
Towards Supporting Awareness of Indirect Conflicts
across Software Configuration Management Workspaces

Anita Sarma, Gerald Bortis, and André van der Hoek
University of California, Irvine

Department of Informatics
Irvine, CA 92697-3440 USA

+1 (949) 824 6326

{asarma,gbortis,andre}@ics.uci.edu

ABSTRACT
Workspace awareness techniques have been proposed to en-
hance the effectiveness of software configuration management
systems in coordinating parallel work. These techniques share
information regarding ongoing changes, so potential conflicts
can be detected during development, instead of when changes
are completed and committed to a repository. To date, however,
workspace awareness techniques only address direct conflicts,
which arise due to concurrent changes to the same artifact, but
are unable to support indirect conflicts, which arise due to ongo-
ing changes in one artifact affecting concurrent changes in an-
other artifact. In this paper, we present a new, cross-workspace
awareness technique that supports one particular kind of indirect
conflict, namely those indirect conflicts caused by changes to
class signatures. We introduce our approach, discuss its imple-
mentation in our workspace awareness tool Palantír, illustrate its
potential through two pilot studies, and lay out how to general-
ize the technique to a broader set of indirect conflicts.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments –
Programmer workbench. D.2.7 [Software Engineering]: Dis-
tribution, Maintenance, Enhancement – Version control. D.2.9
[Software Engineering]: Management – Software configura-
tion management.

General Terms
Design, Management, Experimentation, Human Factors.

Keywords
Configuration management, software configuration manage-
ment, awareness, direct conflicts, indirect conflicts.

1. INTRODUCTION
With the growing maturity and increasingly powerful functional-
ity of Software Configuration Management (SCM) systems,
parallel development has become a norm rather than an excep-
tion. It is rare to find a project in which strict locking is prac-
ticed. Optimistically checking out artifacts and merging any
conflicts that arise is a far more popular approach. But, this
optimistic approach does have a price: the cost of conflict reso-
lution. It has been shown that parallel development frequently
leads to conflicts, which anecdotally and empirically are known
to sometimes be trivial to resolve, but at other times involve a
significant and time-consuming exercise [11, 28].

It is useful to group the conflicts that may occur in parallel de-
velopment in two classes: direct conflicts and indirect conflicts.
Direct conflicts are caused by concurrent changes to the same
artifact, for instance, when two or more developers unknowingly
alter the same Java file at the same time in their respective work-
spaces. Indirect conflicts are caused by changes in one artifact
that affect concurrent changes in another artifact. This may oc-
cur when one developer, working in their private workspace,
alters a Java interface file that another developer just imported
and started referring to from a Java class they are editing in their
respective workspace. But beyond this straightforward, syntactic
example, numerous kinds of indirect conflicts exist that may be
of a more intricate, often semantic nature.

Both direct and indirect conflicts are generally discovered at a
time later than when they are actually introduced. That is, be-
tween the time a conflict begins to emerge (e.g., a developer
starts to change a file that another developer is already in the
process of changing, a developer inserts references to Java
methods that another developer already removed) and the time it
is actually detected, significant time passes during which the
conflict may grow from small and innocuous to large and com-
plex to resolve. Direct conflicts are typically detected at the time
of check-in or when the developer synchronizes their workspace
right before checking in. Indirect conflicts, however, may slip by
undetected and reveal themselves only during the build process,
testing phase, or, worse, after the product is already in the field.
This delay lies at the core of why it can be so difficult to resolve
conflicts, both direct and indirect: a developer must go back in
time, understand both of the conflicting changes in full, and find
a way to meaningfully combine them [9, 16].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ASE’07, November 5–9, 2007, Atlanta, Georgia, USA.
Copyright 2007 ACM 978-1-59593-882-4/07/0011...$5.00.

In an attempt to detect conflicts earlier, and thereby minimize
the impact they have, recent research in the SCM discipline has
focused on adopting workspace awareness techniques to notify
developers of conflicts as they emerge (e.g., [7, 11, 32]). These
techniques operate by sharing relevant information regarding
who is changing which artifacts – while the changes are in pro-
gress. In effect, SCM systems that include workspace awareness
“spy” on ongoing efforts and inform pertinent developers when
their efforts seem to be conflicting. The intended effect is for
developers to respond proactively and early. Responses may be
to call the other party and discuss, to hold off on one’s changes
until the other developer has checked in theirs, to use the SCM
system to look at the other person’s workspace to determine the
extent of the conflict, and other such human-inspired approaches
to coordination. In so doing, a conflict can be caught before it
grows too large, and often may be avoided altogether, since the
developer may reconsider before editing an artifact they know
someone else is modifying at that time.

This paper presents a new cross-workspace awareness technique
that we designed specifically to begin addressing indirect con-
flicts. To date, SCM workspace awareness techniques address
direct conflicts only, in effect aiming to avoid merge conflicts.
But indirect conflicts are as important, if not more so. They can
arise in many different forms, ranging from straightforward syn-
tactic conflicts to intricate semantic conflicts. In this paper we
provide a foundation for research into indirect conflicts by dem-
onstrating how one particular kind of indirect conflict can be
addressed, but providing an architectural approach that we be-
lieve is generic and can be adapted to address other kinds of
indirect conflicts. This represents a modest first step, but makes
a key conceptual leap in moving from just informing developers
about ongoing changes (as is the case for how direct conflicts
are addressed) to incorporating cross-workspace analysis (as is
necessary to determine whether an indirect conflict exists).

We specifically address indirect conflicts that stem from changes
in class signatures. When one developer modifies the signature
of a class while another developer simultaneously develops code
that uses this class, the potential for indirect conflict arises. Our
technique informs developers when this happens. It does so by
sharing details of relevant changes across workspaces, summa-
rizing these changes in a cache, and analyzing the changes pre-
sent in the cache for the potential existence of indirect conflicts.
If such conflicts are present, notifications are distributed to in-
form developers through peripheral presentation of the aware-
ness information in the software development environment.

We evaluated our work with two pilot studies, comparing our
approach to one that just notifies developers of direct conflicts
and to one that does not employ awareness at all. Our results
provide preliminary evidence that our approach is more effective
than identifying direct conflicts only (or no conflicts at all, as in
the case of no awareness) and supports early detection of indi-
rect conflicts as well as effective resolution of the conflicts well
before the code is committed.

The remainder of this paper is organized as follows. In Section
2, we introduce background material. Section 3 presents a moti-
vating example, Section 4 our high-level approach, and Section
5 our implementation. Section 6 discusses our evaluation with
two pilot studies. Section 7 presents related work and Section 8
concludes with an outlook at our future work.

2. BACKGROUND
Although numerous software configuration management systems
with features of many different kinds are available, they all em-
ploy essentially one of two strategies to coordinate the work of
developers. Pessimistic SCM systems [33] mandate that devel-
opers lock an artifact before they make changes, prohibiting
others from making changes to that artifact in parallel. Optimis-
tic SCM systems [5] explicitly encourage developers to modify
the same artifact(s) in parallel, choosing to focus on providing
developers with merge tools to help resolve conflicts that may
occur.

This paper concerns optimistic SCM systems. A key assumption
governing the functioning of these kinds of systems is that rela-
tively few parallel changes lead to conflicts. They, thus, trade off
the possibility of conflicts that must be resolved for a develop-
ment process that can progress more rapidly, since developers
no longer have to wait for locks to be released.

In practice, this approach indeed works well most of the time
[12, 13] and parallel development is widely practiced. Yet, con-
flicts do occur and can have detrimental effects. Situations have
been reported where developers rush to be the first person to
check in their changes, so they do not have to be the one dealing
with the merges necessary to resolve conflicts that will occur
[15]. It has also been reported that the more parallel develop-
ment takes place, the more bugs appear in the code [28]. And, of
course, every conflict involves overhead in terms of the time and
effort that must be invested to resolve it. While careful task as-
signments and distribution of responsibilities over multiple de-
velopers are important steps in partitioning the overall work,
they are in and of themselves insufficient to guarantee that
changes will not overlap or otherwise conflict with other ongo-
ing changes.

Groups of developers have responded by establishing their own,
informal conventions to coordinate their mutual efforts. They
may send e-mail informing each other of the changes they have
made and the effect these changes are expected to have on
other’s work [8]. They also have been reported to leverage In-
stant Messaging to continuously keep each other up to date and
coordinate ongoing changes [21], or querying the SCM reposi-
tory to find out who is making changes where in the code [15].
To date, however, these practices are entirely developer driven
and have little automated support from the SCM system for
developers to gather the information they need. As a result,
these informal practices are not as effective as they could be and
not employed as often as they should be.

It is no surprise, then, that an overarching goal in the SCM lit-
erature has been to try and better support these informal prac-
tices so fewer conflicts arise and those that do arise can be rec-
ognized and addressed before they grow too large and become
difficult to handle. A particularly promising approach revolves
around the notion of awareness. Awareness is characterized as
“an understanding of the activities of others, which provides a
context for your own activity” [10]. It was originally introduced
as a passive and subconscious form of information gathering,
but has since been explored in more proactive and conscious
settings with tools attempting to provoke awareness by present-
ing users with specific kinds of information [20]. In the case of
SCM systems and the goal to reduce conflicts, this means capa-

bilities that highlight ongoing parallel work efforts and indicate
the potential presence of conflicts among these efforts.

The way in which awareness has been brought into SCM sys-
tems has been through workspace awareness techniques. These
techniques, typically embedded in plug-ins to the SCM system,
hook into the development environment to collect the necessary
information, share this information across workspaces, and pro-
vide some kind of visualization to inform developers of the po-
tential conflicts that exist. To date, the information that is shared
pertains to which developer is changing which artifacts [7], but
also may include information regarding the “size” of changes
[25] or the lines of code that are being changed [23].

Through careful and usually peripheral integration of the presen-
tation of the resulting “awareness information” into the day-to-
day development environment, the goal is to alter the behavior
of the developers such that when they notice a potential conflict
emerging, they take proactive steps and take those steps early.
This may involve calling or Instant Messaging the other party,
walking over to discuss and reassign the tasks, making a unilat-
eral decision to hold off on one’s changes until the other devel-
oper has checked in theirs, using the functionality of the SCM
system to look at the changes in the other workspace [7, 11]and
deciding that it is ok to continue, and many other courses of
action. This, indeed, means that a small amount of effort must be
expended now, though it is anticipated that this extra effort is
“gained back” by avoiding a much larger issue later on.

To date, existing workspace awareness techniques in SCM iden-
tify direct conflicts only, as their goal has always been to reduce
the number and size of merge conflicts. While simply knowing
which developer changes which artifacts may be good enough
for an individual developer to deduce the potential presence of
an indirect conflict, in general the structure and the relationships
embedded in the source code are not transparent, making it dif-
ficult for developers to draw solid conclusions.

Many different kinds of indirect conflicts exist, ranging from
purely syntactic to entirely semantic in nature. For example,
conflicts arising from changes in class signatures are syntactic.
A semantic indirect conflict could arise when two developers
modify the execution times of different components in a multi-
threaded system, with the changes fine in isolation, but the com-
bination leading to synchronization problems. Not all indirect
conflicts can be detected automatically or accurately diagnosed
at all times. However, as long as automated analyses techniques
help in identifying where changes exert what kind of influence,
awareness techniques may be able to assist developers in detect-
ing potential conflicts. The approach taken in this paper specifi-
cally focuses on addressing indirect conflicts from changes in
class signatures, but we believe that the strategy we present gen-
eralizes to other kinds of indirect conflicts – as long as suitable
analysis are available, adjustments are made in the internal data
structures, and conflict visualizations are updated as needed.

Finally, we note that not every conflict that is identified as aris-
ing between changes in a pair of workspaces will eventually be a
“real” conflict. A developer may simply be experimenting with
the code, rolling back their changes shortly. It could also be that
they made an honest mistake that they recognize later. There-
fore, any conflicts that are identified by a workspace awareness
technique should be considered potential conflicts and further

human examination, interpretation, and communication will still
be needed. The reward for this investment now, however, is the
avoidance of a potentially much larger, real problem later on.

3. MOTIVATING EXAMPLE
Throughout this paper, we use a motivating example to illustrate
the need for a cross-workspace awareness technique that sup-
ports indirect conflicts caused by changes in class signatures.
The example involves two developers, Ellen and Pete, working
on some hypothetical software to process credit cards. Ellen is
responsible for dealing with a few requested feature enhance-
ments to an existing class Payment.java. Pete has to implement
a new class CreditCard.java, which will have to keep track of
the payments made on a credit card.

Upon Pete’s arrival in the morning, he checks out for reading
only the class Payment.java and, after studying its code for a
while, he begins his work on the new class CreditCard.java.
Ellen arrives a bit later than Pete and begins her morning by
reviewing the implementation of Payment.java that she did yes-
terday. She does not like how she has put a lot of logic in its
constructor and decides to move parts of the initialization code
to a new method called init; this is to prepare the code for future
changes she has planned. She is keenly aware of the significance
of this change, documenting the code with detailed comments.

Meanwhile, Pete implements CreditCard-.java. In the process,
he makes, as he understands it, appropriate calls to new in-
stances of the class Payment.java. Since he studied its code, and
noticed the initialization code is in the constructor, he knows he
does not have to call any initialization routine(s).

Pete finishes just before lunch, as does Ellen. They both check
in their changes to the SCM system, which does not flag a prob-
lem since the changes are to different artifacts. Clearly, a con-
flict has been introduced in the code that was not detected by the
SCM system. Since Ellen did not change the signature of the
constructor, the build system also does not find the conflict,
since the combined code compiles just fine.

Under normal circumstances, Ellen would synchronize her work
with the latest state of the repository and test the combined sys-
tem before checking in her changes. In all likelihood, she would
have detected the issue. However, three problems persist:

1. Depending on the nature and complexity of the changes at
hand, and what exactly the test cases cover, Ellen may or
may not find the issue. If she does not find it, it could enter
production code and actually be delivered to customers.

2. If she does find the conflict, Ellen still has to scour the
changes carefully to find out where the exact problem is. In
particular, she has to read and interpret Pete’s changes and
relate them to hers. While this is trivial in this example, in
general changes are of a much more complex nature.

3. Finally, after she finds the source of the conflict, Ellen has
to devise a solution that keeps the intent of both changes in
tact. Again, it is straightforward to do so for the example
presented (Ellen needs to add a method call to init in Pete’s
code). When changes are complex and highly interrelated,
as often the case, resolution will be more complex.

It is preferable that Pete and Ellen are able to detect the conflict
as soon as it emerges. Then, Pete could have initiated a conver-
sation with Ellen, as a result of which he could insert the appro-
priate call to init right away. Alternatively, he could ask Ellen to
do so for him once she finished her changes.

In this example, existing workspace awareness tools that address
direct conflicts may have helped some. They would have indi-
cated that Ellen was changing Payment.java and Pete Credit-
Card.java. But it could have only been Pete, who knew he
started using the class Payment.java, who could have noticed
that he maybe should talk to Ellen; Ellen could not have known.
And even then, all Pete knows is that Ellen is changing Pay-
ment.java, which could be for many different reasons and in-
volving many different parts of the code. Nothing prompts him
that she is changing a part of the code that is relevant to him.

The example is necessarily simple, but it is representative of the
indirect conflicts that concern this paper, namely those resulting
from changes to class signatures. While such changes are a well-
understood part of programming, seem simple to address when a
problem emerges, and have many conventions and best practices
that aim to avoid these kinds of conflicts altogether, prior work
nonetheless identifies them as a major source of conflicts, direct
and indirect [9, 16]. The critical role that class signatures have
in being boundary objects lies at the heart of this problem [17,
26]. The ability to detect potential conflicts early, therefore, can
lead to significant improvements in development practices.

4. APPROACH
Compared to approaches for direct conflicts, the critical hurdle
to overcome in addressing indirect conflicts is that some form of
cross-workspace analysis is necessary to relate concurrent, on-
going changes in different workspaces. With direct conflicts, it
is sufficient for each workspace to broadcast which artifacts are
changing. The visualizations can display this information, and
any overlap in workspaces changing the same artifact is immedi-
ately visible. This approach, however, does not work for indirect
conflicts, because they fundamentally concern the relationship
between non-overlapping changes.

Any approach wishing to address indirect conflicts (of which-
ever kind) must bring information regarding changes in different
workspaces together, so their combinations can be examined. It
is important that this is done in accordance with several general
objectives to be met by any workspace awareness technique: (1)
unobtrusiveness, so developers are not detracted from their day-

to-day coding activities, (2) scalability, so the solution supports
a large number of developers modifying a large number of arti-
facts, (3) flexibility, so different analyses and visualizations are
easily integrated, and (4) configurability, so users are provided
control over the behavior of the awareness technique [18, 19].

Our approach to addressing indirect conflicts builds upon sev-
eral strategies that have been successfully employed in existing
awareness techniques. Specifically, key strategies that we adopt
are a push-based event model [14], peripheral visualization via
careful integration of the awareness information in the user in-
terface [19], and display of relevant conflicts only [20]. For
direct conflicts, these strategies combine into a four-step process
of collecting, distributing, filtering, and visualizing awareness
information. Adjusting this process to indirect conflicts requires
two new steps: (1) cross-workspace analysis of ongoing changes
and (2) informing other workspaces when indirect conflicts are
found. In Figure 1, the resulting six-step process is compared to
the original four-step process. A key difference is that in four-
step process events remain “independent”, flowing up through
the steps separately. In the six-step process, however, events are
related during the analysis at one of the workspaces, with one or
more new events redistributed if one or more indirect conflicts
are found.

Below, we detail our approach, as applied to the problem of
indirect conflicts emerging from changes in class signatures.

Collecting. The first step is to collect the information necessary
for the cross-workspace analysis. Two issues must be addressed:
what information is collected and how often is it collected? With
respect to the first issue, we capture: (1) changes in the name,
parameters, return value, and scope of public methods, whether
specified by an interface or class, (2) addition and deletion of
classes, interfaces, and public methods, (3) changes in the ex-
tends and implements relationship among classes and interfaces,
and (4) changes in the uses relationships of classes, interfaces,
and methods. This provides us with all of the information per-
taining to changes in what a class has to offer to other classes
and changes in how these other classes “use” the class.1

With respect to the second issue (how often is the information
collected), we adopt an approach that continuously monitors the
editing process. We track any of the aforementioned changes to
any artifact immediately, resulting in an up-to-date picture of
ongoing changes at all times, which is necessary to support early
detection of conflicts. Waiting until a change is complete and
checked in would yield information that is “after the fact”. This
choice of continuous monitoring is in line with other awareness
techniques currently in existence.

Distributing . Once the information is collected, some of it has
to be shared with other workspaces. The choice here is whether
to distribute the information concerning changes in what a class
has to offer or information concerning changes in how a class is
used; it is not necessary to distribute both. We chose the former,
largely because of an intuition that this leads to fewer events.
Especially in the later stages of a project, when the structure of

1 This is not completely accurate, since public member variables

are also part of a class signature. Our implementation does not
handle them at this time, but can be easily extended.

Figure 1. Overall Process for Direct Conflicts (a) and
Indirect Conflicts (b).

the code has been largely established, we believe that changes in
uses relationships will be more frequent than changes in class
signatures.2

We package the information regarding changes in what a class
has to offer as diff’s that are sent to other workspaces through a
push-based event service. Since each diff only has to be sent to a
select set of workspaces, namely those in which the class (or
interface) is used, we can leverage the subscription facility of the
event infrastructure to route events to only those workspaces.

Finally, we employ a special-purpose XML diff format instead
of a generic, line-based textual diff format. This creates a precise
context and minimizes the amount of processing needed on the
receiving side. The DTD defining this diff format is tedious but
straightforward, enumerating all possible types of changes.

Analyzing. The analysis step is at the heart of our approach, as
it is here that information regarding changes made in the local
workspace and in the remote workspaces is brought together to
determine the presence or absence of potential indirect conflicts.
Several key considerations must be made. First, because changes
are incremental and analysis can be expensive, it is important to
maintain a cache that abstracts the state of the local workspace,
as well as the state of remote workspaces through summarizing
the diff’s received from those workspaces. With each local or
remote change, we update this cache. The local workspace part
of the cache captures the dependencies among all of the code
elements in the workspace, so that determining whether a remote
change conflicts with this state becomes a matter of looking up
the remotely changed artifact in the local cache and examining
its dependencies, both forwards and backwards.

A second consideration is that diff’s can accumulate. In a typical
setting, multiple diff’s capture the sequence of changes a devel-
oper makes to an artifact. Some of those diff’s may negate parts
of previous diff’s, for instance, when a developer undoes their
earlier addition of some set of methods. Upon receipt of a diff,
we therefore analyze it and cull any extraneous (parts of) other
diff’s that are already in the cache to provide a minimal yet ac-
curate summary of the remote changes. (See also “Informing”.)

A third consideration regards the analysis algorithm to be used.
Many dependency analysis algorithms are available [3, 4] and it
is possible to obtain results at various levels of precision. This,
in turn, makes it possible to provide more detailed information
than just a statement that changes in one artifact indirectly con-
flict with changes in another artifact. But, there is a cost, namely
the cost of analysis. Particularly, detailed algorithms tend to not
be incremental and require re-analysis of the entire system – an
intrusive and possibly prohibitive feature. Since we first want to
understand whether a straightforward annotation indicating the
presence of an indirect conflict is effective before embarking on
in-depth studies of all sorts of indirect conflicts, we opted not to
include a more sophisticated analysis at this point.

When our technique should perform the analysis is the final
consideration that we address for this step. As with the question
of “when to collect the information”, we answer “immediately”,

2 An actual study should be performed to validate this intuition.

If it turns out to be the inverse, the locus of analysis can sim-
ply be changed by inverting the flow of events.

because it is important for the awareness information provided
to the developers to be as up-to-date as possible. As long as this
can be done without extreme use of resources, we believe this is
the right choice. Of course, if performance does become an issue
because too many events arrive shortly after one another, we can
change our technique to perform the analysis every few minutes.
This would not detrimentally influence the effectiveness of the
technique as coding is still a relatively slow activity.

Informing . The fourth step, informing, is straightforward. Once
the analysis step has completed, and indirect conflicts have been
found, information regarding these conflicts is distributed to the
originating workspace, as well as to any other workspaces where
one or more of the involved artifacts is present. The event ser-
vice is once again leveraged to appropriately route these events.

A few observations must be made with respect to this step. First,
during the analysis step, if (parts of) existing diff’s are removed
from the cache due to a later diff that negates previous changes,
this means that events that were sent earlier are no longer valid.
Appropriate events that undo those events are created and sent.

Second, the choice of also sending the indirect conflict events to
other workspaces is deliberate. While these workspaces are not
involved in the indirect conflict, it is still useful for the develop-
ers to have access to this information because of future changes
in which they may be involved. They, for instance, will be able
to anticipate that a particularly complex modification they have
planned that includes changes to one of the involved artifacts
would create a situation in which three or more people might be
engaged in an indirect conflict – a situation that is not desirable.
Notifications are distributed to all workspaces in which a par-
ticular artifact is present to enable up-front planning of change
activities.

Finally, we reiterate that the information that is sent identifies
both the artifact that causes an indirect conflict and the artifacts
that are affected by this indirect conflict. It is pertinent to inform
developers about both.

Filtering . In this step, developers are presented with the option
to specify filters according to which the set of events they will
receive can be further reduced. In the case of direct conflicts, it
is common to allow developers to select a subset of artifacts to
monitor or for them to set a threshold for the size of the conflicts
for which they are notified. We adapt these filters to also address
indirect conflicts, allowing developers to select some minimum
number of affected artifacts that must be reached before they are
informed.

Visualizing. Finally, as with any approach relying on aware-
ness, it is critical to unobtrusively, yet effectively integrate the
awareness information in the development environment. Gener-
ally, this integration is performed peripherally, with insertion of
subtle clues embedded in the user interface where there is a high
probability that developers will notice the warnings for conflicts
as they arise. We adopt this strategy as well, but leave the details
of how we designed the user interface extensions to Section 5,
where we discuss the implementation of our technique.

We do, however, need to make two observations here. First, the
extensions to the user interface must clearly communicate which
artifacts cause indirect conflicts and which artifacts are affected
by indirect conflicts. Ideally, developers can readily move back

and forth to examine a particular conflict and make a judgment
as to whether or not it is a conflict to worry about.

Second, the issue of scalability arises. The extensions to the user
interface of the development environment should be designed in
such a way that, even when numerous indirect conflicts arise,
they do not overburden the developer and make it impossible to
find those indirect conflicts that really pertain to their ongoing
work. We also return to this subject in Section 5.

Summary. We have described a six-step process that is explic-
itly designed to detect indirect conflicts arising from changes in
class signatures. A key choice is to distribute the analysis that is
necessary. Rather than making the workspace that is responsible
for a change in a class signature the locus of all computation
regarding that change (which would involve a comparison to the
latest state of all other workspaces), our technique broadcasts a
diff and involves all of the relevant other workspaces to verify if
any indirect conflicts arise as a result. The computational load is
equalized, allowing our technique to scale appropriately. A sec-
ond benefit is that any changes in the usage of class signatures
can be dealt with locally simply by updating the local cache and
re-verifying with all summarized diff’s if an indirect conflict has
emerged.

Our technique is purposely instantaneous, such that whenever a
change is made, it is tested as to whether it represents an indirect
conflict. This is critical to support the role of the human in our
solution. While one small indirect conflict may not be a problem
(as in the case of our motivating example in Section 3), a grow-
ing number of indirect conflicts emerging between two work-
spaces most certainly is. By instantaneously sharing information,
it becomes possible for developers to watch trends, understand a
broader context, and appropriately respond when they believe it
is time to do so. In some cases, it may even be possible to avoid
indirect conflicts altogether. If developers know which artifacts
other developers are changing, and the extent of impact of those
changes on other artifacts, then they are at least given the option
to choose to work on (aspects of) tasks that do not overlap.

5. IMPLEMENTATION
We implemented our technique as an extension to our existing
workspace awareness tool, Palantír, which is an Eclipse plug-in
that we previously implemented to address direct conflicts [31].
The original Palantír followed the four-step process presented in
Figure 1a. To update Palantír to the six-step process illustrated
in Figure 1b so that it also supports indirect conflicts, we had to
make several changes to its architecture. Presented in Figure 2,
the revised architecture needed one additional component (Ana-
lyzer) and updates to several existing components (highlighted
through dotted lines). All other components could stay the same,
particularly the Palantír Server and Extractor, both of which we
had implemented using reflection, so they could support future,
entirely new kinds of events.

The architecture of Palantír consists of three distinct parts. First,
there are the Eclipse platform and general SCM system, shown
in Figure 2 using dark gray boxes. Palantír uses these as is, ob-
taining the information it needs using a custom-built Workspace
Wrapper, which collects and emits events regarding the relevant
ongoing changes to all relevant artifacts. To incorporate support
for indirect conflicts stemming from changes in class signatures,

we had to modify this wrapper significantly. One of the main
modifications concerned the events that notify other workspaces
of ongoing changes to an artifact. This event was modified to
not just capture who changed which artifact by how much, but
to also include a diff capturing the details of the changes to a
class’ signature when that signature has been changed. For ex-
ample, Figure 3 shows the diff that is generated when Ellen, in
the scenario described in Section 2, adds the new init method to
the class Payment.java.

The other main modification to the Workspace Wrapper was the
integration of Dependency Finder [22], an open source analysis
tool that we use in creating the internal cache of dependencies
among artifacts. An important property of Dependency Finder is
that its analysis is incremental; that is, with each change, it re-
analyzes only the minimal set of artifacts affected by the change.
This helps to address the issues of scalability and unobtrusive-
ness, as frequent analyses can be performed that take up a mini-
mal amount of resources. To further aid with these issues, the set
of dependencies output by Dependency Finder is transformed by
Palantír to an internal cache format that uses various hash tables
to make look up of individual elements efficient and help relate
changes in a local workspace to diff’s from remote workspaces.
Specifically, we leverage the artifact naming scheme of Palantír
[31] to relate artifacts and diff’s across workspaces.

The Palantír server is the second major component in the archi-
tecture of Palantír. It did not need to change, but we do mention

<?xml version="1.0" encoding="UTF-8"?>

 <differences>

 <name>Payment.java</name>

 <modified-interfaces>

 <classXML>

 <new-methods>

 <declaration signature="init()"

 full-signature="store.Payment.init()"

 visibility="public" throws="" return-type="double"

 name="init()">init()</declaration>

 </new-methods>

 </classXML>

 </modified-interfaces>

 </differences>

Figure 3. XML Diff for Ellen’s Changes to the
Payment.java class.

Figure 2. Revised Palantír Architecture to Support
Indirect Conflicts.

two important roles of this component here. First, the server is
responsible for routing events such that only relevant events are
delivered to each of the workspaces, with relevancy defined by
whether an artifact is present in the “target” workspace. Second,
the server is responsible for bootstrapping. It provides historical
data to workspaces that are created at a later time, so that these
new workspaces have an up-to-date picture of the status of the
other workspaces that have been existence for a long time. This
is critical, since workspaces are opened and closed continuously.

The final major component is the Palantír client, which consists
of several subcomponents. We discuss the two most important
components here: the Analyzer and the Visualization. With the
arrival of each diff, after the internal hash tables have been up-
dated, the Analyzer component performs two analyses. First, it
examines whether the new diff negates any previous diff’s, ei-
ther partially or completely. In such cases, it reconciles the con-
tents of those diff’s, removes the extra diff’s from the cache, and
sends out a set of events that represent the reconciled state (typi-
cally via events that “undo” previously-announced indirect con-
flicts). Second, it uses the cache of local dependencies to check
for a variety of conditions that indicate an indirect conflict, such
as when a diff refers to a method that no longer exists, to a class
that has a revised “extends” relationship, to a method that has a
changed signature, and so on. If one or more potential indirect
conflicts is found, the algorithm broadcasts an event that identi-
fies both the artifact that causes the conflict(s) and the artifacts
that are affected by it.

Note that these two analyses are also performed when the local
dependency cache changes as a result of modifications in a local
workspace (i.e., when Dependency Finder notices that changes
have affected the dependency structure representing the code in
the local workspace). In such cases, the changes are also verified
against the cached set of diff’s from remote workspaces.

Figure 4 shows how Palantír visualizes the results of the analy-
ses to developers. Specifically, it shows the view of Pete who is
in the process of making his changes to CreditCard.java. The
code already makes use of a few other classes, including Pay-

ment.java and Address.java. Palantír leverages the package ex-
plorer view of Eclipse to highlight the existence of direct and
indirect conflicts. Specifically, artifacts that exhibit a direct con-
flict are marked in the top left, with a blue triangle that grows
and shrinks in size in concert with the evolving size of the con-
flict (this represents behavior of the original version of Palantír,
which we did not change). Artifacts involved in an indirect con-
flict, whether as the artifact that causes it or as an artifact that is
affected by it, are marked with a red triangle on the top right. In
textual annotations next to the name of an artifact, Palantír fur-
ther explains the status of a conflict. In this case, the annotation
of [S:24] on Address.java indicates that 24% of the file has been
modified, [I>>] on the same file that it is the source of an indi-
rect conflict, and [I<<] on CreditCard.java that it is affected by
an indirect conflict.

Additional information detailing the conflicts can be found in
the Impact View at the bottom of the screen. Pete has selected
(implicitly, by opening and editing it) CreditCard.java, which
actually has three indirect conflicts. The first conflict, with Ad-
dress.java, is the most serious of the three, because the changes
are already in the repository and Pete can expect a build failure.
The second conflict is caused by Ellen deleting a method from
Customer.java, and is almost as serious. However, the changes
are still in Ellen’s workspace. Therefore, the icon in front of this
conflict is the same (a bomb), but Palantír uses a different color
(yellow instead of red). Finally, the third conflict represents the
original issue discussed in Section 3. Ellen has added a new init
method to Payment.java. Our analysis algorithm cannot identify
whether this actually conflicts with Pete’s changes, but the addi-
tion of a method to a dependent file might represent a potential
problem. Hence, Palantír uses an exclamation mark icon to draw
attention to the addition of methods. It is, of course, up to Pete
to interpret the information that is presented to him. Because he
studied the original code of Payment.java carefully, he remem-
bers that all of the initialization code was in its constructor. He
notes Ellen’s addition of the init method, prompting him to con-
tact her to obtain clarification of his understanding of the class.

Figure 4. Visualization of Indirect Conflicts, with a Call-out of the Package Explorer.

Discussion. Our implementation to date has focused on provid-
ing awareness information. A number of auxiliary functionalities
exist that we have not built yet, but that would make the overall
experience richer. Users should be able to acknowledge a con-
flict, use the Palantír interface to browse to the relevant parts of
an artifact causing a conflict (and vice versa), and look at remote
artifacts side-by-side with local artifacts. None of these is tech-
nically challenging nor would they alter our approach, hence we
do not expect any hurdles as we implement them in the future.

Scalability and unobtrusiveness are two of the key determinants
of the effectiveness of any awareness technique, as discussed in
Section 4. To examine how the new version of Palantír manages
these two factors, we compare the new version to the original
Palantír that supported direct conflicts only. In terms of scalabil-
ity, we observe that we added one event (a reciprocal event that
informs relevant workspaces of the existence of an indirect con-
flict) as well as an extra analysis step. The one extra event does
not fundamentally alter the amount of traffic, which is relatively
low to begin with (hypothetically, suppose 100 developers each
save changes to 10 artifacts every minute and suppose that each
of those changes leads to one indirect conflict, that still means
only 2000 events a minute, which is very low traffic for today’s
event services). The extra analysis that is performed also does
not incur undue computational cost, because Dependency Finder
is incremental and we optimized the local cache of dependencies
with look-up tables for fast retrieval of events.

We have kept the same level of unobtrusiveness as the original
Palantír, using small icons and annotations in the common area
of the environment to alert users. But, in large projects, a poten-
tial issue arises: having too many icons appear. Many a system
involves an intricate web of program dependencies among its
artifacts, which may lead to the generation of numerous indirect
conflict events that all must be examined. On the one hand, this
can indeed be a hindrance. On the other hand, there are several
factors that help in addressing this hindrance. First, as discussed
previously, Palantír only shows those events that are relevant to
a particular workspace, so not all events are seen by all develop-
ers. Second, Palantír offers filters through which the set of noti-
fications that is actually shown can be further reduced based on
various criteria. Third, icons in the package explorer summarize
for each artifact the full set of indirect conflicts, so that artifacts
are decorated only once. Finally, we view the icons in the pack-
age explorer as an overall state that one can explore when plan-
ning a series of upcoming changes. It is the separate view below
the editing pane that we believe is most useful when one is edit-
ing. This pane changes its contents based on the artifact that one
is currently viewing and/or modifying, so at most a small set of
indirect conflicts is present at any time – the set pertinent to the
artifact at hand.

We note that our implementation thus far is language specific. In
particular, the current version of Palantír operates on Java only.
No inherent boundaries exist towards changing the implementa-
tion to support other languages, except that one might have to
adjust the definition of the diff DTD if the language in question
has other kinds of class signature elements. Of course, the actual
analysis method used needs to be modified accordingly. Given
that Palantír employs a straightforward dependency analysis so
far, this should not be an issue.

Finally, we believe that the architecture that we have presented
represents an important stepping stone towards addressing other
kinds of indirect conflicts. The architecture lays out the variety
of challenges to be overcome in cross-workspace analysis, sepa-
rates fundamental functionality, and makes it clear where it must
be changed to address different indirect conflicts. We note that
our current implementation, however, can be improved in this
regard to provide a pluggable infrastructure with clearly defined
extension points. Providing such a generic infrastructure will be
part of our future work.

6. EVALUATION
Many different kinds of evaluations must be performed to fully
evaluate our work. One can imagine a study that tracks identi-
fied potential conflicts and evaluates whether they actually be-
come a conflict or disappear, a study that examines the precision
and recall of Palantír as compared to the actual conflicts that
arise, and a longitudinal study to find out if developers learn
how to properly gauge the information provided and effectively
integrate awareness into their day-to-day work. Before we per-
form these kinds of studies, however, we feel it is necessary to
first establish something more basic: does Palantír help develop-
ers detect indirect conflicts early improve their ability to coordi-
nate their work, and improve the quality of the code that results
from the collaborative effort?

We performed two pilot studies to address this question, one in
which we compared results with and without Palantír and a sec-
ond in which we compared the new Palantír (support for both
direct and indirect conflicts) to the old Palantír (support for only
direct conflicts). Both pilot studies required subjects to collabo-
rate in a small hypothetical team of three to complete a prede-
fined programming task. The team members with whom subjects
interacted were all actually virtual entities: confederates, which
were controlled by a member of our research team, so conflicts
could be inserted in a controlled manner in the otherwise unpre-
dictable activity of programming. Particularly, both direct and
indirect conflicts were inserted in the exact same manner at the
exact same time related to when a subject started a certain modi-
fication task. Subjects were told that they could contact the other
team members via IM should that be necessary. The code to be
modified comprised approximately 500 lines of code in 19 Java
classes. Subjects verbalized their thought process throughout the
study and one of the authors was present as an observer.

In the first study, subjects had to complete 12 tasks, 4 of which
would lead to direct conflicts and 4 to indirect conflicts. Sub-
jects were given unlimited time, so the experiment could evalu-
ate the up-front cost of monitoring for potential conflicts, com-
municating, and resolving them early versus the cost of attempt-
ing to fix the conflict later (typically at check-in or synchroniza-
tion time). Three subjects used Palantír, three subjects did not.

In the second study, subjects had to complete 8 tasks, two with a
direct conflict and two with an indirect conflict. Subjects were
given exactly an hour, in order for us to evaluate how much
interference Palantír’s indirect conflict notifications had with the
development process. Four subjects used Palantír with support
for both direct and indirect conflict detection; four subjects used
Palantír with support solely for direct conflict detection.

These being pilot studies with limited numbers of subjects, sta-
tistical conclusions cannot and should not be drawn. However,

we did learn a number of lessons that confirm our intuitions and
begin to illustrate the potential of our approach. First, subjects
who had the new Palantír did much better than subjects who had
no Palantír or the old Palantír. In fact, in the second study, those
supported with indirect conflict detection found all indirect con-
flicts early and resolved them such that no conflicts entered the
code base. The other subjects had more trouble, and in a major-
ity of cases, indirect conflicts were left in the changes that were
ultimately checked in, deteriorating the quality of the code. Fur-
ther, subjects with the new Palantír extensively communicated
with “team members” and used a variety of methods to actively
coordinate work (e.g., some skipped tasks for a bit, others IMed
to set up a sequence of tasks, yet others used placeholders in
their code until they noticed the new code from the team mem-
ber being checked in). These results indicate that the notifica-
tions provided by Palantír were actively used by the developers,
with the auxiliary result that indirect conflict detection matters,
even when developers are already notified of direct conflicts.

With respect to time, in the first study subjects with support for
detecting indirect conflicts took more time to complete all of the
tasks, but less time when those without such support were asked
to manually locate and resolve the remaining conflicts (simulat-
ing a build or test error stemming from an indirect conflict). In
the second study, subjects with the new Palantír took more time
per task on average (but, given that they delivered code that was
of a higher quality because it contained no indirect conflicts, did
so for a very good reason). This begins to indicate that Palantír
indeed could be beneficial in providing developers with an over-
all reduction in time and effort spent because the small up-front
investments made to proactively coordinate early prevent them
from having to deal with much larger issues later on.

Verbal feedback from subjects and our personal observations of
the subjects in action confirm these results. Even so, we under-
stand that our results have been obtained in a limited experimen-
tal setting and need to be corroborated by future studies. None-
theless, these results are extremely encouraging and should lead
to further, statistically significant, study – by us, and by others.

7. RELATED WORK
A number of workspace awareness tools exist that help develop-
ers identify direct conflicts. BSCW [2] is a web-based, shared,
centralized workspace with integrated versioning facilities that
allow it to be used as an SCM system. Awareness is provided
statically, via icons that enrich an artifact’s web page with in-
formation regarding its current state, and dynamically, through a
Monitor Applet that continuously informs developers of what
activities are taking place. Jazz [7] is an Eclipse-based collabo-
rative development tool that leverages the versioning capabili-
ties of SCM systems to provide information of which artifacts
are being edited in remote workspaces and which artifacts in the
repository have newer versions than the ones checked out in the
local workspace. The War Room Command Console [27] pro-
vides a centralized, multi-monitor display where it shows all
artifacts in the software repository, color coding and decorating
those that are concurrently being edited in private workspaces.
None of these systems addresses indirect conflicts to date.

COOP/Orm [23], Celine [11], and State Treemap [24, 25] fol-
low an approach comparable to that of BSCW and Jazz, but
integrate additional information on the nature and size of a di-

rect conflict. Using various mechanism to decide upon this in-
formation, these tools provide a more detailed development
context to the developers. Again, however, they address direct
conflicts only.

Chianti [30] identifies which test cases (regression or unit) are
affected by a change. To do so, Chianti analyzes the base and
current version of an artifact to identify the subset of test cases
that are affected and need modification. TUKAN [32] performs
program analysis in Smalltalk to determine which artifacts are
semantically related and documents these relationships in a se-
mantic network of artifacts that is used to determine if current
changes to artifacts affect any other artifacts in the graph. Chi-
anti can be seen as a different analysis technique to be used by
Palantír, which would leverage a different source (the test cases)
to determine whether indirect conflicts are present. TUKAN is
close to the ideas presented in this paper, but two important
differences exist. Compared to our approach, TUKAN presents
information at certain intervals only, rather than instantaneously,
which hinders a user’s ability to properly assess the indirect
conflicts. Second, TUKAN operates in a centralized manner,
whereas our approach supports distributed settings.

Agile methodologies are very related to our work. The issue that
we attempt to address with awareness (early detection of emerg-
ing direct and indirect conflicts) is also what Agile methodolo-
gies attempt to address with an approach that relies on small
changes that are checked in and tested frequently [1, 29]. We
note that our approach is in reality compatible with Agile ap-
proaches: it helps developers more flexibly plan when they need
to check in their changes by providing insight in what other
developer are doing in their workspaces. In fact, one awareness
tool, FastDash [6], explicitly targets Agile teams – though it,
once again, only addresses direct conflicts.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented a novel technique that is explic-
itly designed to address the problem of indirect conflicts arising
from changes to class signatures. Within the broader strategy of
using awareness to address emerging conflicts in parallel devel-
opment, our work represents a conceptual leap from techniques
that address direct conflicts by “simply” broadcasting events, to
techniques that support detection of potential indirect conflicts
by leveraging cross-workspace analysis. Our pilot studies show
promise in how our approach helps developers in detecting indi-
rect conflicts early, as well as in responding appropriately.

We recognize that our work only begins to scratch the surface of
the problem of how to address indirect conflicts with awareness.
The problem we chose to address, indirect conflicts arising from
changes in class signatures, is an important one (as discussed in
Section 3), but remains squarely syntactic in nature. Within the
broad range of indirect conflicts that are possible, this represents
an “easier” problem to tackle, especially compared to semantic
indirect conflicts. The challenge now is to build upon our work
and extend the range of indirect conflicts that can be addressed.
Clearly, incorporating additional kinds of analyses into Palantír
is an appropriate beginning. To truly push the boundaries, how-
ever, it might be interesting to explore bringing build and test
techniques into the picture, attempting to continuously build and
test across workspaces so combined changed are “pre-built” and
“pre-tested” as they are implemented. This brings with it a host

of challenges, but can be a promising research direction towards
effectively addressing semantic indirect conflicts.

Our future work also includes restructuring Palantír into a plug-
gable infrastructure, such that other analyses and visualizations
addressing other kinds of indirect conflicts can be experimented
with. Moreover, we plan to examine the role that our approach
can play in global software development projects, where com-
ponents and interfaces are typically hidden behind formal APIs,
changes to which do not become visible until the official release
date. Finally, we plan to investigate the grouping of related noti-
fications (e.g., those related to a refactoring of the code) to fur-
ther address scalability and unobtrusiveness.

9. ACKNOWLEDGMENTS
Effort partially funded by the National Science Foundation un-
der grant numbers CCR-0093489, IIS-0205724, and IIS-
0534775. Effort also supported by an IBM Eclipse Innovation
grant and an IBM Technology Fellowship.

10. REFERENCES
[1] P. Abrahamsson, et al., Agile Software Development Meth-

ods: Review and Analysis. 2002: VTT Publications.pp.478.
[2] W. Appelt, WWW Based Collaboration with the BSCW

System. Conference on Current Trends in Theory and In-
formatics, 1999, p. 66-78.

[3] R. Arnold and S. Bohner, Software Change Impact Analy-
sis (Practitioners). 1 ed. 1996: pp. 392.

[4] R. S. Arnold and S. A. Bohner, Impact Analysis - Towards
a Framework for Comparison. ICSM, 1993, p. 292 - 301.

[5] B. Berliner, CVS II: Parallelizing Software Development.
USENIX Technical Conference, 1990, p. 341-352.

[6] J. Biehl, et al., FASTDash: A Visual Dashboard for Foster-
ing Awareness in Software Teams. SIGCHI conference on
Human Factors in computing systems, 2007, p. 1313-1322.

[7] L.-T. Cheng, et al., Jazzing up Eclipse with Collaborative
Tools. Eclipse Technology Exchange Workshop, 2003, p.
102-103.

[8] C. R. B. de Souza, D. Redmiles and P. Dourish, "Breaking
the Code", Moving between Private and Public Work in
Collaborative Software Development. International Con-
ference on Supporting Group Work, 2003, p. 105-114.

[9] C. R. B. de Souza, et al., How a good software practice
thwarts collaboration: the multiple roles of APIs in soft-
ware development. FSE, 2004, p. 22-230.

[10] P. Dourish and V. Bellotti, Awareness and Coordination in
Shared Workspaces. ACM CSCW, 1992, p. 107-114.

[11] J. Estublier and S. Garcia, Process Model and Awareness
in SCM. Twelfth International Workshop on Software Con-
figuration Management, 2005, p. 69-84.

[12] J. Estublier, et al., Impact of Software Engineering Re-
search on the Practice of Software Configuration Man-
agement, ACM TOSEM, vol. 14 (4), 2005, p. 1-48.

[13] P. H. Feiler, Configuration Management Models in Com-
mercial Environments, SEI-91-TR-07, Software Engineer-
ing Institute, Carnegie Mellon University 1991.

[14] G. Fitzpatrick, et al., Supporting Public Availability and
Accessibility with Elvin: Experiences and Reflections.
ACM CSCW, 2002, p. 447-474.

[15] R. E. Grinter, Supporting Articulation Work Using Soft-
ware Configuration Management Systems. ACM CSCW,
1996, p. 447-465.

[16] R. E. Grinter, Recomposition: Putting It All Back Together
Again. ACM CSCW, 1998, p. 393-402.

[17] R. E. Grinter, J. D. Herbsleb and D. E. Perry, The Geogra-
phy of Coordination: Dealing with Distance in R&D Work.
ACM CSCW, 1999, p. 306-315.

[18] J. Grudin, Why CSCW applications fail: problems in the
design and evaluation of organization of organizational in-
terfaces. ACM CSCW, 1988, p. 85-93.

[19] C. Gutwin and S. Greenberg, Workspace Awareness for
Groupware. Conference Companion on Human Factors in
Computing Systems, 1996, p. 208-209.

[20] C. Gutwin and S. Greenberg, The Effects of Workspace
Awareness Support on the Usability of Real-Time Distrib-
uted Groupware, TOCHI, vol. 6(3), 1999, p. 243-281.

[21] J. Herbsleb, et al., Introducing Instant Messaging and Chat
in the Workplace. SIGCHI conference on Human factors in
computing systems: Changing our world, changing our-
selves, 2002, p. 171-178.

[22] Dependency Finder, http://depfind.sourceforge.net/.
[23] B. Magnusson and U. Asklund, Fine Grained Version Con-

trol of Configurations in COOP/Orm. Sixth International
Workshop on Software Configuration Management, 1996,
p. 31-48.

[24] P. Molli, H. Skaf-Molli and C. Bouthier, State Treemap:
an Awareness Widget for Multi-Synchronous Groupware.
International Workshop on Groupware, 2001, p. 106-114.

[25] P. Molli, H. Skaf-Molli and G. Oster, Divergence Aware-
ness for Virtual Team through the Web. Integrated Design
and Process Technology, 2002.

[26] M. Mortensen and P. Hinds, Fuzzy Teams: Boundary Dis-
agreement in Distributed and Collocated Teams. Distrib-
uted Work: New Research on Working across Distance Us-
ing Technology, 2002. p. 283-308.

[27] C. O'Reilly, D. Bustard and P. Morrow, The War Room
Command Console: Shared Visualizations for Inclusive
Team Coordination. ACM symposium on Software visuali-
zation, 2005, p. 57-65.

[28] D. E. Perry, H. P. Siy and L. G. Votta, Parallel Changes in
Large-Scale Software Development: An Observational
Case Study, ACM TOSEM, vol. 10 (3), 2001, p. 308-337.

[29] Agile Manifesto principles, http://www.agilemanifesto.org/
principles.html.

[30] X. Ren, et al., Chianti: A Tool for Change Impact Analysis
of Java Programs. Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, 2004, p.
432-448.

[31] A. Sarma, Z. Noroozi and A. van der Hoek, Palantír: Rais-
ing Awareness among Configuration Management Work-
spaces. Twenty-fifth International Conference on Software
Engineering, 2003, p. 444-454.

[32] T. Schümmer and J. M. Haake, Supporting Distributed
Software Development by Modes of Collaboration. Seventh
ECSCW, 2001, p. 79-98.

[33] W. F. Tichy, RCS, A System for Version Control, Software
- Practice and Experience, vol. 15 (7), 1985, p. 637-654.

