Towards Supporting Awareness of Indirect Conflicts

across Software Configuration Management Workspaces

Anita Sarma, Gerald Bortis, and André van der Hoek
University of California, Irvine
Department of Informatics
Irvine, CA 92697-3440 USA
+1 (949) 824 6326

{asarma,gbortis,andre}@ics.uci.edu

ABSTRACT

Workspace awareness techniques have been proposed- t
hance the effectiveness of software configuratianagement
systems in coordinating parallel work. These teghes share
information regarding ongoing changes, so poterdaiflicts
can be detected during development, instead of vairamges
are completed and committed to a repository. Te,dawever,
workspace awareness techniques only addigsst conflicts
which arise due to concurrent changes to the satifact but
are unable to supparridirect conflicts which arise due to ongo-
ing changes in one artifact affecting concurreranges in an-
other artifact. In this paper, we present a newssmworkspace
awareness technique that supports one particuidrddi indirect
conflict, namely those indirect conflicts caused dhanges to
class signatures. We introduce our approach, disisismple-
mentation in our workspace awareness tool Palalhfstrate its
potential through two pilot studies, and lay outvhio general-
ize the technique to a broader set of indirect loctiaf

Categories and Subject Descriptors

D.2.6 [Software Engineerind: Programming Environments —
Programmer workbenchD.2.7 [Software Engineering: Dis-
tribution, Maintenance, Enhancemen¥/ersion contral D.2.9
[Software Engineerind: Management -Software configura-
tion management

General Terms
Design, Management, Experimentation, Human Factors.

Keywords
Configuration management, software configurationnagg-
ment, awareness, direct conflicts, indirect cotdlic

Permission to make digital or hard copies of alpart of this work for
personal or classroom use is granted without feeiged that copies are
not made or distributed for profit or commercialvadtage and that
copies bear this notice and the full citation oa fiist page. To copy
otherwise, or republish, to post on servers oremistribute to lists,
requires prior specific permission and/or a fee.

ASE’'07 November 5-9, 2007, Atlanta, Georgia, USA.

Copyright 2007 ACM 978-1-59593-882-4/07/0011...$5.0

1. INTRODUCTION

With the growing maturity and increasingly powerfuhctional-
ity of Software Configuration Management (SCM) syss,
parallel development has become a norm rather dnaexcep-
tion. It is rare to find a project in which strilcicking is prac-
ticed. Optimistically checking out artifacts and rgiag any
conflicts that arise is a far more popular approdtt, this
optimistic approach does have a price: the cosbaoflict reso-
lution. It has been shown that parallel developnfesgquently
leads to conflicts, which anecdotally and empiticate known
to sometimes be trivial to resolve, but at otheres involve a
significant and time-consuming exercise [11, 28].

It is useful to group the conflicts that may ocaumparallel de-
velopment in two classedirect conflictsandindirect conflicts

Direct conflicts are caused by concurrent changethé same
artifact, for instance, when two or more developgrknowingly
alter the same Java file at the same time in tiespective work-
spaces. Indirect conflicts are caused by changeménartifact
that affect concurrent changes in another artifélots may oc-
cur when one developer, working in their privaterkepace,
alters a Java interface file that another develgysrimported
and started referring to from a Java class thegditing in their
respective workspace. But beyond this straightfodwayntactic
example, numerous kinds of indirect conflicts exiigtt may be
of a more intricate, often semantic nature.

Both direct and indirect conflicts are generallgativered at a
time later than when they are actually introducBdat is, be-
tween the time a conflict begins to emerge (e.gdegeloper
starts to change a file that another developelready in the
process of changing, a developer inserts referetce3ava
methods that another developer already removedjtentime it

is actually detected, significant time passes dumvhich the

conflict may grow from small and innocuous to laegel com-
plex to resolve. Direct conflicts are typically deted at the time
of check-in or when the developer synchronizes therkspace
right before checking in. Indirect conflicts, hovegymay slip by
undetected and reveal themselves only during tlild ptocess,
testing phase, or, worse, after the product isadirén the field.

This delay lies at the core of why it can be sdidlift to resolve

conflicts, both direct and indirect: a developersingo back in
time, understand both of the conflicting changefuih and find

a way to meaningfully combine them [9, 16].

In an attempt to detect conflicts earlier, and ebgrminimize
the impact they have, recent research in the SGdigline has
focused on adopting workspace awareness techniquestify
developers of conflicts as they emerge (e.g., 17,3R]). These
techniques operate by sharing relevant informatiegarding
who is changing which artifactswhile the changes are in pro-
gress In effect, SCM systems that include workspaceraness
“spy” on ongoing efforts and inform pertinent deygtrs when
their efforts seem to be conflicting. The intendsftect is for
developers to respond proactively and early. Resgoomay be
to call the other party and discuss, to hold offome’s changes
until the other developer has checked in theirsjs® the SCM
system to look at the other person’s workspaceeterthine the
extent of the conflict, and other such human-iregpmpproaches
to coordination. In so doing, a conflict can be gi#tubefore it
grows too large, and often may be avoided altogegiece the
developer may reconsider before editing an artifaeyy know
someone else is modifying at that time.

This paper presents a new cross-workspace awarsoissque
that we designed specifically to begin addreséimiyect con-

flicts. To date, SCM workspace awareness techniques ssldre

direct conflictsonly, in effect aiming to avoid merge conflicts.
But indirect conflicts are as important, if not ra@o. They can
arise in many different forms, ranging from strafghward syn-
tactic conflicts to intricate semantic conflicta this paper we
provide a foundation for research into indirectftiots by dem-
onstrating how one particular kind of indirect darfcan be
addressed, but providing an architectural apprdbah we be-
lieve is generic and can be adapted to address &ihés of
indirect conflicts. This represents a modest fitsp, but makes
a key conceptual leap in moving from just informiofeyelopers
about ongoing changes (as is the case for howtdiadlicts
are addressed) to incorporating cross-workspaclysasdas is
necessary to determine whether an indirect cordhgts).

We specifically address indirect conflicts thahstieom changes
in class signatures. When one developer modifiessignature
of a class while another developer simultaneoustetbps code
that uses this class, the potential for indirectfloct arises. Our
technique informs developers when this happendods so by
sharing details of relevant changes across workspatimma-
rizing these changes in a cache, and analyzinghlbages pre-
sent in the cache for the potential existence diféct conflicts.
If such conflicts are present, notifications arstritbuted to in-
form developers through peripheral presentatiorthef aware-
ness information in the software development emvirent.

We evaluated our work with two pilot studies, comipg our
approach to one that just notifies developers ofadiconflicts
and to one that does not employ awareness at afl.réults
provide preliminary evidence that our approach isereffective
than identifying direct conflicts only (or no coicts at all, as in
the case of no awareness) and supports early ietaxt indi-
rect conflicts as well as effective resolution loé tconflicts well
before the code is committed.

The remainder of this paper is organized as folldwsSection
2, we introduce background material. Section 3grsa moti-
vating example, Section 4 our high-level approaeid Section
5 our implementation. Section 6 discusses our ewial with

two pilot studies. Section 7 presents related va#t Section 8
concludes with an outlook at our future work

2. BACKGROUND

Although numerous software configuration managersgstems
with features of many different kinds are availatthey all em-
ploy essentially one of two strategies to coordirthe work of
developersPessimisticSCM systems [33] mandate that devel-
opers lock an artifact before they make changeshibiting
others from making changes to that artifact in pelreOptimis-
tic SCM systems [5] explicitly encourage developersntaify
the same artifact(s) in parallel, choosing to foousproviding
developers with merge tools to help resolve cotsflihat may
occur.

This paper concerns optimistic SCM systems. A lssumption
governing the functioning of these kinds of systesnthat rela-
tively few parallel changes lead to conflicts. Theaus, trade off
the possibility of conflicts that must be resolvied a develop-
ment process that can progress more rapidly, dlevelopers
no longer have to wait for locks to be released.

In practice, this approach indeed works well mdsthe time

[12, 13] and parallel development is widely prasticYet, con-
flicts do occur and can have detrimental effecisiafions have
been reported where developers rush to be theg@ston to
check in their changes, so they do not have thvé®he dealing
with the merges necessary to resolve conflicts wilitoccur

[15]. It has also been reported that the more [edrdevelop-
ment takes place, the more bugs appear in the[28fleAnd, of

course, every conflict involves overhead in termthe time and
effort that must be invested to resolve it. Whisgetul task as-
signments and distribution of responsibilities owarltiple de-

velopers are important steps in partitioning therall work,

they are in and of themselves insufficient to gotea that
changes will not overlap or otherwise conflict wither ongo-
ing changes.

Groups of developers have responded by establigh&igown,

informal conventions to coordinate their mutualog. They
may send e-mail informing each other of the chariigeg have
made and the effect these changes are expectedvi® dn

other's work [8]. They also have been reportedetetage In-
stant Messaging to continuously keep each othdp wjate and
coordinate ongoing changes [21], or querying th&1S€posi-

tory to find out who is making changes where in ¢bee [15].

To date, however, these practices are entirelyldpee driven

and have little automated support from the SCM esysfor

developers to gather the information they need.aAsesult,

these informal practices are not as effective eg tould be and
not employed as often as they should be.

It is no surprise, then, that an overarching gonahie SCM lit-
erature has been to try and better support thdeemial prac-
tices so fewer conflicts arise and those that dgearan be rec-
ognized and addressed before they grow too largebanome
difficult to handle. A particularly promising appch revolves
around the notion cAwarenessAwareness is characterized as
“an understanding of the activities of others, Whfrovides a
context for your own activity” [10]. It was origilig introduced
as a passive and subconscious form of informatiatheging,
but has since been explored in more proactive ambaous
settings with tools attempting to provoke awarerspresent-
ing users with specific kinds of information [20h the case of
SCM systems and the goal to reduce conflicts, tféans capa-

bilities that highlight ongoing parallel work effsrand indicate
the potential presence of conflicts among thesmtsff

The way in which awareness has been brought intel S¢s-

tems has been through workspace awareness technitjuese
techniques, typically embedded in plug-ins to ti@VSsystem,

hook into the development environment to colleet tiecessary
information, share this information across workgsaand pro-
vide some kind of visualization to inform developef the po-

tential conflicts that exist. To date, the inforinatthat is shared
pertains to which developer is changing which acts [7], but

also may include information regarding the “sizé”ahanges
[25] or the lines of code that are being changé&].[2

Through careful and usually peripheral integratibthe presen-
tation of the resulting “awareness information”dnhe day-to-
day development environment, the goal is to aherkehavior
of the developers such that when they notice anpiateconflict

emerging, they take proactive steps and take teteyes early.
This may involve calling or Instant Messaging ttthen party,
walking over to discuss and reassign the tasksjmgak unilat-
eral decision to hold off on one’s changes un# ¢ther devel-
oper has checked in theirs, using the functionaftghe SCM

system to look at the changes in the other worlespacll]and
deciding that it is ok to continue, and many otheurses of
action. This, indeed, means that a small amouaffoft must be
expended now, though it is anticipated that thisaerffort is

“gained back” by avoiding a much larger issue later

To date, existing workspace awareness techniqu8€M iden-
tify direct conflicts only, as their goal has alsdyeen to reduce
the number and size of merge conflicts. While sympiowing
which developer changes which artifacts may be gemaligh
for an individual developer to deduce the potenti@sence of
an indirect conflict, in general the structure aine relationships
embedded in the source code are not transparekingnia dif-
ficult for developers to draw solid conclusions.

Many different kinds of indirect conflicts existarrging from
purely syntactic to entirely semantic in naturer example,
conflicts arising from changes in class signatumes syntactic.
A semantic indirect conflict could arise when twevdlopers
modify the execution times of different componeinta multi-
threaded system, with the changes fine in isolatiom the com-
bination leading to synchronization problems. Nbtirdirect
conflicts can be detected automatically or acclyat@gnosed
at all times. However, as long as automated analgsshniques
help in identifying where changes exert what kifidnfluence,
awareness techniques may be able to assist develiopaetect-
ing potential conflicts. The approach taken in thégper specifi-
cally focuses on addressing indirect conflicts frohanges in
class signatures, but we believe that the strateggresent gen-
eralizes to other kinds of indirect conflicts —lasg as suitable
analysis are available, adjustments are made imtheal data
structures, and conflict visualizations are updazdeeded.

Finally, we note that not every conflict that i®idified as aris-
ing between changes in a pair of workspaces wéhavally be a
“real” conflict. A developer may simply be experintimg with

the code, rolling back their changes shortly. ltldcalso be that
they made an honest mistake that they recogniee. [&here-

fore, any conflicts that are identified by a workep awareness
technique should be considerpdtential conflicts and further

human examination, interpretation, and communiocatd! still
be needed. The reward for this investment now, kewas the
avoidance of a potentially much larger, real problater on.

3. MOTIVATING EXAMPLE

Throughout this paper, we use a motivating exangl#ustrate
the need for a cross-workspace awareness techitigliesup-
ports indirect conflicts caused by changes in ckigaatures.
The example involves two developers, Ellen and ,Reteking
on some hypothetical software to process creddscéEllen is
responsible for dealing with a few requested featemhance-
ments to an existing clastayment.javaPete has to implement
a new clas<reditCard.java which will have to keep track of
the payments made on a credit card.

Upon Pete’s arrival in the morning, he checks autréading
only the classPayment.javaand, after studying its code for a
while, he begins his work on the new cl&@sditCard.java
Ellen arrives a bit later than Pete and beginsrheming by
reviewing the implementation #fayment.javahat she did yes-
terday. She does not like how she has put a Idogit in its
constructor and decides to move parts of the lidéition code
to a new method callddit; this is to prepare the code for future
changes she has planned. She is keenly aware sifgthiécance
of this change, documenting the code with detaitedments.

Meanwhile, Pete implementSreditCard-.java In the process,
he makes, as he understands it, appropriate aallsetv in-
stances of the claggayment.javaSince he studied its code, and
noticed the initialization code is in the constoucthe knows he
does not have to call any initialization routine(s)

Pete finishes just before lunch, as does Elleny Hwh check
in their changes to the SCM system, which doedlagta prob-
lem since the changes are to different artifacteax®/, a con-
flict has been introduced in the code that wasdetécted by the
SCM system. Since Ellen did not change the sigeatirthe

constructor, the build system also does not finel ¢bnflict,

since the combined code compiles just fine.

Under normal circumstances, Ellen would synchrohizework

with the latest state of the repository and testdbmbined sys-
tem before checking in her changes. In all liketiipshe would
have detected the issue. However, three problemsgspe

1. Depending on the nature and complexity of the charay
hand, and what exactly the test cases cover, Htiay or
may not find the issue. If she does not find itatld enter
production code and actually be delivered to custsm

2.If she does find the conflict, Ellen still has toosr the
changes carefully to find out where the exact probis. In
particular, she has to read and interpret Pete&sgés and
relate them to hers. While this is trivial in tl@gample, in
general changes are of a much more complex nature.

3. Finally, after she finds the source of the conflElen has
to devise a solution that keeps the intent of lbiginges in
tact. Again, it is straightforward to do so for theample
presented (Ellen needs to add a method cétiiton Pete’s
code). When changes are complex and highly intaee)
as often the case, resolution will be more complex.

It is preferable that Pete and Ellen are able teai¢he conflict
as soon as it emerges. Then, Pete could havetéditeaconver-
sation with Ellen, as a result of which he coulseirt the appro-
priate call toinit right away. Alternatively, he could ask Ellen to
do so for him once she finished her changes.

In this example, existing workspace awareness thalsaddress
direct conflicts may have helped some. They wouwddehindi-
cated that Ellen was changiitpyment.javaand PeteCredit-

Card.java But it could have only been Pete, who knew he

started using the clagdayment.javawho could have noticed
that he maybe should talk to Ellen; Ellen could mate known.
And even then, all Pete knows is that Ellen is diram Pay-

ment.java which could be for many different reasons and in-

volving many different parts of the code. Nothingmppts him
that she is changing a part of the code that é&vagit to him.

The example is necessarily simple, but it is regméstive of the
indirect conflicts that concern this paper, nantalyse resulting
from changes to class signatures. While such clzaaigea well-
understood part of programming, seem simple toesddwhen a
problem emerges, and have many conventions angfzegices

that aim to avoid these kinds of conflicts altogethprior work

nonetheless identifies them as a major source mficts, direct

and indirect [9, 16]. The critical role that clasgnatures have
in being boundary objects lies at the heart of ghizblem [17,

26]. The ability to detect potential conflicts gatherefore, can
lead to significant improvements in developmentticas.

4. APPROACH

Compared to approaches for direct conflicts, thigcat hurdle
to overcome in addressing indirect conflicts ig $@me form of
cross-workspace analysis is necessary to relateuc@mt, on-
going changes in different workspaces. With dimmtflicts, it
is sufficient for each workspace to broadcast wiidifacts are
changing. The visualizations can display this infation, and
any overlap in workspaces changing the same drtfammedi-
ately visible. This approach, however, does notkor indirect
conflicts, because they fundamentally concernrtiationship
between non-overlapping changes.

Any approach wishing to address indirect confli@$ which-
ever kind) must bring information regarding chanigedifferent
workspaces together, so their combinations carxbmiaed. It
is important that this is done in accordance wétesal general
objectives to be met by any workspace awarenebsitpee: (1)
unobtrusiveness, so developers are not detraactedtfreir day-

[visualizing] [visualizing J [v1suallzlng] [vnsuallzlng]
T M @

[filtering] [filtering J [filt.erlng] [filterlng]

[lnformlng] [informing]

[analyzmg] [analyzlng]

[distributing] [distributingJ [dlstrlbutlng] [dlstrlbutlng]

3 @t
[collecting] [collecting J [cnllectlng] [collecting]
(a) (b)

developer A developer B indirect conflict

> »

change event change event event
Figure 1. Overall Process for Direct Conflicts (apnd
Indirect Conflicts (b).

to-day coding activities, (2) scalability, so tra@ugion supports
a large number of developers modifying a large nemd§ arti-

facts, (3) flexibility, so different analyses anidualizations are
easily integrated, and (4) configurability, so ssare provided
control over the behavior of the awareness teclenj8, 19].

Our approach to addressing indirect conflicts iilghon sev-
eral strategies that have been successfully employexisting
awareness techniques. Specifically, key stratahiaswe adopt
are a push-based event model [14], peripheral Nist@n via
careful integration of the awareness informatiorthie user in-
terface [19], and display of relevant conflicts yii0]. For
direct conflicts, these strategies combine intowr-tep process
of collecting, distributing, filtering, and visualng awareness
information. Adjusting this process to indirect fats requires
two new steps: (1) cross-workspace analysis of imggchanges
and (2) informing other workspaces when indireatflicts are
found. In Figure 1, the resulting six-step prodsssompared to
the original four-step process. A key differencehat in four-
step process events remain “independent”, flowipgthrough
the steps separately. In the six-step process, Jerwevents are
related during the analysis at one of the workspaeéh one or
more new events redistributed if one or more irdionflicts
are found.

Below, we detail our approach, as applied to theblem of
indirect conflicts emerging from changes in cldgsatures.

Collecting. The first step is to collect the information essary
for the cross-workspace analysis. Two issues nesiddressed:
what information is collected and how often isatlected? With
respect to the first issue, we capture: (1) chamgebe name,
parameters, return value, and scope of public ndsthehether
specified by an interface or class, (2) additiod aeletion of
classes, interfaces, and public methods, (3) clmaimgehe ex-
tends and implements relationship among classesgerfiaces,
and (4) changes in the uses relationships of dassterfaces,
and methods. This provides us with all of the infation per-
taining to changes in what a class has to offentteer classes
and changes in how these other classes “use” #iss'cl

With respect to the second issue (how often isinfemation

collected), we adopt an approach that continuoslgitors the
editing process. We track any of the aforementioctehges to
any artifact immediately, resulting in an up-toalaticture of

ongoing changes at all times, which is necessasypport early
detection of conflicts. Waiting until a change ismplete and
checked in would yield information that is “aftéretfact”. This

choice of continuous monitoring is in line with ethawareness
techniques currently in existence.

Distributing . Once the information is collected, some of i ha
to be shared with other workspaces. The choice isemhether
to distribute the information concerning changesvirat a class
has to offer or information concerning changesaw ka class is
used; it is not necessary to distribute both. \Wesetthe former,
largely because of an intuition that this leadSewver events.
Especially in the later stages of a project, whHengtructure of

! This is not completely accurate, since public memiariables
are also part of a class signature. Our implemientatoes not
handle them at this time, but can be easily exténde

the code has been largely established, we belfatechanges in
uses relationships will be more frequent than ckanig class
signatureg.

We package the information regarding changes intwheaass
has to offer as diff's that are sent to other wpddes through a
push-based event service. Since each diff onlydbe sent to a
select set of workspaces, namely those in whichcthss (or
interface) is used, we can leverage the subscnifi¢giality of the
event infrastructure to route events to only thweekspaces.

Finally, we employ a special-purpose XML diff fortriastead
of a generic, line-based textual diff format. Thisates a precise
context and minimizes the amount of processing egenh the
receiving side. The DTD defining this diff format tedious but
straightforward, enumerating all possible typestainges.

Analyzing. The analysis step is at the heart of our approas
it is here that information regarding changes madthe local
workspace and in the remote workspaces is browgjether to
determine the presence or absence of potentiakictdionflicts.
Several key considerations must be made. Firsgusecchanges
are incremental and analysis can be expensive,iportant to
maintain a cache that abstracts the state of tted l@orkspace,
as well as the state of remote workspaces througimarizing
the diff's received from those workspaces. Withhe#acal or
remote change, we update this cache. The localspade part
of the cache captures the dependencies among éfleofode
elements in the workspace, so that determining lvenet remote
change conflicts with this state becomes a maftésaking up
the remotely changed artifact in the local caché examining
its dependencies, both forwards and backwards.

A second consideration is that diff's can accunaulat a typical
setting, multiple diff's capture the sequence ddrales a devel-
oper makes to an artifact. Some of those diff's magate parts
of previous diff's, for instance, when a develop@does their
earlier addition of some set of methods. Upon pcei a diff,
we therefore analyze it and cull any extraneoustgpaf) other
diff's that are already in the cache to provide iaimal yet ac-
curate summary of the remote changes. (See aléarfiiing”.)

A third consideration regards the analysis algatitio be used.
Many dependency analysis algorithms are availahld] and it

is possible to obtain results at various levelprefcision. This,
in turn, makes it possible to provide more detailddrmation

than just a statement that changes in one artifdatectly con-

flict with changes in another artifact. But, thé&se cost, namely
the cost of analysis. Particularly, detailed althoris tend to not
be incremental and require re-analysis of the estystem — an
intrusive and possibly prohibitive feature. Since fivst want to

understand whether a straightforward annotationmcaiohg the

presence of an indirect conflict is effective befembarking on
in-depth studies of all sorts of indirect conflickge opted not to
include a more sophisticated analysis at this point

When our technique should perform the analysishés final
consideration that we address for this step. Al thie question
of “when to collect the information”, we answer ‘fimediately”,

2 An actual study should be performed to validats itttuition.
If it turns out to be the inverse, the locus oflgsia can sim-
ply be changed by inverting the flow of events.

because it is important for the awareness infolnagirovided

to the developers to be as up-to-date as posgibleang as this
can be done without extreme use of resources, W&vbdhis is

the right choice. Of course, if performance doeobee an issue
because too many events arrive shortly after onthan we can
change our technique to perform the analysis efesvyminutes.

This would not detrimentally influence the effeethess of the
technique as coding is still a relatively slow ityi

Informing . The fourth step, informing, is straightforwa@hce
the analysis step has completed, and indirect ictsfhave been
found, information regarding these conflicts istidmited to the
originating workspace, as well as to any other wpédces where
one or more of the involved artifacts is presetite Bvent ser-
vice is once again leveraged to appropriately rthutee events.

A few observations must be made with respect ®gtep. First,
during the analysis step, if (parts of) existinff'sliare removed
from the cache due to a later diff that negatesipos changes,
this means that events that were sent earlier afenger valid.
Appropriate events that undo those events areedteatd sent.

Second, the choice of also sending the indirecflicoevents to

other workspaces is deliberate. While these wodepare not
involved in the indirect conflict, it is still uséffor the develop-
ers to have access to this information becausatofd changes
in which they may be involved. They, for instaned] be able

to anticipate that a particularly complex modifioatthey have
planned that includes changes to one of the indoksifacts

would create a situation in which three or moregbeonight be

engaged in an indirect conflict — a situation tisatot desirable.
Notifications are distributed to all workspaceswhich a par-

ticular artifact is present to enable up-front plizxg of change
activities.

Finally, we reiterate that the information thatsent identifies
both the artifact that causes an indirect conéflindl the artifacts
that are affected by this indirect conflict. Ifgsrtinent to inform
developers about both.

Filtering . In this step, developers are presented withofit®n
to specify filters according to which the set oeets they will
receive can be further reduced. In the case otdaenflicts, it
is common to allow developers to select a subsetrtifacts to
monitor or for them to set a threshold for the sizéhe conflicts
for which they are notified. We adapt these filtieralso address
indirect conflicts, allowing developers to seleotr& minimum
number of affected artifacts that must be reacleddrb they are
informed.

Visualizing. Finally, as with any approach relying on aware-
ness, it is critical to unobtrusively, yet effeetiy integrate the
awareness information in the development envirorint@aner-

ally, this integration is performed peripherallyittwinsertion of

subtle clues embedded in the user interface where s a high
probability that developers will notice the warrsnigr conflicts

as they arise. We adopt this strategy as wellldaue the details
of how we designed the user interface extensiorSetttion 5,

where we discuss the implementation of our tecraiqu

We do, however, need to make two observations k@, the
extensions to the user interface must clearly conicate which
artifacts cause indirect conflicts and which adifaare affected
by indirect conflicts. Ideally, developers can rigadhove back

and forth to examine a particular conflict and makdgment
as to whether or not it is a conflict to worry ahou

Second, the issue of scalability arises. The eidargo the user
interface of the development environment shouldiégigned in
such a way that, even when numerous indirect aisftrise,
they do not overburden the developer and makegbgsible to
find those indirect conflicts that really pertam their ongoing
work. We also return to this subject in Section 5.

Summary. We have described a six-step process that iécexp
itly designed to detect indirect conflicts arisiimgm changes in
class signatures. A key choice is to distributeahalysis that is
necessary. Rather than making the workspace thes®nsible
for a change in a class signature the locus ot@thputation
regarding that change (which would involve a corigoer to the
latest state of all other workspaces), our techmigroadcasts a
diff and involves all of the relevant other workepa to verify if
any indirect conflicts arise as a result. The cotafonal load is
equalized, allowing our technique to scale appaiply. A sec-
ond benefit is that any changes in the usage sEd@natures
can be dealt with locally simply by updating thedbcache and
re-verifying with all summarized diff's if an indict conflict has
emerged.

Our technique is purposely instantaneous, suchwhanhever a
change is made, it is tested as to whether it sepits an indirect
conflict. This is critical to support the role dfet human in our
solution. While one small indirect conflict may rim a problem
(as in the case of our motivating example in Sec8h a grow-
ing number of indirect conflicts emerging betweero twork-
spaces most certainly is. By instantaneously sbanformation,
it becomes possible for developers to watch trendderstand a
broader context, and appropriately respond whey lletieve it
is time to do so. In some cases, it may even bsilplesto avoid
indirect conflicts altogether. If developers knowigh artifacts
other developers are changing, and the extent jphdmof those
changes on other artifacts, then they are at gfash the option
to choose to work on (aspects of) tasks that dowetiap.

5. IMPLEMENTATION

We implemented our technique as an extension tcegisting
workspace awareness tool, Palantir, which is aip&zlplug-in
that we previously implemented to address direaflms [31].
The original Palantir followed the four-step pracesesented in
Figure la. To update Palantir to the six-step modéustrated
in Figure 1b so that it also supports indirect dots, we had to
make several changes to its architecture. PresémtEdyure 2,
the revised architecture needed one additional coemt Ana-
lyzep and updates to several existing components (lgigield
through dotted lines). All other components cou&y she same,
particularly thePalantir ServerandExtractor, both of which we
had implemented using reflection, so they couldpsupfuture,
entirely new kinds of events.

The architecture of Palantir consists of thredmiisparts. First,
there are the Eclipse platform and general SCMeaysshown

in Figure 2 using dark gray boxes. Palantir usesetas is, ob-
taining the information it needs using a customtbiorkspace
Wrapper which collects and emits events regarding theveait

ongoing changes to all relevant artifacts. To ipooate support
for indirect conflicts stemming from changes insslaignatures,

Pete’s Workspace Ellen’s Workspace

PALANTIR CLIENT PALANTIR CLIENT
PALANTIR SERVER

[Capture HBootstrap]

Event Database

SCM System
SCM Server

The Eclipse Platform The/Eclipse Platform

\\ Event Listeners
\

Event Listeners

Repository

Workspace Workspace

CM Plug-in CM Plug-in

Figure 2. Revised Palantir Architecture to Support
Indirect Conflicts.

we had to modify this wrapper significantly. Onetbé main
modifications concerned the events that notify otherkspaces
of ongoing changes to an artifact. This event waslified to
not just capture who changed which artifact by hmouch, but
to also include a diff capturing the details of tfeanges to a
class’ signature when that signature has been eldarkpr ex-
ample, Figure 3 shows the diff that is generateénEllen, in
the scenario described in Section 2, adds theiméwnethod to
the clasayment.java

The other main modification to th&orkspace Wrappewas the

integration of Dependency Finder [22], an open sewanalysis
tool that we use in creating the internal cach@egendencies
among artifacts. An important property of Depengefinder is

that its analysis is incremental; that is, withteabange, it re-
analyzes only the minimal set of artifacts affedtigdhe change.
This helps to address the issues of scalability wmabtrusive-

ness, as frequent analyses can be performed Keatipaa mini-

mal amount of resources. To further aid with thesaes, the set
of dependencies output by Dependency Finder isfivamed by

Palantir to an internal cache format that useouarhash tables
to make look up of individual elements efficiendamelp relate

changes in a local workspace to diff's from rematekspaces.
Specifically, we leverage the artifact naming schevhPalantir

[31] to relate artifacts and diff's across workspac

The Palantir server is the second major compometitd archi-
tecture of Palantir. It did not need to change,voeido mention

<?xml version="1.0" encoding="UTF-8"?>
<differences>
<name>Payment.java</name>
<modified-interfaces>
<classXML>
<new-methods>
<declaration signature="init()"
full-signature="store.Payment.init()"
visibility="public" throws="" return-type="double"
name="init()">init()</declaration>
</new-methods>
</classXML>
</modified-interfaces>
</differences>

Figure 3. XML Diff for Ellen’s Changes to the
Payment.java class.

two important roles of this component here. Fitlsg server is
responsible for routing events such that only r@it\events are
delivered to each of the workspaces, with relevathefined by
whether an artifact is present in the “target” vep&ce. Second,
the server is responsible for bootstrapping. lvjates historical
data to workspaces that are created at a later fméhat these
new workspaces have an up-to-date picture of teisof the
other workspaces that have been existence foratlore. This
is critical, since workspaces are opened and clogatinuously.

The final major component is the Palantir cliertijch consists
of several subcomponents. We discuss the two mgsbriant
components here: thenalyzerand theVisualization With the
arrival of each diff, after the internal hash tableve been up-
dated, theAnalyzercomponent performs two analyses. First,
examines whether the new diff negates any prewilifi's, ei-
ther partially or completely. In such cases, itoregles the con-
tents of those diff's, removes the extra diff'srfréhe cache, and
sends out a set of events that represent the risedistate (typi-
cally via events that “undo” previously-announcedifect con-
flicts). Second, it uses the cache of local depecigs to check
for a variety of conditions that indicate an indireonflict, such
as when a diff refers to a method that no long&texto a class
that has a revised “extends” relationship, to ahoetthat has a
changed signature, and so on. If one or more patentirect
conflicts is found, the algorithm broadcasts ameévkat identi-
fies both the artifact that causes the confliciis)l the artifacts
that are affected by it.

Note that these two analyses are also performech e local
dependency cache changes as a result of modificaitica local
workspace (i.e., when Dependency Finder noticesdhanges
have affected the dependency structure represetitengode in
the local workspace). In such cases, the changeslso verified
against the cached set of diff's from remote woakss.

Figure 4 shows how Palantir visualizes the resflthe analy-
ses to developers. Specifically, it shows the vidWwete who is
in the process of making his changesCieditCard.java The
code already makes use of a few other classesiding Pay-

t

ment.javaand Address.javaPalantir leverages the package ex-
plorer view of Eclipse to highlight the existencedirect and
indirect conflicts. Specifically, artifacts thathekit a direct con-
flict are marked in the top left, with a blue trif@ that grows
and shrinks in size in concert with the evolvingesof the con-
flict (this represents behavior of the originalsien of Palantir,
which we did not change). Artifacts involved in iadirect con-
flict, whether as the artifact that causes it omasartifact that is
affected by it, are marked with a red triangle lo@ top right. In
textual annotations next to the name of an artif@etantir fur-
ther explains the status of a conflict. In thisecake annotation
of [S:24] on Address.javandicates that 24% of the file has been
modified,[I>>] on the same file that it is the source of an indi-
rect conflict, andl<<] onCreditCard.javathat it is affected by
an indirect conflict.

Additional information detailing the conflicts cdre found in
the Impact View at the bottom of the screen. Pet selected
(implicitly, by opening and editing itCreditCard.java which
actually has three indirect conflicts. The firsnfiiwt, with Ad-
dress.javais the most serious of the three, because thegelsa
are already in the repository and Pete can expbaila failure.
The second conflict is caused by Ellen deletingethad from
Customer.javaand is almost as serious. However, the changes
are still in Ellen’s workspace. Therefore, the iéoriront of this
conflict is the same (a bomb), but Palantir usdgferent color
(yellow instead of red). Finally, the third confliepresents the
original issue discussed in Section 3. Ellen hakedd nevinit
method toPayment.javaOur analysis algorithm cannot identify
whether this actually conflicts with Pete’s chandes the addi-
tion of a method to a dependent file might represepotential
problem. Hence, Palantir uses an exclamation ncarkto draw
attention to the addition of methods. It is, of tm®y up to Pete
to interpret the information that is presented ita.FBecause he
studied the original code ¢fayment.javecarefully, he remem-
bers that all of the initialization code was in ésnstructor. He
notes Ellen’s addition of thi@it method, prompting him to con-
tact her to obtain clarification of his understarglof the class.

& lava - CreditCard. java - Eclipse SDK

fle Edt Source Refactor Navigate Search Project Run Window el
B[H-0-%- | BEHFE B¢l B | §eva "
[% Package Explarer 5 =af] ” e
=% = private static int MINOR = 0O: B
=i wStore [5:2] [palantinics.u edu] A BELVALS RvACtHO It ADTOTT S
= ssrc[si2] !
I'.'-l |. i J /feustrustor for credit card, para Customer
Al =stare 52 public CreditCard{Customer customer)(
T : [.] [] payment = new Payment (PAyment.creditCard, Payment.bamkAccount, "11567);
+-TJ] Address.java [5:24] [13 oMM TR Sabas o i
I H q accountliolderZip = address.getZip();
+-u by #CreditCard.java [I<<] 1. nares msadaress, gecsne () s
[P U I T B B
— Demographics demo = customer.getDemographics () :
¥ (1 GftCardjava 1.1 (ASCIL v} it B - Remsdetige] s
¥ [1) Payment.java 1.1 (ASCTI Ko if (age 5= 18)
[Ttem java 1,1 (ASCT -Heo) customerType = ADNLT:
¥ [1) TtemiD.java 1.1 (ASCII -Hkv) =
(1) Manager.java 1.1 (ASCII K _ 3
+ 1} ok 1.4 (it) customerType = MINOR:
71} Payment java [5:18] [1=>] 1.1
¥ [1} PreOrder.java 1.1 (ASCIL Kk i
(I} Review.java 1.1 (ASCII -kkv) .
+1-[1} shipping.java 1.1 (ASCI Kk} public String getMName (] {
Lo S R e return name;
< >)
v
5 outlne 52 e
- -
Problams Javadoc Palantir Connections | B fStors/stcistore/CraditCard.java 22 (=]
-
Conflicting: 2, Warning: 1
" vpe : it
i payment ; Payment Author | TmpactType | Resource: [re.. [| Timest... | Reason
jo accountHolderZip : String &' Pete IMPACTED BY [Store/srcjstorefAddress.javal.l Elen Changes Committed FriSep.., Modified class: Deleted methed gethiame()
i@ accounthame ; String & Pete IMPACTEDBY fStore/srcjstorejCustomer javal 1 Elen Changes InProgress FriSep... Modified dass: Deleted method getDemoaraphicst) and
‘o % MINOR : int || A\ Pete TMPACTED BY [StorefsrcjstorejPayment javal.L Elen change Added FriSep... Modiied dass: Added new method it (cardType, int pe
o ADULT :int
© © CreditCardiCustomer) | 1= >
Wrikable Smart Insert | 20 45

Figure 4. Visualization of Indirect Conflicts, with a Call-out of the Package Explorer.

Discussion Our implementation to date has focused on provid

ing awareness information. A number of auxiliargdtionalities
exist that we have not built yet, but that wouldke¢he overall
experience richer. Users should be able to ackrdpelex con-
flict, use the Palantir interface to browse to rtdevant parts of
an artifact causing a conflict (and vice versa}l ok at remote
artifacts side-by-side with local artifacts. Norfetlese is tech-
nically challenging nor would they alter our apprivahence we
do not expect any hurdles as we implement themerfuture.

Scalability and unobtrusiveness are two of the d@terminants
of the effectiveness of any awareness techniqudisasissed in
Section 4. To examine how the new version of Palamnages
these two factors, we compare the new version eootfiginal
Palantir that supported direct conflicts only.émts of scalabil-
ity, we observe that we added one event (a recgmeent that
informs relevant workspaces of the existence ahdirect con-
flict) as well as an extra analysis step. The otteaeevent does
not fundamentally alter the amount of traffic, whis relatively
low to begin with (hypothetically, suppose 100 depers each
save changes to 10 artifacts every minute and Septiat each
of those changes leads to one indirect conflict #iill means
only 2000 events a minute, which is very low taffir today’'s
event services). The extra analysis that is peddrmlso does
not incur undue computational cost, because Depeydeinder
is incremental and we optimized the local cachéepfendencies
with look-up tables for fast retrieval of events.

We have kept the same level of unobtrusivenesheasriginal
Palantir, using small icons and annotations inctiramon area
of the environment to alert users. But, in largejguts, a poten-
tial issue arises: having too many icons appeamnyMasystem
involves an intricate web of program dependenciesrgy its
artifacts, which may lead to the generation of nioue indirect
conflict events that all must be examined. Ondhe hand, this
can indeed be a hindrance. On the other hand, Hrerseveral
factors that help in addressing this hindrancestFas discussed
previously, Palantir only shows those events thatelevant to
a particular workspace, so not all events are bgail develop-
ers. Second, Palantir offers filters through wtttod set of noti-
fications that is actually shown can be furtherua based on
various criteria. Third, icons in the package erplsummarize
for each artifact the full set of indirect confi¢tso that artifacts
are decorated only once. Finally, we view the icionthe pack-
age explorer as an overall state that one can explben plan-
ning a series of upcoming changes. It is the sépaiaw below
the editing pane that we believe is most usefulnubree is edit-
ing. This pane changes its contents based on tifecathat one
is currently viewing and/or modifying, so at mossraall set of
indirect conflicts is present at any time — thesatinent to the
artifact at hand.

We note that our implementation thus far is langusggecific. In
particular, the current version of Palantir opesaie Java only.
No inherent boundaries exist towards changing ntygeémenta-
tion to support other languages, except that orghiriave to
adjust the definition of the diff DTD if the langg&in question
has other kinds of class signature elements. Ofsepthe actual
analysis method used needs to be modified accdydi@iven

that Palantir employs a straightforward dependemalysis so
far, this should not be an issue.

Finally, we believe that the architecture that vemepresented
represents an important stepping stone towardsasidg other
kinds of indirect conflicts. The architecture layst the variety
of challenges to be overcome in cross-workspackysinasepa-
rates fundamental functionality, and makes it clglere it must
be changed to address different indirect confligée note that
our current implementation, however, can be impdoire this

regard to provide a pluggable infrastructure witady defined

extension points. Providing such a generic inftagtire will be

part of our future work.

6. EVALUATION

Many different kinds of evaluations must be perfedhio fully

evaluate our work. One can imagine a study thaksradenti-

fied potential conflicts and evaluates whether thegually be-
come a conflict or disappear, a study that exantineprecision
and recall of Palantir as compared to the actuaflicts that

arise, and a longitudinal study to find out if dieyers learn
how to properly gauge the information provided afféctively

integrate awareness into their day-to-day work.oBefve per-
form these kinds of studies, however, we feel ihésessary to
first establish something more basic: does Palaetfy develop-
ers detect indirect conflicts early improve theiility to coordi-

nate their work, and improve the quality of the edhat results
from the collaborative effort?

We performed two pilot studies to address this tjoesone in

which we compared results with and without Palaatid a sec-
ond in which we compared the new Palantir (supfoorboth

direct and indirect conflicts) to the old Palarisinpport for only
direct conflicts). Both pilot studies required sedif to collabo-
rate in a small hypothetical team of three to catgph prede-
fined programming task. The team members with wkahjects
interacted were all actually virtual entitiesonfederateswhich

were controlled by a member of our research teantosflicts

could be inserted in a controlled manner in thentise unpre-
dictable activity of programming. Particularly, hotlirect and
indirect conflicts were inserted in the exact sananer at the
exact same time related to when a subject startedtain modi-
fication task. Subjects were told that they cowddtact the other
team members via IM should that be necessary. dte to be
modified comprised approximately 500 lines of canld9 Java
classes. Subjects verbalized their thought prateesighout the
study and one of the authors was present as anvebse

In the first study, subjects had to complete 1R4ad of which
would lead to direct conflicts and 4 to indirecinflicts. Sub-
jects were given unlimited time, so the experimemild evalu-
ate the up-front cost of monitoring for potentiahéiicts, com-
municating, and resolving them early versus thé ebattempt-
ing to fix the conflict later (typically at check-ior synchroniza-
tion time). Three subjects used Palantir, thregestdbdid not.

In the second study, subjects had to completel® taso with a

direct conflict and two with an indirect conflickubjects were
given exactly an hour, in order for us to evaluatev much

interference Palantir’s indirect conflict notifiatis had with the
development process. Four subjects used Palarttirsupport

for both direct and indirect conflict detectionufosubjects used
Palantir with support solely for direct conflicttdetion.

These being pilot studies with limited numbers wifjscts, sta-
tistical conclusions cannot and should not be dradmwever,

we did learn a number of lessons that confirm atuiiions and

begin to illustrate the potential of our approaEhst, subjects
who had the new Palantir did much better than stjeho had

no Palantir or the old Palantir. In fact, in theos®l study, those
supported with indirect conflict detection foundliadirect con-

flicts early and resolved them such that no cotsflentered the
code base. The other subjects had more troubleinaaanajor-

ity of cases, indirect conflicts were left in theaciges that were
ultimately checked in, deteriorating the qualitytieé code. Fur-
ther, subjects with the new Palantir extensivelgnemnicated

with “team members” and used a variety of methadactively

coordinate work (e.g., some skipped tasks for aditers IMed

to set up a sequence of tasks, yet others usedhdhers in

their code until they noticed the new code from tésem mem-

ber being checked in). These results indicate tatnotifica-

tions provided by Palantir were actively used by developers,
with the auxiliary result that indirect conflict téetion matters,
even when developers are already notified of diceoflicts.

With respect to time, in the first study subjecithveupport for
detecting indirect conflicts took more time to cdetp all of the
tasks, but less time when those without such suppene asked
to manually locate and resolve the remaining coisfl{simulat-
ing a build or test error stemming from an indireonflict). In
the second study, subjects with the new Palantk tore time
per task on average (but, given that they delivecate that was
of a higher quality because it contained no indicenflicts, did
so for a very good reason). This begins to inditaé¢ Palantir
indeed could be beneficial in providing developeith an over-
all reduction in time and effort spent becausestmall up-front
investments made to proactively coordinate eargv@nt them
from having to deal with much larger issues later o

Verbal feedback from subjects and our personalrebtens of
the subjects in action confirm these results. Es@nwe under-
stand that our results have been obtained in gelih@xperimen-
tal setting and need to be corroborated by futtudiss. None-
theless, these results are extremely encouragidglaould lead
to further, statistically significant, study — bg,wand by others.

7. RELATED WORK

A number of workspace awareness tools exist that develop-
ers identify direct conflicts. BSCW [2] is a webdea, shared,
centralized workspace with integrated versioninglifees that

allow it to be used as an SCM system. Awarenegsagided

statically, via icons that enrich an artifact's weage with in-
formation regarding its current state, and dynalyicthrough a
Monitor Applet that continuously informs developert what

activities are taking place. Jazz [7] is an Eclipased collabo-
rative development tool that leverages the versmrdapabili-
ties of SCM systems to provide information of whighifacts

are being edited in remote workspaces and whidfaetg in the
repository have newer versions than the ones chealein the
local workspace. The War Room Command Console 2@}

vides a centralized, multi-monitor display wheresiiows all
artifacts in the software repository, color codangd decorating
those that are concurrently being edited in priwadekspaces.
None of these systems addresses indirect cortticlate.

COOP/Orm [23], Celine [11], and State Treemap [, fol-
low an approach comparable to that of BSCW and, Jaar
integrate additional information on the nature aim of a di-

rect conflict. Using various mechanism to decidenphis in-
formation, these tools provide a more detailed bbgraent
context to the developers. Again, however, theyreskl direct
conflicts only.

Chianti [30] identifies which test cases (regressio unit) are
affected by a change. To do so, Chianti analyzesbtise and
current version of an artifact to identify the setbef test cases
that are affected and need modification. TUKAN [@2Fforms
program analysis in Smalltalk to determine whictifacts are
semantically related and documents these relatipash a se-
mantic network of artifacts that is used to deteemif current
changes to artifacts affect any other artifactshiem graph. Chi-
anti can be seen as a different analysis techrigjee used by
Palantir, which would leverage a different soutbe (est cases)
to determine whether indirect conflicts are pres@uKAN is
close to the ideas presented in this paper, butitagbrtant
differences exist. Compared to our approach, TUKgNsents
information at certain intervals only, rather thastantaneously,
which hinders a user’'s ability to properly assdss indirect
conflicts. Second, TUKAN operates in a centralizednner,
whereas our approach supports distributed settings.

Agile methodologies are very related to our workeTssue that
we attempt to address with awareness (early deteofi emerg-

ing direct and indirect conflicts) is also what kgmethodolo-

gies attempt to address with an approach thatsrelie small

changes that are checked in and tested frequehtl29]. We

note that our approach is in reality compatiblehwAtgile ap-

proaches: it helps developers more flexibly pMdrenthey need

to check in their changes by providing insight ihat other

developer are doing in their workspaces. In fang awareness
tool, FastDash [6], explicitly targets Agile teamsthough it,

once again, only addresses direct conflicts.

8. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a novel techrittptds explic-
itly designed to address the problem of indirectflicts arising
from changes to class signatures. Within the broattategy of
using awareness to address emerging conflictsrallpbdevel-
opment, our work represents a conceptual leap femniques
that address direct conflicts by “simply” broaddagtevents, to
techniques that support detection of potentialraxti conflicts
by leveraging cross-workspace analysis. Our piiotlies show
promise in how our approach helps developers iaatieg indi-
rect conflicts early, as well as in responding appiately.

We recognize that our work only begins to scratehdurface of
the problem of how to address indirect conflictdwéwareness.
The problem we chose to address, indirect conféidsing from
changes in class signatures, is an important ahdigaussed in
Section 3), but remains squarely syntactic in reatWithin the
broad range of indirect conflicts that are possitiies represents
an “easier” problem to tackle, especially compai@demantic
indirect conflicts. The challenge now is to buildom our work
and extend the range of indirect conflicts that baraddressed.
Clearly, incorporating additional kinds of analyse® Palantir
is an appropriate beginning. To truly push the ltzuies, how-
ever, it might be interesting to explore bringingjld and test
techniques into the picture, attempting to contirslp build and
test across workspaces so combined changed arbdtgteéand
“pre-tested” as they are implemented. This bringk W a host

of challenges, but can be a promising researcletébretowards
effectively addressing semantic indirect conflicts.

Our future work also includes restructuring Palaimiio a plug-
gable infrastructure, such that other analysesvashlizations
addressing other kinds of indirect conflicts carelgperimented
with. Moreover, we plan to examine the role that approach
can play in global software development projecteng com-
ponents and interfaces are typically hidden befdnahal APIs,
changes to which do not become visible until tHeciaf release
date. Finally, we plan to investigate the groupafigelated noti-
fications (e.g., those related to a refactoringhef code) to fur-
ther address scalability and unobtrusiveness.

9. ACKNOWLEDGMENTS

Effort partially funded by the National Science Rdation un-
der grant numbers CCR-0093489, 11S-0205724, and IIS
0534775. Effort also supported by an IBM Eclipsadwation
grant and an IBM Technology Fellowship.

10. REFERENCES

[1] P. Abrahamsson, et ahgile Software Development Meth-
ods: Review and Analysi2002: VTT Publications.pp.478.

[2] W. Appelt, WWW Based Collaboration with the BSCW
SystemConference on Current Trends in Theory and In-
formatics, 1999, p. 66-78.

[3] R. Arnold and S. Bohne§oftware Change Impact Analy-
sis (Practitioners)1 ed. 1996: pp. 392.

[4] R.S. Arnold and S. A. Bohndmpact Analysis - Towards
a Framework for ComparisonCSM, 1993, p. 292 - 301.

[5] B. Berliner,CVS II: Parallelizing Software Development
USENIX Technical Conference, 1990, p. 341-352.

[6] J. Biehl, et al.FASTDash: A Visual Dashboard for Foster-
ing Awareness in Software Tear8$GCHI conference on
Human Factors in computing systems, 2007, p. 13221

[7] L.-T. Cheng, et alJazzing up Eclipse with Collaborative
Tools Eclipse Technology Exchange Workshop, 2003, p.
102-103.

[8] C.R.B.de Souza, D. Redmiles and P. DoutiBheaking
the Code", Moving between Private and Public Wark i
Collaborative Software Developmeirternational Con-
ference on Supporting Group Work, 2003, p. 105-114.

[9] C. R.B. de Souza, et aHow a good software practice
thwarts collaboration: the multiple roles of APtssoft-
ware developmenESE, 2004, p. 22-230.

[10] P. Dourish and V. Bellottihwareness and Coordination in
Shared WorkspaceACM CSCW, 1992, p. 107-114.

[11] J. Estublier and S. GarciBrocess Model and Awareness
in SCM. Twelfth International Workshop on Softw&en-
figuration Management, 2005, p. 69-84.

[12] J. Estublier, et allmpact of Software Engineering Re-
search on the Practice of Software ConfigurationnMa
agementACM TOSEM, vol. 14 (4), 2005, p. 1-48.

[13] P. H. FeilerConfiguration Management Models in Com-
mercial EnvironmentsSEI-91-TR-07, Software Engineer-
ing Institute, Carnegie Mellon University 1991.

[14] G. Fitzpatrick, et al.Supporting Public Availability and
Accessibility with Elvin: Experiences and Refleatio
ACM CSCW, 2002, p. 447-474.

[15] R. E. Grinter,Supporting Articulation Work Using Soft-
ware Configuration Management Syste®€M CSCW,
1996, p. 447-465.

[16] R. E. GrinterRecomposition: Putting It All Back Together
Again ACM CSCW, 1998, p. 393-402.

[17] R. E. Grinter, J. D. Herbsleb and D. E. Pefitye Geogra-
phy of Coordination: Dealing with Distance in R&Dovk.
ACM CSCW, 1999, p. 306-315.

[18] J. Grudin Why CSCW applications fail: problems in the
design and evaluation of organization of organiaaéil in-
terfaces ACM CSCW, 1988, p. 85-93.

[19] C. Gutwin and S. Greenbelyorkspace Awareness for
Groupware Conference Companion on Human Factors in
Computing Systems, 1996, p. 208-209.

[20] C. Gutwin and S. Greenberbhe Effects of Workspace
Awareness Support on the Usability of Real-Timeriis
uted GroupwareTOCHI, vol. 6(3), 1999, p. 243-281.

[21] J. Herbsleb, et allntroducing Instant Messaging and Chat
in the WorkplaceSIGCHI conference on Human factors in
computing systems: Changing our world, changing our
selves, 2002, p. 171-178.

[22] Dependency Finder, http://depfind.sourceforge.net/.

[23] B. Magnusson and U. AsklunBine Grained Version Con-
trol of Configurations in COOP/OrnSixth International
Workshop on Software Configuration Management, 1996
p. 31-48.

[24] P. Molli, H. Skaf-Molli and C. BouthieiState Treemap:
an Awareness Widget for Multi-Synchronous Groupware
International Workshop on Groupware, 2001, p. 108-1

[25] P. Molli, H. Skaf-Molli and G. OsteDivergence Aware-
ness for Virtual Team through the Wéttegrated Design
and Process Technology, 2002.

[26] M. Mortensen and P. HindBuzzy Teams: Boundary Dis-
agreement in Distributed and Collocated Teabistrib-
uted Work: New Research on Working across Distéise
ing Technology, 2002. p. 283-308.

[27] C. O'Reilly, D. Bustard and P. MorroWwhe War Room
Command Console: Shared Visualizations for Inckisiv
Team CoordinationACM symposium on Software visuali-
zation, 2005, p. 57-65.

[28] D. E. Perry, H. P. Siy and L. G. Votfarallel Changes in
Large-Scale Software Development: An Observational
Case StudyACM TOSEM, vol. 10 (3), 2001, p. 308-337.

[29] Agile Manifesto principles, http://www.agilemanitesorg/
principles.html.

[30] X. Ren, et al., ChiantiA Tool for Change Impact Analysis
of Java ProgramsConference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications4 200
432-448.

[31] A. Sarma, Z. Noroozi and A. van der HoBlglantir: Rais-
ing Awareness among Configuration Management Work-
spaces Twenty-fifth International Conference on Software
Engineering, 2003, p. 444-454.

[32] T. Schimmer and J. M. Haakeyorting Distributed
Software Development by Modes of Collaborati®aventh
ECSCW, 2001, p. 79-98.

[33] W. F. Tichy,RCS, A System for Version Contr®bftware
- Practice and Experience, vol. 15 (7), 1985, 7-634.

