associated with “cuts” (i.e., subsets of V ): given a cutS ⊆ V , the “cut
metric” associated withS is δS, where

δS(x, y) =

{

0 if x, y ∈ S or x, y ∈ S̄
1 otherwise

3.2.2 Viewing Metrics as Vectors inℜ(n

2
)

Any n-point metric can be associated with vectors inℜ(n

2
), with each coordinate corresponding to

a pair of vertices from the metric space. Given the metricd, we refer to the corresponding vector
asd̄. In this setting, the following facts are trivial :

1. αd̄ + (1 − α)d̄ is a metric for all0 ≤ α ≤ 1

2. For allα ≥ 0 and metricsd̄, αd̄ is a metric.

Therefore, the set of all metrics forms a convex cone inℜ(n

2
). In this setting the Sparsest Cut

problem can be restated as

min
all cut metricsS

c̄ · δ̄S

D̄ · δ̄S

(3)

wherec̄ is the vector inℜ(n

2
) with c̄ij being the capacity of the edge between vertexi andj, and

D̄ij being the demand between vertexi andj; of course,̄c · δ̄S denotes the dot product of the two
corresponding vectors.

Let us denote the positive cone generated by all cut metrics by CUTn, i.e.,

CUTn = {d̄|d =
∑

S⊆V

αSδS, α ≥ 0}

Since the optimum of (3) will be achieved at an extreme point (or in this case, anextreme ray), we
have

Φ∗ = min
d∈CUTn

c̄ · δ̄S

D̄ · δ̄S

(4)
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3.2.3 What isCUTn?

It turns out that the setCUTn is the same as a natural class of metric spaces.

Fact 3.2. CUTn = all n-point subsets ofℜt under theℓ1 norm.

Proof. Consider any metric inCUTn. For everyS with αS > 0, we have a dimension and in that
dimension we put value0 for x ∈ S andαS for x ∈ S̄. This showsCUTn ⊆ ℓ1 metrics.

For the other direction, consider a set of n-points fromℜn. Take one dimensiond and sort the
points in increasing value along that dimension. Say we getv1, . . . , vk as the set of distinct values.
Definek − 1 cut metricsSi = {x|xd ≤ vi+1}. Also letαi = vi+1 − vi. Now along this dimension,
|xd − yd| =

∑k

i=1
αiδSi

. We can construct cut metrics for every dimension. Thus we have a metric
in CUTn for every n-point metric inℓ1.

Note that the above proof can easily be made algorithmic:

Lemma 3.3.Given a metricµ ∈ ℓ1 withD dimensions, there is a procedure taking timepoly(n, D)
that outputs a set of at mostnD valuesαS ≥ 0 for S ⊆ V such that

µ =
∑

αSδS.

3.2.4 RewritingΦ∗ as optimizing overCUTn

So we can rewrite (4) as

Φ∗ = min
d∈ℓ1

c̄ · δ̄S

D̄ · δ̄S

(5)

Since the sparsest cut problem is NP-hard, we can’t hope to solve the above optimization problem
over metrics inℓ1. Hence we consider a relaxation of this problem. We relax thedomain ofd to
the set of all metrics

λ∗ := min
d metric

c̄ · δ̄S

D̄ · δ̄S

(6)

Clearly, this quantityλ∗ ≤ Φ∗. Moreover, we can compute it via a linear program.

min cijdij

subject to dij ≤ dik + dkj

Dijdij = 1
dij ≥ 0

(7)
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3.3 Metric Embeddings

Suppose we solve the LP to find the metricd that achieves the optimal valueλ∗ in (6): how can we
obtain a cut(S, S̄) such thatΦ(S) is close toΦ∗?

The plan is to embed the metric returned by the linear programabove into anℓ1 metric so that
the distances are not changed by too much. Then if we can somehow recover a cut metric from the
ℓ1 metric with the same objective, then we would be done (modulowhat we lose because of the
embedding). More formally, we have the following theorem:

Theorem 3.4.Suppose for each metric(V, d), there exists a metricµ = µ(d) ∈ ℓ1 such that

d(x, y) ≤ µ(x, y) ≤ αd(x, y)

for all x, y ∈ V . Then the Sparsest cut LP (7) has an integrality gap of at mostα.

Proof. Take the metricd returned by the linear program and consider the metricµ ∈ ℓ1, such that
d ≤ µ ≤ αd. Then

c̄ · µ̄ ≤ αc̄ · d̄ (8)

using the fact thatµ ≤ α d. Moreover

D̄ · µ̄ ≥ D̄ · d̄ (9)

sinceµ ≥ d. Hence

Φ(µ) :=
D̄ · µ̄

c̄ · µ̄
≤

αD̄ · d̄

c̄ · d̄
= αλ∗ ≤ αΦ∗. (10)

In other words, we have found a solution to (5) with value at most α times the (optimal) sparsest
cut, implying that the integrality gap of the LP is at mostα.

We have the following embedding theorem due to Bourgain [2] (with the claim about the di-
mensions due to Linial et al. [4]):

Theorem 3.5.For all metricsd, there existsµ ∈ ℓ1 such thatα = O(log n). Moreover, the number
of dimensions needed is at mostO(log2 n).

Corollary 3.6. The LP relaxation of Sparsest Cut has integrality gap ofO(log n).

3.4 How do we find the Sparsest Cut?

We have shown that the integrality gap between (5) and (6) is small by taking the metricd obtained
by (6) and embedding it intoℓ1. However,we want a cut(S, S̄) with smallΦ(S) — how do we
obtain that?To put in this final piece of the solution, we need to constructa cut(S, S̄) from theℓ1

metricµ such that
Φ(S) ≤ Φ(µ).
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To do this, recall Fact 3.2 which says that any metric inℓ1 can be written as a positive linear com-
bination of cuts. I.e., the metricµ can be written as

∑

αSδS with αS ≥. Given this representation,
we get,

Φ(µ) =
c̄ · µ̄

D̄ · µ̄
=

c̄ · (
∑

αSδS)

D̄ · (
∑

αSδS)
(11)

=

∑

αS(c̄ · δS)
∑

αS(D̄ · δS)
(12)

≥ min
S,αS>0

αS(c̄ · δS)

αS(D̄ · δS)
= min

S,αS>0
Φ(S). (13)

So, we can simply pick the best cutS amongst the ones with non-zeroαS in the cut-decomposition
of µ.

Finally, we use Lemma 3.3 and Theorem 3.5 to argue that the representation ofµ as a positive
linear combination of cut metrics can be found inpoly(n) time, with at mostO(n log2 n) cuts.
This finally proves the result that not only is the integrality gap small (Corollary 3.6), but

Theorem 3.7.Given a metricd that is a solution to the LP (6), we can efficiently find a cut(S, S̄)
such thatΦ(S) ≤ O(log n)× LP-value.
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