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ABSTRACT 

Dictation using speech recognition could potentially serve 

as an efficient input method for touchscreen devices. 

However, dictation systems today follow a mentally 

disruptive speech interaction model: users must first 

formulate utterances and then produce them, as they would 

with a voice recorder. Because utterances do not get 

transcribed until users have finished speaking, the entire 

output appears and users must break their train of thought to 

verify and correct it. In this paper, we introduce Voice 

Typing, a new speech interaction model where users’ 

utterances are transcribed as they produce them to enable 

real-time error identification. For fast correction, users 

leverage a marking menu using touch gestures. Voice 

Typing aspires to create an experience akin to having a 

secretary type for you, while you monitor and correct the 

text. In a user study where participants composed emails 

using both Voice Typing and traditional dictation, they not 

only reported lower cognitive demand for Voice Typing but 

also exhibited 29% relative reduction of user corrections. 

Overall, they also preferred Voice Typing. 
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INTRODUCTION 

Touchscreen devices such as smartphones, slates, and 

tabletops often utilize soft keyboards for input. However, 

typing can be challenging due to lack of haptic feedback 

[12] and other ergonomic issues such as the “fat finger 

problem” [10]. Automatic dictation using speech 

recognition could serve as a natural and efficient mode of 

input, offering several potential advantages. First, speech 

throughput is reported to be at least three times faster than 

typing on a hardware QWERTY keyboard [3]. Second, 

compared to other text input methods, such as handwriting 

or typing, speech has the greatest flexibility in terms of 

screen size. Finally, as touchscreen devices proliferate 

throughout the world, speech input is (thus far) widely 

considered the only plausible modality for the 800 million 

or so non-literate population [26]. 

However, realizing the potential of dictation critically 

depends on having reasonable speech recognition 

performance and an intuitive user interface for quickly 

correcting errors. With respect to performance, if users are 

required to edit one out of every three words, which is 

roughly the purported Word Error Rate (WER) of speaker-

independent (i.e., not adapted), spontaneous conversation, 

no matter how facile the editing experience may be, users 

will quickly abandon speech for other modalities. 

Fortunately, with personalization techniques such as MLLR 

and MAP acoustic adaptation [8,15] as well as language 

model adaptation [5], WER can be reduced to levels lower 

than 10%, which is at least usable. Note that all 

commercially released dictation products recommend and 

perform acoustic adaptation, sometimes even without the 

user knowing (e.g., dictation on Microsoft Windows 7 OS).  

With respect to quickly correcting errors, the editing 

experience on most dictation systems leaves much to be 

desired. The speech interaction model follows a voice 

recorder metaphor where users must first formulate what 

they want to say in utterances, and then produce them, as 

they would with a voice recorder. These utterances do not 

get transcribed until users have finished speaking (as 

indicated by a pause or via push-to-talk), at which point the 

entire output appears at once after a few seconds of delay. 

This is so that the recognizer can have as much context as 

possible to improve decoding. In other words, real-time 

presentation of output is sacrificed for accuracy. Users must 

then break their train of thought, verify the output verbatim 

and correct errors. This process can be mentally disruptive, 

time-consuming, and frustrating. Indeed, users typically 
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spend only 25-30% of their time actually dictating. The rest 

of the time is spent on identifying and editing transcription 

errors [13,18]. 

In this paper, we introduce Voice Typing, a new speech 

interaction model where users’ utterances are transcribed as 

they produce them to enable real-time error identification. 

For fast correction, users leverage a gesture-based marking 

menu that provides multiple ways of editing text. Voice 

Typing allows users to influence the decoding by 

facilitating immediate correction of the real-time output. 

The metaphor for Voice Typing is that of a secretary typing 

for you as you monitor and quickly edit the text using the 

touchscreen.  

The focus of this paper is on improving speech interaction 

models when speech serves as the primary input modality. 

We present two contributions. First, we elaborate on Voice 

Typing, describing how it works and what motivated the 

design of its interaction model. Second, we describe the 

results of a user study evaluating the efficacy of Voice 

Typing in comparison to traditional dictation on an email 

composition task. We report both quantitative and 

qualitative measures, and discuss what changes can be 

made to Voice Typing to further enhance the user 

experience and improve performance. Our results show that 

by preventing decoding errors from propagating through 

immediate user feedback, Voice Typing can achieve a 

lower user correction error rate than traditional dictation. 

VOICE TYPING 

As mentioned previously, the speech interaction model of 

Voice Typing follows the metaphor of a secretary typing 

for you while you monitor and correct the text. Real-time 

monitoring is important because it modulates the speed at 

which users produce utterances. Just in the way that you 

would not continue speaking if the secretary was lagging 

behind on your utterances, users of Voice Typing naturally 

adjust their speaking rate to reflect the speed and accuracy 

of the recognizer. Indeed, in an exploratory design study we 

conducted where participants dictated through a “noisy 

microphone” to a confederate (i.e., an experimenter), we 

found that as the confederate reduced typing speed (to 

intentionally imply uncertainty about what was heard), 

participants also slowed their speaking rate. For the 

prototype we developed, the transcription speed was such 

that users produced utterances in chunks of 2-4 words (see 

the Prototype section for more details). In other words, for 

real-time feedback, in Voice Typing, users are not restricted 

to speaking one word-at-a-time with a brief pause in 

between, as in discrete recognition [24], nor required to 

wait for long after speaking full utterances, like in 

traditional dictation. Instead, users can speak in small 

chunks that match their thought process. Ideally, if the 

recognizer could transcribe as quickly as users could 

produce speech with perfect accuracy, the Voice Typing 

experience would be more like dictating to a professional 

stenographer. However, with current state-of-the-art 

recognition where corrections are required due to 

misrecognitions, Voice Typing is more akin to dictating to a 

secretary or a fast-typing friend. 

We now elucidate the motivation for Voice Typing and the 

technical challenges required to realize its full potential. We 

also describe the prototype we implemented for touchscreen 

devices. 

Motivation 

Voice Typing is motivated by both cognitive and technical 

considerations. From a cognitive standpoint, human-

computer interaction researchers have long known that 

providing real-time feedback for user actions not only 

facilitates learning of the user interface but also leads to 

greater satisfaction [21]. With respect to natural language, 

psycholinguists have noted that as speakers in a 

conversation communicate, listeners frequently provide 

real-time feedback of understanding in the form of back-

channels, such as head nods and “uh-huh” [6]. Indeed, 

research suggests that language processing is incremental 

i.e. it usually proceeds one word at a time, and not one 

utterance or sentence at a time [2,31,32], as evidenced by 

eye movements during comprehension. Real-time feedback 

for text generation is also consistent with the way most 

users type on a keyboard. Once users become accustomed 

with the keyboard layout, they typically monitor their 

words and correct mistakes in real-time. In this way, the 

interaction model for Voice Typing is already quite familiar 

to users. 

From a technical standpoint, Voice Typing is motivated by 

the observation that dictation errors frequently stem from 

incorrect segmentations (though to date we are unaware of 

any published breakdown of errors). Consider the classic 

example of speech recognition failure: “It’s hard to wreck a 

nice beach” for the utterance “It’s hard to recognize 

speech.” In this example, the recognizer has incorrectly 

segmented “recognize” for “wreck a nice” due to attaching 

the phoneme /s/ to “nice” instead of “speech.” Because 

having to monitor and correct text while speaking generally 

induces people to speak in small chunks of words, users are 

more likely to pause where segmentations should occur. In 

other words, in the example above, users are more likely to 

utter “It’s hard <pause> to recognize <pause> speech,” 

which provides the recognizer with useful segmentation 

information. In the Experiment section, we assess whether 

Voice Typing actually results in fewer corrections.  

Voice Typing has yet another potential technical advantage. 

Since there is an assumption that users are monitoring and 

correcting mistakes as they go along, it is possible to treat 

previously reviewed text as both language model context 

for subsequent recognitions and supervised training data for 

acoustic [8] and language model adaptation [5]. With 

respect to the former, real-time correction prevents errors 

from propagating to subsequent recognitions. With respect 

to the latter, Voice Typing enables online adaptation with 



 

acoustic and language data that has been manually labeled 

by the user. There is no better training data for 

personalization than that supervised by the end user. 

Prototype 

While the technical advantages of Voice Typing are 

appealing, implementing a large vocabulary continuous 

speech recognition (LVCSR) system that is designed from 

scratch for Voice Typing is no small feat and will likely 

take years to fully realize (see the Related Work section). 

At a high level, decoding for LVCSR systems typically 

proceeds as follows (see [22] for a review). As soon as the 

recognizer detects human speech it processes the incoming 

audio into acoustic signal features which are then mapped 

to likely sound units (e.g., phonemes). These sound units 

are further mapped to likely words and the recognizer 

connects these words together into a large lattice or graph. 

Finally, when the recognizer detects that the utterance has 

ended, it finds the optimal path through the lattice using a 

dynamic programming algorithm or Viterbi [23]. The 

optimal path yields the most likely sequence of words (i.e., 

the recognition result). In short, current LVCSR systems do 

not return a recognition result until the utterance has 

finished. If users are encouraged to produce utterances that 

constitute full sentences, they will have to wait until the 

recognizer has detected the end of an utterance before 

receiving the transcribed text all at once. This is of course 

the speech interaction model for traditional dictation. 

In order to support the speech interaction model of Voice 

Typing, the recognizer would have to return the optimal 

path through the lattice created thus so far. This can be done 

through recognition hypotheses, which most speech APIs 

expose. Unfortunately, for reasons that go beyond the scope 

of this paper, recognition hypotheses tend to be of poor 

quality. Indeed, in building a prototype, we explored 

leveraging recognition hypotheses but abandoned the idea 

due to low accuracy. Instead, we decided to use LVCSR 

decoding as is, but with one modification. Part of the way 

in which the recognizer detects the end of an utterance is by 

looking for silence of a particular length. Typically, this is 

defaulted to 1-2 seconds. We changed this parameter to 0 

milliseconds. The effect was that whenever users paused for 

just a second, the recognizer would immediately return a 

recognition result. Note that the second of delay is due to 

other processing the recognizer performs.  

To further facilitate the experience of real-time 

transcription, we coupled this modification with two 

interaction design choices. First, instead of displaying the 

recognition result all at once, we decided to display each 

word one by one, left to right, as if a secretary had just 

typed the text. Second, knowing the speed at which the 

recognizer could return results and keep up with user 

utterances, we trained users to speak in chunks of 2-4 

words. 

Providing real-time transcriptions so that users can monitor 

and identify errors is only the first aspect of Voice Typing. 

The second is correcting the errors in a fast and efficient 

manner on touchscreen devices. To achieve this goal, we 

leveraged a marking menu that provides multiple ways of 

editing text. Marking menus allow users to specify a menu 

choice in two ways, either by invoking a radial menu, or by 

making a straight mark in the direction of the desired menu 

item [14]. In Voice Typing, users invoke the marking menu 

by touching the word they desire to edit. Once they learn 

what choices are available on the marking menu, users can 

simply gesture in the direction of the desired choice. In this 

way, marking menus enables both the selection and editing 

of the desired word, and provides a path for novice users to 

become expert users. Figure 1(a) displays the marking 

menu we developed for Voice Typing. If users pick the 

bottom option, as shown in Figure 1(b) they receive a list of 

alternate word candidates for the selected word, which is 

often called an n-best list in the speech community. The list 

also contains an option for the selected word with the first 

letter capitalized. If they pick the left option, they can delete 

the word. If they pick the top option, as shown in Figure 

 

Figure 1. Screenshots of (a) the Voice Typing marking menu, 

(b) list of alternate candidates for a selected word, including 

the word with capitalized first letter, (c) re-speak mode with 

volume indicator, and (d) list of punctuation choices. 

 



 

1(c) they can re-speak the word or spell it letter by letter. 

Note that with this option they can also speak multiple 

words. Finally, if they pick the right option, as shown in 

Figure 1(d) they can add punctuation to the selected word. 

We decided to include this option because many users find 

it cumbersome and unnatural to speak punctuation words 

like “comma” and “period.” Having a separate punctuation 

option frees users from having to think about formatting 

while they are gathering their thoughts into utterances. 

It is important to note that Voice Typing could easily 

leverage the mouse or keyboard for correction, not just 

gestures on a touchscreen. For this paper, however, we 

decided to focus on marking menus for touchscreen devices 

for two reasons. First, a growing number of applications on 

touchscreen devices now offer dictation (e.g., Apple’s Siri 

which uses Nuance Dragon [20], Android Speech-to-Text 

[28], Windows Phone SMS dictation [19], Vlingo Virtual 

Assistant [33], etc.). Second, touchscreen devices provide a 

unique opportunity to utilize touch-based gestures for 

immediate user feedback, which is critical for the speech 

interaction model of Voice Typing. In the user study below, 

our comparison of marking menus to regular menus reflects 

the correction method employed by almost all of these new 

dictation applications. 

RELATED WORK 

A wide variety of input methods have been developed to 

expedite text entry on touchscreen devices. Some of these 

methods are similar to speech recognition in that they 

utilize a noisy channel framework for decoding the original 

input signal. Besides the obvious example of handwriting 

recognition and prediction of complex script for languages 

such as Chinese, a soft keyboard can dynamically adjust the 

target regions of its keys based on decoding the intended 

touch point [10]. The language model utilized by speech 

recognition to estimate the likelihood of a word given its 

previous words appears in almost all predictive text entry 

methods, from T9 [9] to shape writing techniques [34] such 

as SWYPE [30]. 

Beyond touchscreen input methods that are similar to 

speech recognition, a few researchers have explored how to 

obtain more accurate recognition hypotheses from the word 

lattice so that they can be presented in real-time. Fink et al. 

[7] found that providing more right context (i.e., more 

acoustic information) could improve accuracy. Likewise, 

Baumann et al. [4] showed that increasing the language 

model weight of words in the lattice could improve 

accuracy. Selfridge et al. [25] took both of these ideas 

further and proposed an algorithm that looked for paths in 

the lattice that either terminated in an end-of-sentence (as 

deemed by the language model), or converged to a single 

node. This improved the stability of hypotheses by 33% and 

increased accuracy by 21%. Note that we have not yet tried 

to incorporate any of these findings, but consider this part 

of our future work.  

With respect to the user experience of obtaining real-time 

recognition results, Aist et al. [1] presented users with pre-

recorded messages and recognition results that appeared 

either all at once or in an incremental fashion. Users 

overwhelmingly preferred the latter. Skantze and Schlangen 

[27] conducted a similar study where users recited a list of 

numbers. Again, users preferred to review the numbers in 

an incremental fashion. All of this prior research justifies 

the Voice Typing speech interaction model. To our 

knowledge, the user study we describe in the next section 

represents the first attempt to compare incremental, real-

time transcription with traditional dictation on a 

spontaneous language generation task using LVCSR 

decoding. 

The Voice Typing gesture-based marking menu is related to 

research in multimodal correction of speech recognition 

errors. In Martin et al. [17], preliminary recognition results 

were stored temporarily in a buffer which users could 

interactively edit by spoken dialogue or by mouse. Users 

could delete single words or the whole buffer, re-speak the 

utterance, or select words from an n-best list. Suhm et al. 

[29] proposed switching to pen-based interaction for certain 

types of corrections. Besides advocating spelling in lieu of 

re-speaking, they created a set of pen gestures such as 

crossing-out words to delete them. Finally, commercially 

available dictation products for touchscreen devices, such 

as the iPhone Dragon Dictation application [20], also 

support simple touch-based editing. To date, none of these 

products utilize a marking menu. 

USER STUDY 

In order to assess the correction efficacy and usability of 

Voice Typing in comparison to traditional dictation, we 

conducted a controlled experiment in which participants 

engaged in an email composition task. For the email 

content, participants were provided with a structure they 

could fill out themselves. For example, “Write an email to 

your friend Michelle recommending a restaurant you like. 

Suggest a plate she should order and why she will like it.” 

Because dictation entails spontaneous language generation, 

we chose this task to reflect how end users might actually 

use Voice Typing. 

Experimental Design 

We conducted a 2x2 within-subjects factorial design 

experiment with two independent variables: Speech 

Interaction Model (Dictation vs. Voice Typing) and Error 

Correction Method (Marking Menu vs. Regular). In 

Regular Error Correction, all of the Marking Menu options 

were made available to participants as follows. If users 

tapped a word, the interface would display an n-best list of 

word alternates. If they performed press-and-hold on the 

word, that invoked the re-speak or spelling option. For 

deleting words, we provided “Backspace” and “Delete” 

buttons at the bottom of the text area. Placing the cursor 

between words, users could delete the word to the left using 



 

“Backspace” and the word to the right using “Delete.” 

Users could also insert text anywhere the cursor was 

located by performing press-and-hold on an empty area. 

The order of presentation of Speech Interaction Model and 

Error Correction Method was counter-balanced. We 

collected both quantitative and qualitative measures. With 

respect to quantitative measures, we measured rate of 

correction and the types of corrections made. With respect 

to the qualitative measures, we utilized the NASA task load 

index (NASA-TLX) [11] because it is widely used to 

estimate perceived workload assessment. It is divided into 

six different questions: mental demand, physical demand, 

temporal demand, performance, effort, and frustration. For 

our experiment, we used the software version of NASA-

TLX, which contains 20 divisions, each division 

corresponding to 5 task load points. Responses were 

measured on a continuous 100-point scale. We also 

collected qualitative judgments via a post-experiment 

questionnaire that asked participants to rank order each of 

the four experimental conditions (Dictation Marking Menu, 

Voice Typing Marking Menu, Dictation Regular and Voice 

Typing Regular) in terms of preference. The rank order 

questions were similar to NASA-TLX so that we could 

accurately capture all the dimensions of the workload 

assessment. Finally, we collected open-ended comments to 

better understand participants’ preference judgments.  

Software and Hardware 

We developed the Voice Typing and Dictation Speech 

Interaction Models using the Windows 7 LVCSR dictation 

engine. As mentioned before, for Voice Typing, we 

modified the silence parameter for end segmentation via the 

Microsoft System.Speech managed API. In order to control 

speech accuracy across the four experimental conditions, 

we turned off the (default) MLLR acoustic adaptation. Both 

types of Error Correction Methods were implemented 

using the Windows 7 Touch API and Windows Presentation 

Foundation (WPF). We conducted the experiment on a HP 

EliteBook 2740p Multi-Touch Tablet with dual core 2.67 

GHz i7 processor and 4 GB of RAM. 

Participants 

We recruited 24 participants (12 males and 12 females), all 

of whom were native English speakers. Participants came 

from a wide variety of occupational backgrounds (e.g., 

finance, car mechanics, student, housewife, etc.). None of 

the participants used dictation via speech recognition on a 

regular basis. The age of the participants ranged from 20 to 

50 years old (M = 35.13) with roughly equal numbers of 

participants in each decade.  

Procedure 

In total, each experimental session lasted 2 hours, which 

included training the LVCSR recognizer, composing two 

practice and three experimental emails per experimental 

condition, and filling out NASA-TLX and post-experiment 

questionnaires. To train the LVCSR recognizer, at the start 

of the each session, participants enrolled in the Windows 7 

Speech Recognition Training Wizard, which performs 

MLLR acoustic adaptation [8] on 20 sentences, about 10 

minutes of speaking time. We did this because we found 

that without training, recognition results were so inaccurate 

that users became frustrated regardless Speech Interaction 

Model and Error Correction Method.  

During the training phase for each of the four experimental 

conditions, the experimenter walked through the interaction 

and error correction style using two practice emails. In the 

first practice email, the experimenter demonstrated how the 

different Speech Interaction Models worked, and then 

performed the various editing options available for the 

appropriate Error Correction Method (i.e., re-speak, 

spelling, alternates, delete, insert, etc.). Using these options, 

if the participant was unable to correct an error even after 

three retries, they were asked to mark it as incorrect. Once 

participants felt comfortable with the user interface, they 

practiced composing a second email on their own with the 

experimenter’s supervision. Thereafter, the training phase 

was over and users composed 3 more emails. At the end of 

each experimental condition, participants filled out the 

NASA-TLX questionnaire. At the end of the experiment, 

they filled out the rank order questionnaire and wrote open-

ended comments. 

RESULTS 

Quantitative 

In order to compare the accuracy of Voice Typing to 

Dictation, we computed a metric called User Correction 

Error Rate (UCER), modeled after Word Error Rate 

(WER), a widely used metric in the speech research 

community. In WER, the recognized word sequence is 

compared to the actual spoken word sequence using 

Levenshtein’s distance [16], which computes the minimal 

number of string edit operations–substitution (S), insertion 

(I), and deletion (D)–necessary to convert one string to 

another. Thereafter, WER is computed as: WER = (S + I + 

D) / N, where N is the total number of words in the true, 

spoken word sequence. 

In our case, measuring WER was not possible for two 

reasons. First, we did not have the true transcript of the 

word sequence – that is, we did not know what the user had 

actually intended to compose. Second, users often 

improvised after seeing the output and adjusted their 

utterance formulation, presumably because the recognized 

text still captured their intent. Moreover, we believe that 

although WER accurately captures the percentage of 

mistakes that the recognizer has made, it does not tell us 

much about the amount of effort that users expended to 

correct the recognition output, at least to a point where the 

text was acceptable. The latter, we believe, is an important 

metric for acceptance of any dictation user interface. Thus, 

we computed UCER as:  



 

      
                       

   
 

where Sub is the number of substitutions the user made 

using the 'Respeak' mode (both spelling and re-speaking the 

entire word) or via using the alternates, Ins is the number of 

word insertions, Del is the number of word deletions, 

Uncorrected is the number of words that user identified as 

incorrect but did not correct due to difficulties in error 

correction (see the Procedure Section), and Num is the 

number of words in the final text that was submitted by the 

user. 

While the UCER metric captures the amount of effort users 

expended to correct mistakes, it does not include the errors 

that were left “unidentified and uncorrected” by the user. 

For example, there were occasions when words were 

recognized as plural, instead of singular, but were left 

unchanged. This may be because they were unidentified or 

because the user did not feel that the grammatically 

incorrect text affected the intended meaning. In any case, 

these cases were rare and more importantly, they were 

equally distributed across the experimental conditions. 

In terms of UCER, a repeated measures ANOVA yielded a 

significant main effect for the Speech Interaction Model 

(F(1,46) = 4.15, p < 0.05), where Voice Typing (M = 0.10, 

SD = 0.01) was significantly lower than Dictation (M = 

0.14, SD = 0.01). Looking at Figure 2, it may seem as if 

Marking Menu had slightly higher UCER than Regular, but 

we did not find any main effect for Error Correction 

Method, nor did we find an interaction effect. 

In terms of types of corrections, as described previously, 

UCER consists of four different types of corrections. We 

wanted to further tease apart the types of corrections that 

were significantly different across experimental conditions 

to understand what led to lower UCER in Voice Typing 

than Dictation. Figure 3 plots average errors per-email for 

all four conditions. For substitutions, We obtained a 

significant main effect for Error Correction Method 

(F(1,46) = 5.9, p < 0.05), where Marking Menu had 

significantly higher substitutions (M = 7.24, SD = 0.5) than 

Regular (M = 5.50, SD = 0.5). For insertions, deletions, and 

identified but uncorrected errors, we did not find any 

significant effects.  

To contrast the amount of time users had to wait to see the 

  

Figure 3. Average number of substitutions, insertions, deletions made by the user in order to correct an email for each of the four 

experimental conditions, and the number of words left uncorrected. 

Substitutions Insertions Deletions Uncorrected 

Dictation, Marking Menu 7.35 2.14 3.17 0.21 

Dictation, Regular 5.90 1.43 3.32 0.24 

Voice Typing, Marking Menu 7.14 0.78 2.82 0.15 

Voice Typing, Regular 5.10 1.36 3.10 0.25 
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Figure 2. User correction error rate for all four conditions. 

Blue data points are for traditional Dictation, red data points 

for Voice Typing. 



 

recognition result, although this was not a dependent 

variable, we measured the delay from the time the 

recognizer detected speech (Time (speech)) to when the 

actual transcription (Time (text)) was shown in the user 

interface: 

       
                                      

                      
 

As shown in Figure 4, the average waiting time for Voice 

Typing was 1.27 seconds, which of course was significantly 

lower than that of Dictation, 12.41 seconds. Although the 

delay in dictation seems ten times large, we should note that 

this includes the time that the user took to speak the entire 

utterance, as well as the delay time. 

 For Voice Typing, we were interested to see if the average 

delay varied across emails either due to the users’ speaking 

style or other acoustic differences that might have led to a 

difference in user experience. Surprisingly, all the delays 

were within two standard deviations from the average, with 

37 (out of 48 emails for Voice Typing) having delays 

within one standard deviation from the average i.e., 

between 1.27 ± 0.3 seconds, as shown in Figure 4. 

Qualitative 

Voice Typing vs. Dictation 

A repeated measure ANOVA on the NASA TLX data for 

mental demand yielded a significant main effect for Speech 

Interaction Model (F(1, 46) = 4.47, p = 0.03), where Voice 

Typing (M = 30.90, SD = 19.16) had lower mental demand 

than Dictation (M = 39.48, SD = 20.85). Furthermore, we 

found a significant main effect Speech Interaction Model on 

effort and frustration (F(1,46) = 4.03, p = 0.04 and F(1,46) 

= 4.02, p = .05, respectively). In both cases, Voice Typing 

displayed significantly lower effort and frustration than 

Dictation. 

On the rank order questionnaire, overall 18 out of 24 

participants indicated a preference for Voice Typing over 

Dictation (χ2 (1) = 7.42, p < 0.01). Furthermore, 18 

participants ranked Voice Typing as having less effort than 

Dictation (χ2 (1) = 3.99, p < 0.05), and 17 ranked Voice 

Typing as having less frustration (χ2 (1) = 9.53, p < 0.05). 

As indicated, all of the above rankings were statistically 

significant by Wilcoxon tests. 

Open-ended comments highlighted the motivation for the 

speech interaction model of Voice Typing. As one 

participant put it, “It [Voice Typing] was better because 

you did not have to worry about finding mistakes later on. 

You could see the interaction [output] as you say; thereby 

reassuring you that it was working fine.” On the other 

hand, not all participants agreed. One participant explained: 

“I preferred Dictation, because in Voice Typing, if one 

word was off as I was speaking, it would distract me.” 

Marking Menu vs. Regular 

On the NASA-TLX data, we found a significant main effect 

for Error Correction Method on physical demand (F(1,46) 

= 4.43, p = 0.03), where Marking Menu (M = 19.50, SD = 

20.56) had significant lower physical demand than Regular 

(M = 28.13, SD = 19.44).  

On the rank order questionnaires, 21 out of 24 participants 

overall preferred Marking Menu to Regular (χ2 (1) = 25.86, 

p < 0.01). Furthermore, 21 participants ranked Marking 

Menu as having less mental demand than Regular (χ2 (1) = 

22.3, p < 0.01) and 21 ranked Marking Menu as having less 

physical demand (χ2 (1) = 22.3, p < 0.01). As indicated, all 

of the above rankings were statistically significant by 

Wilcoxon tests. 

With respect to open-ended comments, participants seemed 

to appreciate the menu discovery aspect of marking menus. 

As one participant put it, “It [Marking Menu] was great for 

a beginner. It was easier mentally to see the circle with 

choices and not have to concern myself with where to select 

my [error correction] choices from.” Another participant 

highlighted how Marking Menu allowed both selection and 

correction at the same time: “It [Marking Menu] seemed to 

involve less action.” Again, not everyone agreed with 3 

participants claiming that they found Marking Menu to be 

challenging to learn. In order to understand why these 3 

participants felt that way, we went through their video 

recordings. It turned out that these participants had larger 

fingers than most, and had difficulties selecting and swiping 

(up, down, or left) words, particularly single letter words 

like “a.” 

DISCUSSION AND FUTURE WORK 

In this paper, we introduced Voice Typing, a new speech 

interaction model where users’ utterances are transcribed as 

they produce them to enable real-time error identification. 

Our experimental results indicated that Voice Typing had 

significantly fewer corrections than Dictation even though 

the acoustic and language models for the recognizer were 

the same for both Speech Interaction Models. A plausible 

 
Figure 4. Frequency distribution of the system response times 

across emails in Voice Typing condition. For most emails the 

delays were within one standard deviation (0.3 seconds) of the 

average (1.27 seconds), and all the emails were with two 

standard deviations from the average. 
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explanation is that when users correct transcriptions in real-

time, this prevents errors from propagating. Users also felt 

that Voice Typing exhibited less mental demand, perceived 

effort, and frustration than Dictation. 

With respect to Error Correction Methods, while there was 

no significant difference in the overall user correction error 

rate between the two methods, we found that users used 

substitutions (re-speak, spell, or alternates) significantly 

more in Marking Menu than Regular, the current style of 

error correction in the dictation interfaces today. One 

plausible explanation for this is that since users found 

gestures to be less mentally and physically demanding, they 

preferred to substitute the word rather than leave it 

uncorrected. This is evidenced by the trend that people left 

more words uncorrected in the Regular method than 

Marking Menu. Another plausible explanation is that the 

current interface required edit operations at a word level 

even if successive words were incorrectly recognized. This 

could have potentially led to more substitutions than 

needed. We plan to explore phrase-level edit operations as 

future work. 

Despite the above positive findings for Voice Typing, we 

do not believe that the Dictation interaction model should 

be completely dismissed. There is merit in using a voice 

recorder style of interaction when the context demands a 

“hands-free, eyes-free” interaction, such as driving. Surely, 

in these cases, Voice Typing would not be a feasible 

approach. Also, in other cases such as highly-populated 

public spots, we imagine that typing on a soft keyboard 

might still be preferred for privacy.  

In terms of future work, as discussed in the Motivation 

section, LVCSR decoding currently is not well suited for 

Voice Typing. While speech researchers continue to 

improve recognition accuracy by building better underlying 

algorithms and using larger datasets, our findings suggest 

that it may be time to rethink the speech interaction model 

of dictation and consider changing the decoding process to 

support accurate, real-time feedback from ground up. This 

is where we plan to focus our efforts next. 
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