
Workspace Awareness in Application Development

Roger M. Ripley, Ryan Y. Yasui, Anita Sarma, André van der Hoek

University of California, Irvine
Donald Bren School of Information and Computer Sciences

Department of Informatics
Irvine, CA 92697-3425 USA

{rripley, ryasui, asarma, andre}@ics.uci.edu

Abstract
Coordination of development activities is often the
most crucial success factor in a software devel-
opment team. Typically, teams rely on configura-
tion management (CM) systems for coordination
purposes. CM systems manage concurrent devel-
opment by isolating workspaces. As a result of
this isolation, developers are aware of concurrent
changes only when they interact with the repos-
itory and when changes have already been com-
pleted. Breaking this isolation would enable devel-
opers to detect potential conflicts as they occur in
the workspaces and proactively take steps to avoid
them. Our Eclipse plug-in, Palantı́r, supports such
a workstyle by showing which artifacts have been
changed by which developers and by how much.

1 Introduction
Typical software development is a multi-team ef-
fort with configuration management (CM) systems
being the most commonly used coordination tool.
Almost all modern development environments are
integrated with at least one CM system, thereby
minimizing the learning curve required for users to
take advantage of CM functionality.

CM systems provide coordination support by
isolating developers in their workspaces. By de-
sign, developers are unaware of parallel devel-
opment and only become aware of the existence
of conflicts when they either commit or synchro-
nize with the repository. This pull-based architec-
ture only affords for conflicts to be detected when
changes are already completed—often too late.

Copyright c© 2004 by ACM, Inc. Full copyright notice at
http://www.acm.org/pubs/copyrightpolicy/#Notice

Existing automated merge tools provide limited
merge support, failing when changes overlap, re-
quiring lengthy and tedious manual conflict resolu-
tion. Palantı́r is based on the hypothesis that pro-
viding workspace awareness to users will enable
them to detect potential conflicts earlier, as they oc-
cur. Ideally developers can then proactively coordi-
nate their actions to avoid those conflicts. Palantı́r
specifically shows which developers are changing
which artifacts by how much [4].

In order to be effective, Palantı́r must provide
workspace awareness such that developers can
monitor parallel workspace activity while working
on their current task andwithout having to men-
tally switch contexts. Integrating Palantı́r with an
IDE was the obvious solution. We built a plug-in
for Eclipse as it is a widely-used open-source IDE
with a very high adoption rate. Its elegant plug-
in architecture promotes the creation and deploy-
ment of plug-ins. Creating a plug-in for Eclipse
gives us two benefits: 1) the large community that
uses Eclipse allows us to deploy Palantı́r to selected
groups as a test bed to evaluate its effectiveness;
and 2) the plug-in would be an excellent tool to
teach students collaborative development.

The rest of the paper is organized as follows.
Section 2 gives a brief description of Palantı́r.
In Section 3, we discuss our implementation of
Palantı́r as a plug-in. Next, we discuss our experi-
ence in creating the plug-in in Section 4, conclud-
ing in Section 5 with an outlook at future work.

2 Palant́ır
Palantı́r provides workspace awareness by building
on top of existing CM facilities and concentrates
on the collection, distribution, organization, and

1



presentation of relevant workspace information.
Palantı́r’s architecture gives it independence from
the underlying CM system and presents only rele-
vant information to avoid cognition overload [4].

Workspace Wrappers collect and translate CM-
specific activities to Palantı́r events, since differ-
ent CM systems have different interfaces. We have
identified a set of eleven events that encompass
the set of CM-related activities developers typically
use. Separating the specific CM system commands
from Palantı́r events allows for easily plugging in
different CM systems, since the only requirement
is the creation of a newWorkspace Wrapper.

Informing a developer of all parallel activities in
all workspaces can potentially be overwhelming,
thereby being more detrimental than helpful. It, in
fact, is also unnecessary. We leverage the event fil-
tering mechanism ofSIENA (a generic event noti-
fication service) [1] to inform developers only of
relevant activities in other workspaces, that is, all
activities in other workspaces relating to the arti-
facts in the local workspace.

Developers may wish to further reduce the infor-
mation presented to them. Most of the time, a de-
veloper would be interested in parallel activity on
certain artifacts or by certain developers. Each of
Palantı́r’s visualizations presents different amounts
of information in different formats. Developers can
choose the visualization that best meets their pref-
erences, or choose to use more than one in parallel.
The visualizations can also be configured to extract
and present a subset of desired events from the en-
tire set. The visualizations are discussed in detail in
our previous work [5].

The visualization components also display
the severity (magnitude) of changes in other
workspaces. This allows developers to quickly
gauge the severity of parallel work and decide
whether to take immediate action or to defer. Cur-
rently, the severity of changes is calculated as the
percentage of lines of code that have changed from
the checked out version.

3 Implementation
Although the architectures of Palantı́r and Eclipse
are complex, integration of Palantı́r into Eclipse
was relatively straightforward, but with some
caveats. In this section we talk about how the ex-
isting system was modified to be used as a plug-
in. The Workspace Wrapper was modified to in-
tercept the activities of the Eclipse CVS repository

and local changes in the workspace. A new visual-
ization was created for Eclipse and the existing vi-
sualizations were integrated. Additionally, existing
Eclipse facilities were leveraged to add functional-
ity to Palantı́r.

3.1 Workspace Wrapper Integration
The starting point of our implementation was mod-
ifying the Workspace Wrapper. The modifications
to the Workspace Wrapper required three sub-
steps. The first sub-step was to start Palantı́r from
the Eclipse workbench with the appropriate arti-
facts. In the standalone version of Palantı́r, Palantı́r
was invoked when the developer first checked out
files into their workspace and killed when the CM
client was closed. There was no persistent storage
of the event log and a fresh check out was neces-
sary on restarting the CM client. In most develop-
ment environments however, including Eclipse, de-
velopers do not check out artifacts frequently. In-
stead, once they check out the project into their
workspace they enter into a cycle of local modi-
fications, updates and commits.

In order to address this issue, Palantı́r was mod-
ified to start with the active files in the workbench
that were under version control. If there were no
active files under version control, then a check out
would invoke Palantı́r. An event database persis-
tently stores all the CM-related actions as events.

The second sub-step addressed the issue of
intercepting the activities pertaining to the CM
repository. In the standalone implementation, the
Workspace Wrapper wrapped the command line of
the CM client, reading the input and output to and
from the repository. Thus, to integrate Palantı́r with
a specific CM system all that was needed was a
new Workspace Wrapper. Eclipse, however, does
not use a command line interface to the repository
and all CM-related functionalities are provided by
a Team plug-in. This plug-in provides access to the
repository and all relevant commands through the
Eclipse workbench. Different CM systems extend
this Team plug-in to create their CM clients.

Even though a generic Team API was slated
for Eclipse 3.0, using the Workspace Versioning
and Configuration Management (WVCM) API be-
ing developed in JSR-147, a decision was made to
postpone that as no reference implementation was
yet available [2]. Since Eclipse does not provide a
generic team/repository API, we could not make
an extension to the Team plug-in to emit Palantı́r

2



related events. Modifying the source code of the
specific CM plug-in was clearly not desirable. We
therefore used the set of event listeners provided
by and specific to the particular CM plug-in that
trigger upon activity with the repository. Since the
event listeners are not generic but specific to a par-
ticular CM plug-in, different integrations would re-
quire creating implementations for different sets of
event listeners.

Finally, the last sub-step of theWorkspace Wrap-
per modifications was to include facilities for de-
tecting local edits in the workspace. The previ-
ous version of Palantı́r would generate events only
on CM-related actions. Developers would therefore
remain unaware of changes taking place in remote
workspaces until the artifacts were checked back
into the repository. In the case of lengthy check
out/check in cycles, Palantı́r would fail to provide
an up-to-date picture of the changes taking place in
remote workspaces.

To address this problem, aWorkspace Mon-
itor was created. TheWorkspace Monitor im-
plements the Eclipse workspace resource change
event listener (IResourceChangeListener) and
intercepts the local “edits” and “saves” in the
workspace. The monitor immediately publishes an
event when a resource is first edited (“dirtied”),
but queues and consolidates resource changes, only
publishing events related to those activities every
thirty seconds to prevent storms of events during
heavy artifact editing. TheWorkspace Monitor is
thus responsible for providing notifications when a
developer starts to edit an artifact and calculating
the severity of the changes made during editing.

Figure 1 illustrates the new architecture of the
Palantı́r/Eclipse integration. The arrows represent
the flow of information. All the components of the
Palantı́r architecture and the CM system are intact.
However, the interface between Palantı́r and the
CM system has changed to Eclipse components.
TheWorkspace Wrapper no longer wraps the CM
client as it did in the standalone architecture [4].

3.2 Visualization Integration
The next step in creating the Eclipse plug-in was
to integrate the set of Palantı́r visualizations that
are responsible for displaying information about
parallel activity. Unfortunately, integrating the vi-
sualizations into the Eclipse IDE was not a trivial
effort. The user interface components that Eclipse
and Palantı́r used were mismatched as they use dif-

EVENT SERVICE

EVENT DATABASE

CAPTURE BOOTSTRAP

PALANT ÍR SERVER

THE ECLIPSE PLATFORM

WORKSPACE

EVENT LISTENERS

CM PLUG-IN

WORKSPACE WRAPPER WORKSPACE WRAPPER

VISUALIZATION

EXTRACTOR

INTERNAL STATE

EXTRACTOR

VISUALIZATION

PALANT ÍR CLIENT PALANT ÍR CLIENT

INTERNAL STATE

WORKSPACE

EVENT LISTENERS

CM PLUG-IN

CM SYSTEM

CM SERVER

REPOSITORY

Figure 1. Palantı́r/Eclipse Integration Architecture

ferent toolkits for their widgets: the Eclipse UI is
implemented in SWT, while the Palantı́r visualiza-
tions were implemented in Swing/AWT. Moreover,
at that time, there was no direct translation between
the two toolkits or robust tools that supported mi-
gration between the toolkits. Integrating the visual-
ization components into Eclipse thus needed mod-
ifications to the source code, which was clearly not
a desirable option.

We created a short term solution by creating an
Eclipse view that listed the set of visualizations,
as shown in Figure 2(b). When activated from the
Eclipse view the Palantı́r visualizations open out-
side the Eclipse workbench in a separate window.
The release version of Eclipse 3.0 allows for inte-
gration of Swing/AWT components within SWT;
we intend to leverage this functionality to integrate
the visualizations directly into Eclipse.

To be effective, workspace awareness should be
provided as peripheral information as developers
do not want to be distracted while they work [3]. In
our current integration, there was a definite mental
context switch required to view the Palantı́r visual-
izations. A new Eclipse visualization was therefore
created to complement the existing set such that the
developer could monitor activities in the workspace
within the IDE.

We extended theNavigator and Package Ex-
plorer views in Eclipse by annotating the resources
in the view with decorators. These decorators are in

3



(a) Severity Triangles (b) Views View

Figure 2. Palantı́r Plug-In Screenshots

the form of graphical triangles and numeric text, as
shown in Figure 2(a). When artifacts are changed
in remote workspaces, the severity (magnitude) of
the change is calculated by Palantı́r. The triangles
in the view (red in color, but not seen in the black
and white picture) depict the severity of the change.
As the severity of the changes increases so does the
size and darkness of the triangles; the triangles be-
come redder and bigger as the severity increases.
Because we cannot display multiple (say 10–20)
triangles at once for one artifact, only the average
value across all workspaces in which an artifact
is modified (not including the local workspace) is
shown. Thus by monitoring the size and color of
the triangles, the developer can easily gauge con-
current activities in others’ workspaces at a glance.
The numeric severity is shown textually to the right
of the resource name as well. To investigate a par-
ticular change or activities in a remote workspace,
the developer can refer to the other, more detailed,
Palantı́r visualizations [5].

3.3 Directory Severity
One of the key features of Palantı́r is that it does
not just display which artifacts are being changed
by which developers, but also calculates the sever-
ity of those changes. In order to get an overall
picture of the state of the workspace, the individ-
ual severities of the artifacts have to be commu-
nicated up the directory tree. Directory severity is
thus a compilation of the severities of the child ar-
tifacts contained within a directory. In our previ-
ous version, the directory severity was calculated
as # of artifacts with severity > 0

total # of artifacts
.

Unfortunately this measure does not yield sat-
isfactory results for Java artifacts as Java spec-
ifies that each component of a package name

corresponds to a directory. Thus, for package
edu.uci.isr.palantir, the directory structure
would be/edu/uci/isr/palantir. If this Java
package contained two artifacts, of which one was
modified, the severity of thepalantir directory
would be1/2. This presents an accurate descrip-
tion of the directory state. However, the parent of
palantir,isr, would have a severity of1/1 as its
only child artifact,palantir, has changed and this
pattern will continue up the directory tree. Thus,
once the severity becomes1/1, it degenerates into
a flag indicating that something has changed some-
where down the directory structure. While in and
of itself not necessarily bad, we believe we can do
better: display a flag that indicates the severity of
the changes inside the directory.

We created a new directory severity mea-
sure, such that it will notify the developer of
any significant changes occurring in an artifact
contained within the directory, while simultane-
ously correlating to the severities of those arti-
facts. This new directory severity is calculated as∑

Actual artifact severities∑
Possible artifact severities

. In this measure the

severity of the directory corresponds to the con-
tained artifact severities as every artifact has an
equal weight.

Returning to our Java example, the severity of
thepalantir directory would still be1/2. But the
parent ofpalantir,isr, would now have a sever-
ity of 1/2. This severity propagates up the directory
tree. The directory severity measure now not only
shows that there have been changes, but also gives
a measure of the magnitude of those changes.

4 Reflections
Since most developers depend on a development
environment, we decided to integrate Palantı́r with
an IDE. This integration avoids the mental con-
text switch that the developer would have to make
otherwise. Eclipse was the ideal choice as it pro-
vides advanced features and has a wide user base.
As Eclipse is plug-in based, creating a plug-in
for Palantı́r was relatively straight forward. Eclipse
provides a set of event listeners that can be tapped
into to intercept CM and workspace activities.

By creating our plug-in for Eclipse we were able
to fulfill a number of objectives: 1) Eclipse sup-
ports different types of CM clients as plug-ins so
we can easily create Palantı́r integrations for the
different CM clients; 2) The Eclipse Navigator and

4



Package Explorer are well-understood and widely-
used features. Adding decorators to these views
helped us create the most simple and yet effective
peripheral workspace awareness widget; 3) Since
Eclipse is open source it has a strong community
that is open to trying out new ideas. We thus have a
much higher chance of finding teams willing to try
Palantı́r; 4) Further enhancements are planned for
Palantı́r, such as change impact and additional vi-
sualizations. Since Eclipse allows for incremental
development of features that can be easily deployed
via an Eclipse update site, it will be easy to de-
ploy those new features as they become available;
and finally 5) Eclipse is now being widely used by
the student community as the IDE of choice. The
Palantı́r plug-in can be used teach students about
collaborative development.

While creating a plug-in for Eclipse has been,
for the most part, straightforward and successful,
we would also like to bring to attention some of
the problems that we faced while creating the plug-
in. We were surprised to find that there was no
generic repository API and that each CM plug-in
(e.g., CVS and Subversion) had a different API. In
order to integrate with a different CM client we will
have to create an entirely new wrapper for it.

The decorator facility for Eclipse has certain re-
strictions: only unformatted text can be added to
the label (we would have liked to add a graphi-
cal bar that would grow and shrink, or been able
to change the color). This severely constrained the
amount and types of information we could provide.

Finally, before Eclipse 3.0 there was no reliable
way to integrate Swing/AWT code within SWT, so
in order to integrate the Palantı́r visualizations they
would have to be rewritten using the SWT toolkit.

5 Conclusion and Future Work
Palantı́r is based on the hypothesis that enhanc-
ing CM systems with awareness allows develop-
ers to have an improved insight into potentially
conflicting parallel activities. The hope is that de-
velopers will use this insight to self-coordinate, in
effect detecting conflicts earlier, thereby reducing
the amount of effort involved in addressing them.
We have created an Eclipse plug-in for Palantı́r so
that developers do not have to switch contexts from
their IDE and Palantı́r.

There are several avenues we are pursuing with
future Palantı́r development to take advantage of
Eclipse. Even though Palantı́r informs developers

which artifacts are being changed by which devel-
oper and the severity (magnitude) of the changes,
the severity of a set of changes is inherently of lim-
ited utility; we need to calculate what the actual
impact of those changes will be on a developer’s
current work. We plan to use Eclipse’s APIs for
parsing and analyzing Java source code to add a
change impact metric to Palantı́r. A possible im-
pact metric could be the percentage of method sig-
natures that have changed in a file, even tempering
that with how often that method is referred to in
the workspace. We also intend to integrate Palantı́r
with the Eclipse Subversion client, Subclipse.

Acknowledgments
Effort partially funded by the National Science
Foundation under grant numbers CCR-0093489
and IIS-0205724, and an Eclipse Innovation Grant,
2004.

About the Authors
André van der Hoek is an assistant professor at UC
Irvine, Anita Sarma is a Ph.D. student under his su-
pervision, and Ryan Yasui and Roger Ripley were
Masters students at UC Irvine who were the pri-
mary authors of the work presented here.

References
[1] Antonio Carzaniga, David S. Rosenblum, and

Alexander L. Wolf. Design and evaluation of a
wide-area event notification service.ACM Transac-
tions on Computer Systems, 19(3):332–383, August
2001.

[2] Eclipse Foundation. Eclipse 3.0—Team API
Plan Item. http://dev.eclipse.org/viewcvs/index.
cgi/∼checkout∼/platform-vcm-home/docs/online/
team3.0/teamapi.html, 2003.

[3] Christian Heath and Paul Luff. Collaborative activ-
ity and technological design: Task coordination in
London underground control rooms. InProceedings
of the Second European Conference on Computer-
Supported Cooperative Work, September 1991.

[4] Anita Sarma, Zahra Noroozi, and André van der
Hoek. Palantı́r: Raising awareness among config-
uration management workspaces. InProceedings of
the Twenty-Fifth International Conference on Soft-
ware Engineering, pages 444–454, May 2003.

[5] Anita Sarma and André van der Hoek. Visualiz-
ing parallel workspace activities. InProceedings of
IASTED International Conference on Software En-
gineering and Applications (SEA 2003), pages 435–
440, November 2003.

5


