SAT-Based Image Computation
with Application in Reachability Analysis

Aarti Gupta, Zijiang Yang, Pranav Ashar, and Anubhav Gupta

NEC USA CCRL
4 Independence Way, Princeton, NJ 08540
{agupta, jyang, ashar, anubhav}@Qccrl.nj.nec.com

Abstract. Image computation finds wide application in VLSI CAD,
such as state reachability analysis in formal verification and synthesis,
combinational verification, combinational and sequential test. Existing
BDD-based symbolic algorithms for image computation are limited by
memory resources in practice, while SAT-based algorithms that can ob-
tain the image by enumerating satisfying assignments to a CNF represen-
tation of the Boolean relation are potentially limited by time resources.
We propose new algorithms that combine BDDs and SAT in order to
exploit their complementary benefits, and to offer a mechanism for trad-
ing off space vs. time. In particular, (1) our integrated algorithm uses
BDDs to represent the input and image sets, and a CNF formula to rep-
resent the Boolean relation, (2) a fundamental enhancement called BDD
Bounding is used whereby the SAT solver uses the BDDs for the input set
and the dynamically changing image set to prune the search space of all
solutions, (3) BDDs are used to compute all solutions below intermediate
points in the SAT decision tree, (4) a fine-grained variable quantification
schedule is used for each BDD subproblem, based on the CNF represen-
tation of the Boolean relation. These enhancements coupled with more
engineering heuristics lead to an overall algorithm that can potentially
handle larger problems. This is supported by our preliminary results on
exact reachability analysis of ISCAS benchmark circuits.

1 Introduction

Image and pre-image computation play a central role in symbolic state space
traversal, which is at the core of a number of applications in VLSI CAD like
verification, synthesis, and testing. The emphasis in this paper is on reachability
analysis for sequential system verification. For simplicity of exposition, we focus
only on image computation; the description can be easily extended to pre-image
computation as well.

1.1 BDD-based Methods

Verification techniques based on symbolic state space traversal [7,9] rely on
efficient algorithms based on BDDs [4] for computing the image of an input set
over a Boolean relation. The input set in this case is the set of present states

P, and the Boolean relation is the transition relation 7', i.e. the set of valid
present-state, next-state combinations. (For hardware, it is convenient to also
include the primary inputs in the definition of T'). The use of BDDs to represent
the characteristic function of the relation, the input, and the image set, allows
image computation to be performed efficiently through Boolean operations and
variable quantification. As an example of its application, the set of reachable
states can be computed by starting from a set P which denotes the set of initial
states of a system, and using image computation iteratively, until a fixpoint is
reached.

A number of researchers have proposed the use of partitioned transitioned
relations [6,21], where the BDD for the entire transition relation is not built
a priori. Typically, the partitions are represented using multiple BDDs, and
their conjunction is interleaved with early variable quantification during image
computation. Many heuristics have been proposed to find a good quantification
schedule, i.e. an ordering of the conjunctions which minimizes the number of peak
variables [11,19]. There has also been an interest in using disjunctive partitions
of the transition relations and state sets [8,17,18], which effectively splits the
image computation into smaller subproblems.

The BDD-based approaches work well when it is possible to represent the
sets of states and the transition relation (as a whole, or in a usefully partitioned
form) using BDDs. Unfortunately, BDD size is very sensitive to the number
of variables, variable ordering, and the nature of the logic expressions being
represented. In spite of a large body of work, the purely BDD-based approach
has been unreliable for designs of realistic size and functionality.

1.2 Combining BDDs with SAT-based Methods

An alternative, used extensively in testing applications [13], is to represent the
transition relation in Conjunctive Normal Form (CNF) and use Boolean Satisfi-
ability Checking (SAT) for various kinds of analysis. SAT solver technology has
improved significantly in recent years with a number of sophisticated packages
now available, e.g. [16]

P IP

[0}
N © 1@ Miter
_|—> Out

C,

Cut

Fig. 1. Miter Circuit for Combinational Verification

For checking equivalence of two given combinational circuits C1 and C2, a
typical approach is to prove that the XOR of their corresponding outputs, called

the miter circuit output, can never evaluate to 1, as shown in Figure 1. This
proof can be provided either by building a BDD for the miter, or by using a
SAT solver to prove that no satisfying assignment exists for the miter output.
In cases where the two methods fail individually, BDDs and SAT can also be
combined, for example, in the manner shown in Figure 1. A cut is identified in
the miter circuit to divide the circuit into two parts: the part Py of the circuit
between the circuit inputs and the cut, and the part Po of the circuit between
the cut and the output. A BDD is built for Pp, while Py is represented in CNF.
A SAT solver then tries to enumerate all valid combinations at the cut using the
CNF for Pr, while checking that it is not contained in the on-set of the BDD for
Pp [12]. Enumerating the valid combinations at the cut corresponds exactly to
computing the image of the input set over the Boolean relation corresponding
to Pr. Other ways of combining BDDs and SAT for equivalence checking have
also been proposed [5].

For property checking, the effectiveness of SAT solvers for finding bugs has
also been demonstrated in the context of bounded model checking and symbolic
reachability analysis [1,2,22]. The common theme is to convert the problem of
interest into a SAT problem, by devising the appropriate propositional Boolean
formula, and to utilize other non-canonical representations of state sets. How-
ever, they all exploit the known ability of SAT solvers to find a single satisfying
solution when it exists. To our knowledge, no attempt has been made to for-
mulate the problems in a way that a SAT solver is used to find all satisfying
solutions.

In our approach to image computation, we use BDDs to represent state
sets, and a CNF formula to represent the transition relation. All valid next
state combinations are enumerated using a backtracking search algorithm for
SAT that exhaustively visits the entire space of primary input, present state
and next state variables. However, rather than using SAT to enumerate each
solution all the way down to a leaf, we invoke BDD-based image computation at
intermediate points within the SAT decision procedure, which effectively obtains
all solutions below that point in the search tree. In a sense, our approach can be
regarded as SAT providing a disjunctive decomposition of the image computation
into many subproblems, each of which is handled in the standard way using
BDDs. In this respect, our work is closest to that of Moon et al. [17], who
independently formulated a decomposition paradigm similar to ours. However,
there are significant differences in the details, and we defer that discussion to
Section 7.

We start by providing the necessary background on a typical SAT decision
procedure in the next section. OQur proposed algorithm for image computation
is described in detail in the sections that follow. Towards the end, we provide
experimental results for reachability analysis, which validate the individual ideas
and the overall approach proposed by us, and describe some of our work in
progress.

2 Background: Satisfiability Checking (SAT)

The Boolean Satisfiability (SAT) problem is a well-known constraint satisfac-
tion problem with many applications in computer-aided design, such as test
generation, logic verification and timing analysis. Given a Boolean formula, the
objective is to either find an assignment of 0-1 values to the variables so that the
formula evaluates to true, or establish that such an assignment does not exist.
The Boolean formula is typically expressed in Conjunctive Normal Form (CNF),
also called product-of-sums form. Each sum term (clause) in the CNF is a sum
of single literals, where a literal is a variable or its negation. An n-clause is a
clause with n literals. For example, (vi+vj’+vk) is a 3-clause. In order for the
entire formula to evaluate to 1, each clause must be satisfied, i.e., evaluate to 1.

Initialize(); //allvar made "free"
do {
I'mplications();
status = Bound();
if (status == contradiction)
if (active_var->assigned_val ==
active_var->first_val)
active_var->assi gned_val =
lactive_var->first_val;
el se
prev_var = Backtrack();
if (prev_var == NULL)
soln = no_sol n;
return;
endi f;
endi f
el se
active_var = Next_free_var();
if (active_var == NULL)
sol n = found;

return;
endif;
active_var->first_val =
active_var->assi gned_val = Val ();
endi f;
} Wile ();

Fig. 2. Backtracking Search Procedure for SAT

The complexity of this problem is known to be NP-Complete. In practice,
most of the current SAT solvers are based on the Davis-Putnam algorithm [10].
The basic algorithm begins from an empty assignment, and proceeds by assigning
a 0 or 1 value to one free variable at a time. After each assignment, the algorithm
determines the direct and transitive implications of that assignment on other
variables, typically called bounding. If no contradiction is detected during the
implication procedure, the algorithm picks the next free variable, and repeats
the procedure. Otherwise, the algorithm attempts a new partial assignment by
complementing the most recently assigned variable for which only one value has
been tried so far. This step is called backtracking. The algorithm terminates

either when all clauses have been satisfied and a solution has been found, or
when all possible assignments have been exhausted. The algorithm is complete
in that it will find a solution if it exists.

Pseudo code for the basic Davis-Putnam search procedure is shown in Figure
2. The function and variable names have obvious meanings. This procedure has
been refined over the years by means of enhancements to the Implications(),
Bound (), Backtrack(), Next_free_var() and Val() functions. The GRASP
work [15] proposed the use of non-chronological backtracking by performing a
conflict analysis, and addition of conflict clauses to the database in order to
avoid repeating the same contradiction in the future.

3 Image Computation

The main contribution in our paper is the novel algorithm for image computation
by combining BDD- and SAT-based techniques in a single integrated framework.
In relationship to current SAT solvers, our contributions are largely specific to
their use for image computation. They are orthogonal to the most advanced
features found in state-of-the-art SAT algorithms like GRASP [16], and indeed
add to them.

3.1 Representation Framework

Our representation framework consists of using BDDs to represent the input and
image sets, and a CNF formula to represent the Boolean relation. This choice is
motivated by the fact that BDD-based methods frequently fail because of their
inability to effectively manipulate the BDD(s) for the transition relation, in its
entirety or in partitioned form. Furthermore, since BDDs for the input and image
sets might also become large for complex systems, we do not require that a single
BDD be used to represent these sets. Any disjunctively decomposed set of BDDs
will work with our approach. This setup is shown pictorially in Figure 3. For our
current, prototype, we use a simple “chronological” disjunctive partitioning, such
that whenever the BDD size for a set being accumulated crosses a threshold, a
new BDD is created for storing future additions to the set. We are exploring use
of alternative representations to manage these sets.

3.2 Image Computation Using CNF-BDDs

The standard image computation formula is shown below in Equation (1), where
x, y, and w denote the set of present state, next state, and primary input vari-
ables, respectively; P(x) denotes the input set, and T'(z,w,y) denotes the tran-
sition relation.

Image(P,T)(y) = 3z,w.P(z) AT (z,w,y) (1)

In our framework, P(z) and Image(y) are represented as (multiple) BDDs,
while T is represented as a CNF formula in terms of x,w,y and some additional

Relation
(CNF)

/[

Input Set Image Set
(Multiple BDDs) (Multiple BDDs)

Fig. 3. The CNF-BDDs Representation Setup

variables z, which denote internal signals in the circuit. We compute the image
set by enumerating all solutions to the CNF formula 7', and recording only the
combinations of y variables, while restricting the values of = variables to those
that satisfy P(z). Note that by restricting the = variables to satisfy P(z), we are
effectively performing the conjunction in the above formula. This restriction is
performed by what we call BDD Bounding. Essentially, during the SAT search
procedure, any partial assignment to the x variables that does not belong to
the on-set of the BDD(s) P(x) is pruned immediately [12]. Note also, that by
enumerating all (not a single) solution to the CNF formula, and by consider-
ing combinations of only y variables among these solutions, we are effectively
performing a quantification over all the other variables (z,w, z).

We also use Unreached(y) as a care-set for the image set. In applications such
as reachability analysis where image computation is performed iteratively, this
set can be computed as the negation of the current set of reached states. Again,
by using BDD(s) to represent Unreached(y), we can obtain additional pruning of
the SAT search space by performing BDD Bounding against this image care-set.
To summarize, we use the following equation for image computation:

Image(P,T)(y) = 3z, w,z.P(z) AT (z,w, z,y) A Unreached(y) (2)

4 BDD Bounding

A naive approach for performing BDD Bounding is to enumerate each complete
SAT solution up to the leaf of the search tree, and then check if the solution
satisfies the given BDD(s). This is obviously inefficient since the number of SAT
solutions may be very large.

In our setup, the x/y variables are shared between the input/image set
BDD(s) and the CNF formula. Therefore, whenever a value is set to or im-
plied on one of these variables in SAT, we can check if the intersection of the
partial assignment with the given BDD(s) is non-null. If it is indeed non-null,
the SAT procedure can proceed forward. Otherwise it must backtrack, since no
solution consistent with the conjunctions can be found under this subtree. In our
earlier work on combinational verification, we had called this the Farly Bounding
approach [12], and had demonstrated a significant reduction in the number of

Bound(sat, lit,input_bdd) {
if (lit_is_input_set_variable(lit)){
new_bdd =
proj ect _variabl e_i n_bdd(i nput_bdd, lit);
if (bdd_equal _zero(new_bdd))
return contradiction;
el se
i nput _bdd = new_bdd;
} 11 restof the procedure is unchanged

}

Fig. 4. Pseudo-code for BDD Bounding

backtracks due to pruning off large subspaces of the search tree. Note that the
smaller the bounding set, the greater the pruning, and the faster the SAT solver
is likely to be.

4.1 Bounding Against the Image Set: A Positive Feedback Effect

In addition to bounding against the input set P(z) and the image care-set
Unreached(y), a fundamental speed-up in our image computation procedure
can be obtained by also bounding against the BDDs of the currently computed
image set denoted Current(y). Note that Unreached(y) does not change during
a single image computation, while Current(y) is updated dynamically, as new
solutions for the image set are enumerated. Therefore, if a partial assignment
over y variables is contained in Current(y), it implies that any extension to a
full assignment has already been enumerated. Therefore, it serves no purpose for
the SAT solver to explore further, and it can backtrack. As a result, a positive
feedback effect is created in which the larger the image set grows, the faster the
SAT solver is likely to be able to go through the remaining portion of the search
space.

4.2 Implementation Details: Bounding the x Variables

For BDD Bounding against P(z), we modify the Bound() function of Figure
2, so that it checks the satisfaction of a partial assignment on x variables with
the on-set of the BDDs for P(z). Again, if the partial assignment has a null
intersection with each BDD, the SAT solver is made to backtrack, just as if
there were a contradiction.

The pseudo-code for the Bound () procedure for a single BDD is shown in
Figure 4. In this procedure, the initial argument is the BDD for P(z), and
the recursive argument maintains its projected version down the search tree.
The project_variable_in bdd () procedure, can be easily implemented by us-
ing either the bdd_substitute() or the bdd_cofactor() operations available
in standard BDD packages [20]. Unfortunately, these standard BDD operations
represent a considerable overhead in terms of unique table and cache lookups. In
our implementation, we use a simple association list to keep track of the x vari-
able assignments. Projecting (un-projecting) a variable is accomplished simply
by setting (un-setting) its value in the association — a constant-time operation.

However, checking against a zero_bdd requires a traversal of the argument BDD,
by taking branches dictated by the variable association. If any path to a one_bdd
is found, the traversal is terminated, and the BDD is certified to be not equal
to the zero_bdd. In the worst case, this takes time proportional to the size of
the BDD. As a further enhancement, for each BDD node, we associate a value
indicating the presence or absence of a path to a one_bdd from that node. This
bit must be modified only if the value of a variable below this node is modified.
As a result, the average complexity of the emptiness check is likely better than
the BDD size.

4.3 Implementation Details: Bounding the y Variables

During the SAT search, if the intersection of a partial assignment over y vari-
ables and (Unreached(y)A!Current(y)) is non-null, exploration should proceed
further down that path, otherwise it can backtrack.

/* Each BDD node has a user-defined field that indicates if the sub-graph
below it is tautologically one, zero or neither (TWO_BDD) */
/* B_array is an array of BDD nodes, V_array is the array of variables and
their values */
bdd_equal _zero(B_array, V_array) {
/* Leaves */
if (any BDD in B _array is ZERO BDD)
return ZERO BDD;
if (each BDD in B_array is ONE_BDD)
return ONE_BDD;
if (only one BDD in B_array is TWO BDD)
return TWO BDD;

/* Non-leaf case */

NewB_array = renove_one_bdds(B_array);

if (is_in_cache(NewB_array, &val))
return Val;

/* get top var from all the BDDs in NewB_array */
Top_var = get_top_var(NewB_array);
ThenB_array = get_then(NewB_array, Top_var);
El seB_array = get_el se(NewB_array, Top_var);
Proj _value = get_proj_val (Top_var, V_array);
if (Proj_value == ONE) {
Val = bdd_equal _zero(ThenB_array, V_array);
} else if Proj_value == ZERO {
Val = bdd_equal _zero(El seB_array, V_array);
} else {
Val 0 = bdd_equal _zero(ThenB_array, V_array);
Val 1 = bdd_equal _zero(El seB_array, V_array);
if (val0O == val 1) {
Val = val 0;
} else {
Val = TWD BDD;
}

insert_in_cache(newB array, Val);
return Val;

Fig. 5. Determining Emptiness of the Product of Multiple BDDs with Projections

Recall that we allow use of a disjunctive partitioning of the reached state
set R = U; R;. Therefore, both the Unreached and !Current sets can be repre-

sented as product of BDDs, i.e. Unreached(y) = N;!R;(y), and !Current(y) =
N;!Current;(y). Rather than performing an explicit product of the multiple
BDDs, the partial assignment over y variables is projected separately onto each
BDD. Then the the multiple BDDs are traversed in a lock-step manner by using
a modified bdd_equal_zero() procedure, to determine if there exists a path in
their product that leads to a one_bdd. The pseudo code for this is shown in Fig-
ure 5, where the given procedure assumes that projection of variable values onto
the individual BDDs has already been carried out. In the actual implementation,
the projection of variables and detection of emptiness are done in a single pass,
along with handling of complemented BDD nodes. The worst-case complexity
is that of actually computing a complete product, but in practice the procedure
terminates as soon as any path to one_bdd is found.

5 BDDs at SAT Leaves

So far we have explained our algorithm for image computation in terms of enu-
merating all solutions of the CNF formula using SAT-solving techniques, while
performing BDD Bounding where possible in order to prune the search space.
This still suffers from some drawbacks of a purely SAT-based approach, i.e. so-
lutions are enumerated one-at-a-time, without any reuse. To some extent this
drawback is countered by examining partial solutions (cubes) for inclusion and
for pruning, but we can actually do better.

It is useful in this regard to compare a purely SAT-based approach vs. a
purely BDD-based approach. In essence, both work on the same search space of
Boolean variables — SAT solvers use an explicit decision tree, while BDD oper-
ations work on the underlying DAGs. A BDD-based approach is more suitable
for capturing all solutions simultaneously. However, due to the variable ordering
restriction, it can suffer from a size blowup in the intermediate/final results. On
the other hand, a SAT decision tree has no variable ordering restriction, and can
therefore potentially manage larger problems. However, since it is not canonical,
many subproblem computations may get repeated.

Top-level SAT Decision Tree

‘ BDD Computations

Fig. 6. BDDs at SAT Leaves

In order to combine the relative advantages of both, we use a SAT decision
tree to organize the top-level search space. Within this tree, along any path,
rather than using the SAT-solver to explore the tree further, we can invoke a
BDD-based approach to compute all solutions in the sub-tree under that path.
This integrated scheme, which we call BDDs at SAT Leaves, is illustrated pic-
torially in Figure 6. In a sense, the SAT decision tree can be regarded as a
disjunctive partitioning of a large problem at the root into smaller subproblems
at the leaves, each of which can be handled by a purely BDD-based approach.

5.1 Leaf Subproblem: BDD-based Image Computation

The formulation of the BDD subproblem to be solved at each leaf of the SAT
decision tree is shown below:

New(y) = Path(y') A 327w, 27 .P(%)| poyp oy A Unsat(z”,w”,27,y7) (3)

This computes the image set solutions New from a sub-tree rooted at the end
of a path in the SAT decision tree. Here, for a set of variables v, the assigned set
is denoted v, and the unassigned set is denoted v”. Path(z')/Path(y') denote
the BDDs representing the partial assignment of z/y variables along the path.
Unsat(z”,w”,z”,y”) denotes the product of all unsatisfied clauses at the end
of the path, projected by the assigned variables along that path, expressed in
terms of the unassigned variables appearing in the original CNF formula. Finally,
P(z)| patn(a) denotes the restriction of the set P(x) to the partial assignments
of = along the path.

Note that in this equation, the part following the existential quantification is
identical in formulation to a standard purely BDD-based approach. The differ-
ence is only in the granularity of the Boolean relation Unsat, and its conjunc-
tive decomposition. In a standard approach, the Boolean relation T'(z,w,y) is a
transition relation, expressed in terms of the present state, primary input, and
next state variables only. Furthermore, its conjunctive decomposition is typically
based on splitting the next state variables.

In our approach, the Boolean relation is expressed as a CNF formula over the
set of present state, primary input, next state, and intermediate variables denot-
ing signals on internal gates that implement the next state logic of the sequential
circuit. Furthermore, the conjunctive decomposition follows the structural de-
composition of the circuit into gates. Though this finer-grained approach must
handle more number of Boolean variables than the standard approach, it also
allows a greater potential for early quantification, which has been noted to help
overcome the blowup during image computation (described in detail in the next
section).

Another benefit of using the fine-grained CNF partitions is that there is no
penalty for performing pre-image computations. Many researchers have noted
that backward symbolic traversal is less efficient than forward traversal. This
is partly due to having to handle the typically irregular unreachable part of

the state space. Furthermore, most methods use partitions based on splitting
the next state (y) variables, while sharing the present state (z) variables. This
scheme is good for performing image computations with early quantification of
x variables, but it does not work very well for pre-image computations where the
y variables need to be quantified. In contrast, our fine-grained CNF formulation
is symmetric with respect to the x and y variables. Therefore, our method can
be applied equally well for image as well as pre-image computations.

5.2 Leaf Subproblem: Quantification Schedule

In practice, it is important to choose a good quantification schedule, i.e. an
ordering on the conjunctions of the partitions that avoids intermediate blowup
during image computation. Typically, a good schedule tries to minimize the
number of active variables in a linearized schedule, by analyzing the variable
support sets of the individual partitions [11,17,19].

Leaf_Image Computation() {
B = {projected P(x), projected unsat_clauses}; // set of BDDs
do {
v = min_cost_variable(B); // choose variable v
C=1{b| b €B, b depends on v}; // gather conjuncts for v
¢ = and_smooth(C, v); // quantify v along with conjunction
replace(B, C, c); // replace conjuncts C in B by c
} while (variables_to_be_quantified);
c = and(B);
new = and(path(y),c);
}

Fig. 7. Leaf Image Computation

For each leaf image computation, the pseudo-code for the quantification
schedule is shown in Figure 7. We start with a collection B of BDDs consist-
ing of the projected P(z) (and potentially Unreached(y)), and a BDD for every
projected unsatisfied clause. Next, we heuristically select a variable v to be quan-
tified. We greedily choose the minimum cost variable, where cost is estimated as
the product of the individual BDD sizes that the variable appears in. Once v is
selected, we gather in set C all conjuncts that v appears in. This is followed by
conjunction and quantification of v in C, and this result replaces the set C in B.
(Since the y variables cannot be quantified, we never choose them.) This basic
loop is iterated until no more variables can be quantified. The remaining BDDs
(with only y variables) are conjoined together, and the result is conjoined with
path(y) (the cube of assigned y variables), to give the set of new image solutions
corresponding to that path.

Note that this formulation does not depend on a live variable analysis over a
linearized schedule but considers the actual BDD sizes for selection. Therefore, it

1 /*This function finds all solutions to a SAT Clause database, 33 I* else conflict driven backtracking takes place */

2 using GRASP with BDD bounding, BDDs-at-SAT Leaves */ 34 } else {

4 Find_all_solutions(d ause database, Bdds) { 35 I* second value of var: backtrack chronologically *
5 if (Preprocess() == FAI LURE) 36 i f (Backtrack_chrono()==FAl LURE)

6 return FAI LURE; 37 return NO_MORE_SOLUTI ONS;

7 if (Bdd_bounding() == FAI LURE) 38 I* else backtracking takes place */

8 return FAI LURE; 39 }

10 while (1) {// loop #1:exploring dec. tree to incr. depth 40 } /* end of loop #3 */

11 if (BDDs_at_Leaves()) { 41 /* at this point, there is no conflict */

13 handl e_bdd_sol ution(); //stop exploring tree 42 i f (Bdd_Boundi ng() == SUCCESS) {

14 * for other solutions: backtrack chronologically */ 43 if (Solution_found()) {

15 if (Backtrack_chrono() == FAILURE) { 44 handl e_sat _sol ution();

16 return NO_MORE_SOLUTI ONS; 45 /* for other solutions: backtrack chronologically */
17 } I* else backtracking takes place*/ 46 i f (Backtrack_chrono()==FAl LURE)

18 } else { 47 return NO_MORE_SOLUTI ONS;

19 I* explore tree to increased depth */ 49 } else { // elsebacktracking takes place

20 if (Select_next_variable() == FAl LURE) 50 /* unresolved clauses: increase depth */

21 break; /*outof loop #1* 51 break; //out of loop #2

22 52

23 I* loop #2: check conflicts after decision / backtracking 53 } else {//BDD bnding fails: backtrack chronologically
* 55 if (Backtrack_chrono()==FAl LURE)

24 while (1) { 56 return NO_MORE_SOLUTI ONS;

25 /*loop #3: while there is a logical conflict */ 57 }

26 whil e (Deduce() == CONFLICT) { 58 } //endofloop #2

27 if (First_val() || Inplied_Val()) { 59 } /1 end of loop #1

28 /* perform diagnosis */ 60 return SUCCESS;

29 if (Diagnose() == CONFLICT) { 61 }

30 * the conflict cannot be resolved any more */

31 return NO_MORE_SOLUTI ONS;

32}

Fig. 8. Complete Image Computation Procedure

is better able to balance the computation in the form of a tree of conjunctions,
rather than a linear series of conjunctions. In our experiments, this heuristic
performed far better than others based on variable supports.

6 The Complete Image Computation Procedure

Our complete procedure for enumerating all solutions of the image set is shown in
Figure 8. It is based on the publicly available GRASP SAT-solver [16]. We start
by describing its original skeleton. After the initial preprocessing, the procedure
consists of an outer loop #1 (line 10) that explores the SAT decision tree to
increased depth if necessary. The inner loop #2 (line 24) is used primarily to
propagate constraints and check for conflicts after either a decision variable is
chosen, or after backtracking takes place to imply a certain value on a variable.
Loop #3 (line 26) actually performs the deduction to check for contradictions
and tries to resolve the conflict using diagnosis until there is no more conflict.
In GRASP, clauses are added to record causes of all backtracking operations,
including those used to enumerate multiple solutions.

The completeness argument for our procedure with respect to finding all
solutions of the image set is based largely on the completeness of the original
procedure in GRASP [14]. The additions we have made to the original procedure
consist of introducing the techniques of BDDs at SAT Leaves (lines 11-18), and
BDD Bounding (lines 7-8, lines 42-57). The only other modification we have
made is to perform conflict analysis only if the value of the decision variable is
the first value being tried, or if its second value has been implied (line 27).

The correctness of finding all BDD solutions at the leaves, and of pruning the
search space when BDD Bounding fails follows from the arguments described in
the previous sections. Note that in both these cases, we perform a chronological
backtracking (lines 14-17, lines 54-56) in order to search for the next solution.
In case BDD Bounding succeeds (line 42), we check whether a solution is found,
i.e. whether all clauses are satisfied. If they are, a SAT solution has been found,
which is handled in the usual way, followed by chronological backtracking to find
the next solution (lines 45-48).

The reason for the modification (line 27) is that we do not wish to add clauses
to record the causes of chronological backtracking. In our modified GRASP al-
gorithm, chronological backtracking takes place after a solution has been found,
or after BDD Bounding fails. However, when clauses for chronological back-
tracking are not recorded, GRASP’s conflict analysis during diagnosis becomes
incomplete, and it may be erroneous to perform non-chronological backtrack-
ing based on this conflict analysis. Therefore, if the second value of a variable is
implied by some clause (either an original, or a conflict clause), we do allow diag-
nosis to take place. Otherwise, we disable non-chronological backtracking by not
performing any diagnosis at all. Instead, we perform a simple chronological back-
tracking (lines 34-39). Note that performing chronological backtracking instead
of non-chronological backtracking can at most affect the procedure’s efficiency,
not its completeness.

7 Why SAT?

As mentioned earlier, there has been recent interest in using disjunctive decom-
positions of the image computation problem using purely BDDs, with substan-
tially improved practical results [8,17]. Our use of a SAT decision tree to split
the search tree, and use of the BDD-based image computations at its leaves
to perform the conjoining, results in a similar decomposition. However, in our
view, SAT provides many more advantages than just a disjunctive decomposi-
tion, which also differentiate our approach from the rest.

In particular, it allows us to easily perform implications of a variable decision
(splitting). In principle, deriving implications can be done in non-SAT contexts
as well, e.g. directly on circuit structure, using BDDs etc. However, to our best
knowledge, this has not been done in practice for image computation. By us-
ing a standard state-of-the-art SAT package [16], we are utilizing the years of
progress in this direction, as well as in related techniques of efficient backtrack-
ing and conflict analysis, which all help toward pruning the underlying search
space. Our use of BDD Bounding is an additional pruning technique, which al-
lows us to perform early backtracking without even invoking a BDD-based leaf
computation.

Another difference of our approach from the rest is in the granularity of our
underlying search space. Since we focus on the CNF formula for the transition
relation, which is derived directly from a gate-level structural description of the
design, we obtain a very fine-grained partition of the relation, which is also sym-

metric with respect to image and pre-image computations. This allows us to
split the overall into much finer partitions, where decision (splitting) variables
can also be internal signals. We use both BDD-based and SAT-based criteria
for selection of these variables, e.g. estimate of cofactor BDD sizes [8], number
of clauses a variable appears in, etc. We are also exploring SAT-based criteria
targeted towards finding multiple, and not single, solutions. For each partition
itself, the finer level of granularity allows us to exploit the benefits of early quan-
tification to a greater degree. This is reflected in our BDD-based quantification
schedule algorithm, which uses different criteria (actual BDD sizes) for selecting
the variable to be quantified, and is organized as a tree of conjunctions, rather
than a linear series.

Finally, our aim is to combine SAT and BDDs in a seamless manner in
order to facilitate a smooth and adaptive tradeoff between time and space for
solving the image computation problem. In our algorithm, the move from SAT
to BDDs occurs when a BDD subproblem is triggered. Ideally, we would like to
do this whenever we could be sure that the BDDs would not blow up. However,
there seems to be no simple measure to predict this a priori. We are currently
experimenting with several heuristics based on number of unassigned variables,
size of the projected P(x) set etc. We have also implemented a simple timeout
mechanism for the BDD subproblem, which allows us to return back to SAT,
in order to perform some more splits (unlike [17]). Since CNF formulas and
BDDs are entirely interchangeable, the boundary between SAT and BDDs is
somewhat arbitrary. In principle, it is possible to freely intermix CNFs and
BDDs for various parts of the circuit, and perform required analysis on the more
appropriate representation. Our approach is a step in this direction.

8 Experiments

We have implemented an initial prototype of our image computation algorithm
based on the CUDD BDD package [20] and the GRASP SAT solver [16]. This
section describes our experimental results on some ISCAS benchmark circuits
known to be difficult for reachability analysis. All experiments were run on an
UltraSPARC workstation, with a 296 MHz processor, and 768 MB memory.

Since our main contribution here is to make the core step of image computa-
tion more robust, we only focus on experiments for exact reachability analysis.
Our algorithm can be easily adapted and enhanced in many orthogonal direc-
tions such as its use in approximate reachability analysis, invariant checking, and
model checking. We are currently working on porting this prototype to VIS [3]
in order to use its infrastructure for such applications, and also to have access
to a wider set of benchmarks.

A comparison of our prototype, which we call the CNF-BDD prototype, with
VIS [3] is shown in Table 1. It shows results for performing an exact reachability
analysis using pure breadth-first traversal on some benchmark circuits known to
be difficult to handle in practice. The circuit name and number of latches are
shown in Columns 1 and 2, respectively. For our approach, a measure of circuit

Ckt |#FF |#Vars|#Steps| #Reached |Vis Time CNF BDD

States (s) Time (s)|Mem (MB) | Peak (M Nodes) | Leaves |Bounds

s1269 | 37| 624 10]1.13E+09 3374 1877 46 0.6/15150] 5278
s1512 | 57| 866| 1024|1.66E+12 2362 6337 28 0.34(13289| 3565
s1423 | 74| 748(11 (p)]7.99E+09 7402 2425 40 1.16 217 329
13 (p)]| 7.96E+10 --| 5883 274 6.86 330| 452

s5378 |164|2978| 6 (p)|2.47E+16| 31346]|19024 197 2.4 668| 348
8 (p)|2.36E+17 -129230 202 2.4 981| 421

Table 1. Results for Exact Reachability Analysis

complexity is the number of variables appearing in our CNF representation of
the transition relation — shown in Column 3. The number of steps completed is
shown in Column 4, where a “(p)” indicates partial traversal. Column 5 reports
the number of states reached. In Column 6, we report the CPU time taken (in
seconds) by VIS. For these experiments we used a timeout of 10 hours. However,
sometimes VIS runs into memory limitations before the timeout itself, indicated
as ”—” in this column. Columns 7 through 11 provide numbers for our CNF-BDD
prototype. Column 7 reports the CPU time taken (in seconds). Columns 8 and 9
report the memory used, and the number of peak BDD nodes, as reported by the
CUDD package. To give an idea of the efficiency of our modified SAT solver, we
report the number of BDDs subproblems (Leaves), and the number of backtracks
due to BDD Bounding (Bounds) in Columns 10 and 11, respectively. In all our
experiments, we did not observe any non-chronological backtracking in the SAT
solver. Therefore, the total number of backtracks during image computation for
all steps is the sum of Columns 10 and 11.

It can be seen that the performance of our CNF-BDD prototype is better
than VIS in 3 of 4 circuits. For s1512, our prototype is worse likely due to the
large number of steps — 1024, and the overhead in every step of re-starting the
SAT solver. For s1269, our prototype performs better than VIS by about a factor
factor of 2. For both of these circuits, the CNF-BDD numbers are worse than
those reported recently by Moon et. al [17] — 891 sec. for s1269, and 2016 sec. for
$1512. The real gains from our approach can be seen in the more difficult circuits
$1423 and 5378, where neither VIS nor our prototype can perform complete
traversal. For s1423, VIS was able to complete up to step 11. For the same
number of steps, our prototype is faster than VIS by more than a factor of 3. In
fact, our prototype is able to complete two additional steps of the reachability
computation in the time allotted compared to VIS. Similarly, for s5378, our
prototype is faster than VIS up to step 6, and is able to complete 2 additional
steps in the time allotted. As can be seen from the Columns showing Mem and
Peak, our approach seems not to be memory bound yet, for these experiments.
On the other hand, VIS gets memory bound in the allotted time. Furthermore,
the number of backtracks is also well under control, with BDD Bounding being
very effective in pruning the SAT search space. For all our experiments, the
overhead of computing the BDD Bounding information was negligible.

s1423 Nano Trav CNF-BDD
Step | #Reached [Time(s) Peak Live Time(s) Peak Live |Leaves |BoundB
1 545 2 14308 2627 0.7 22484 249 2 12
2 3345 25| 19418| 3847 49| 31682 337 8 14
3 55569 5.6 32704 4010 41| 42924 550 9 18
4 | 3.92E+05 14.1| 35770 6766 5.6/ 50078 1352 13 22
5 |2.08E+06 39.4] 55188| 15773 8.4 50078 2629 9 19
6 |8.49E+06 81.4(74606 19824 11.6] 64386 6562 12 20
7 |3.37E+07 391.7| 17696| 35849 20.8| 82782| 13061 10 19
8 |1.11E+08 867.4| 320908| 64126 27.4| 123662| 33262 8 17
9 |4.90E+08 3050| 888118(199237 125.4| 224840 93492 34 61
10 |1.68E+09| 7991.3]|1634178| 413060 521.8| 531440| 253527 58 72
11 | 7.99E+09| 18705.2| 4027702| 650065| 1357.1| 1168146| 585034 51 55
12 | 2.30E+10 -- -- --| 2100.8| 4259696 1538532 33 44
13 | 7.96E+10 -- -- --| 1694.3| 6865796 4098655 80 79
5882.9 327 452

Table 2. Results on Memory Usage for Circuit s1423

To contrast the memory requirements of our approach with a standard purely
BDD-based approach, we conducted detailed experiments for s1423. At this time,
we were not able to change the VIS interface in order to extract the memory
usage statistics we needed. Therefore, these experiments were conducted using a
stand-alone traversal program called “nanotrav”, which is distributed along with
the CUDD package [20]. In general, nanotrav performs worse than VIS, since
it does not include sophisticated heuristics for early quantification or clustering
of the partitioned transition relation. This limitation does affect the memory
requirements to some extent, but we present Table 2 mainly to show the overall
trend. In this table, the number of steps and reached states is shown in Columns
1 and 2. For nanotrav, Column 3 reports the CPU time taken (in seconds). The
number of peak nodes and live nodes at the end of each image computation are
shown in Columns 4 and 5, respectively. Columns 6, 7, 8 report the same for
our CNF-BDD approach. We also report the number of BDDs at SAT Leaves
(Leaves), and the number of backtracks due to BDD Bounding (Bounds) in
Columns 9 and 10, respectively.

As can be seen clearly from this table, the memory requirements continue
to grow with the number of steps. However, this growth is at a faster pace for
nanotrav than it is for the CNF-BDD prototype. At the 11th step, the peak
BDD nodes for nanotrav are greater than for CNF-BDD by a factor of 4. Not
surprisingly, the CNF-BDD can complete two more reachability steps in about
the same time. Furthermore, the CNF-BDD prototype is still not limited by
memory while performing the 14th step, but is forced to time out after 10 hours.

In our approach, we can tradeoff between SAT solvers and BDDs by dy-
namically changing the conditions for triggering BDDs at SAT leaves. However,
this only provides a memory-time tradeoff for the purpose of image computa-
tion. It does not reduce the memory requirements in using monolithic BDDs
for representing state sets. As described in the earlier sections, our approach is
completely suited for handling state sets in the form of disjunctive partitions
(multiple BDDs). We are currently working on extending our prototype in this
direction.

9 Conclusions and Ongoing Work

In conclusion, we have presented an integrated algorithm for image computation
which combines the relative merits of SAT solvers and BDDs, while allowing
a dynamic interaction between the two. In addition, the use of a fine-grained
CNF formula allowed us to explore the benefits of early quantification in the
BDD subproblems. This can potentially find application in purely BDD-based
approaches as well.

Apart from extending our prototype to handle other applications such as ap-
proximate traversal, invariant checking and CTL model checking, a number of
enhancements to the basic image computation strategy are possible. Specifically,
we are considering various forms of partitioning including disjunctive partition-
ing of the reached set, exploiting disjoint partitions in the CNF formula (and
maximizing this effect through appropriate variable selection), and partition-
ing the circuit structurally. The SAT-BDD approach works best when it has a
large reached set to bound against. We are experimenting with the use of an
under-approximate traversal as a preprocessing step to generate a large reached
set, before starting an exact traversal. Similarly, the SAT-BDD framework natu-
rally allows exploration of various combinations of DFS, BFS, and hybrid search
techniques targeted at finding bugs.

References

1. P. A. Abdulla, P. Bjesse, and N. Een. Symbolic reachability analysis based on
SAT-solvers. In Tools and Algorithms for the Analysis and Construction of Systems
(TACAS), 2000.

2. A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking without
BDDs. In Tools and Algorithms for the Analysis and Construction of Systems
(TACAS), volume 1579 of Lecture Notes in Computer Science, 1999.

3. R. K. Brayton et al. VIS: A system for verification and synthesis. In R. Alur and
T. Henzinger, editors, Proceedings of the Internation Conference on Computer-
Aided Verification, volume 1102 of Lecture Notes in Computer Science, pages 428—
432, June 1996.

4. R. E. Bryant. Graph-based algorithms for Boolean function manipulation. /[EEE
Transactions on Computers, C-35(8):677-691, Aug. 1986.

5. J. Burch and V. Singhal. Tight integration of combinational verification methods.
In Proceedings of the International Conference on Computer-Aided Design, pages
570-576, 1998.

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

J. R. Burch, E. M. Clarke, and D. E. Long. Representing circuits more efficiently
in symbolic model checking. In Proceedings of the 28th Design Automation Con-
ference, pages 403-407, June 1991.

J. R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan, and D. L. Dill. Symbolic
model checking for sequential circuit verification. IEEE Transactions on Computer-
Aided Design, 13(4):401-424, Apr. 1994.

G. Cabodi, P. Camurati, and S. Quer. Improving the efficiency of BDD-based
operators by means of partitioning. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 18(5):545-556, May 1999.

O. Coudert, C. Berthet, and J. C. Madre. Verification of synchronous sequential
machines using symbolic execution. In Proceedings of the Internatiocal Workshop
on Automatic Verification Methods for Finite State Systems, volume 407 of Lecture
Notes in Computer Science, pages 365-373, June 1989.

M. Davis and H. Putnam. A computing procedure for quantification theory. Jour-
nal of the ACM, 7:201-205, 1960.

D. Geist and I. Beer. Efficient model checking by automatic ordering of transition
relation partitions. In Proceedings of the Internation Conference on Computer-
Aided Verification, volume 818 of Lecture Notes in Computer Science, pages 299—
310, 1994.

A. Gupta and P. Ashar. Integrating a Boolean satisfiability checker and BDDs for
combinational verification. In Proceedings of the VLSI Design Conference, Jan.
1998.

T. Larrabee. Test pattern generation using Boolean satisfiability. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems, 11(1):4-15,
Jan. 1992.

J. P. Marques-Silva. Search Algorithms for Satisfiability Problems in Combinational
Switching Circuits. PhD thesis, EECS Department, University of Michigan, May
1995.

J. P. Marques-Silva and K. A. Sakallah. Grasp: A new search algorithm for satisfi-
ability. In Proceedings of the International Conference on Computer-Aided Design,
pages 220-227, Nov. 1996.

J. P. Marquez-Silva. Grasp package. http://algos.inesc.pt/” jpms/software.html.
I.-H. Moon, J. Kukula, K. Ravi, and F. Somenzi. To split or to conjoin: The ques-
tion in image computation. In Proceedings of the Design Automation Conference,
pages 23-28, June 2000.

A. Narayan, A. J. Isles, J. Jain, R. K. Brayton, and A. Sangiovanni-Vincentelli.
Reachability analysis using partitioned ROBDDs. In Proceedings of the Interna-
tional Conference on Computer-Aided Design, pages 388-393, 1997.

R. K. Ranjan, A. Aziz, R. K. Brayton, B. F. Plessier, and C. Pixley. Efficient
BDD algorithms for FSM synthesis and verification. In International Workshop
for Logic Synthesis, May 1995. Lake Tahoe, CA.

F. Somenzi et al. CUDD: University of Colorado Decision Diagram Package.
http://vlsi.colorado.edu/~ fabio/CUDD/.

H. J. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. Sangiovanni-Vincentelli.
Implicit state enumeration of finite state machines using BDDs. In Proceedings of
the International Conference on Computer-Aided Design, pages 130-133, 1990.

P. Williams, A. Biere, E. M. Clarke, and A. Gupta. Combining decision diagrams
and SAT procedures for efficient symbolic model checking. In Proceedings of the
Internation Conference on Computer-Aided Verification, volume 1855 of Lecture
Notes in Computer Science, pages 124-138, 2000.

