A Comprehensive Evaluation of Workspace Awar eness
in Softwar e Configuration Management Systems

Anita Sarma, André van der Hoek, and David F. Rézbni
University of California, Irvine
Irvine, CA 92697-3440
{asarma, andre, redmiles}@ics.uci.edu

Abstract detected by CM systemsndirect Conflicts— which
arise because of changes in one artifact affectorg

Workspace awareness has emerged as a new coorcurrent changes in another artifact — remain urdete
dination paradigm in software configuration manage- until build testing or the deployment phase. Cahfli
ment systems, enabling the early detection of piaten resolution at such late stages is expensive and tim
conflicts by providing developers with informatioh ~ consuming [2, 3].
relevant, parallel activities. The focus of our Wdras One way to overcome this problem is to inform de-
been on detecting and mitigating both direct andi-in ~ Velopers of ongoing activities that are relevanttte
rect conflicts by unobtrusively sharing information developer's current tasks and the effects of thetigi-
about ongoing code changes. In this paper, we discu ties on the local workspace. Developers can tierep
the results of user experiments designed as a broadtheir work in the context of others’ changes anif se
and formative evaluation of workspace awareness, coordinate their actions. A number of CM based work
specifically focusing on whether users detect guisfl ~ Space awareness tools (e.g., JAZZ [4], Night Watch
as they arise and act to mitigate potential protdem [5], BSCW [6]) implement this concept.

Our results confirm that workspace awareness pro- However, thus far, there exist no empirical evi-
motes active self-coordination among users anddead dences of such tools being effective in promotielf s
to an improved end-product in terms of the number o coordination among developers to help reduce ttie in

unresolved conflicts remaining in the code. dence of conflicts in the project. In this papee, ais-
cuss the results of formative evaluations of ourkwo
1. Introduction space awareness tool, Palantir, in aiding the afly

tection and resolution of conflicts.

We evaluated Palantir by conducting two sets of pi-
lot user experiments where subjects collaboratively
solved a given set of programming tasks (some of
which conflicted with each other) in three-person
teams. In both experiments we observed that the ex-
perimental group, which used the full functionald
Palantir, was better in detecting conflicts earbed
produced a final product with fewer unresolved iadi
conflicts (all direct conflicts had to be resolvedring
the check-in). This validates our hypothesis thatka
|. SPace awareness promotes self-coordination and lead
to the production of a higher quality end product i
terms of the number of unresolved conflicts.

The remainder of the paper is organized as follows.
In Section 2, we discuss background information on
workspace awareness and our tool, Palantir. Se8tion
discusses our user experiments and their resudts. S
tion 4 presents our conclusions.

Configuration Management (CM) systems have be-
come one of the most popular and widely adopted co-
ordination tools in the software industry [1]. CMss
tems depend on repositories with well-defined agces
and synchronization protocols to facilitate mukipl
developers working on a common set of artifactsa In
typical scenario, developers check-out the required
artifacts from the repository into private worksesc
and, once their changes are complete, they synizigron
their changes with the repository.

Private workspaces are essential in allowing deve
opers to work without interference from others’
changes, but have the negative effect of hidingMno
edge of fellow team members’ activities. As a resul
developers lose the context their work with respect
others’ changes. Conflicts are thus detected latdy;
after developers have finished their changes aed ar
ready to check-in. Furthermore, oryrect Conflicts—
which arise due to changes to the same artifage— a

2. Background (Java) tasks in a three-person team, where the ttbe
team members were confederates — virtual entibaes c

Awareness is characterized as “an understanding oftolled by the research personnel and responsibie f

the activities of others, which provides a contttt ~ introducing a given number of conflicts with thebsu
your own activity” [7]. Awareness as a concept ban ject’s tasks. Sub_jects could reach_thelr team mesnbe
applied to many different activities, but withiretdis- (confederates) via Instant Messaging. The use of co

cipline of computer science it has been generalfpa federates ensured consistency in the type, nuraber,
ciated with the field of computer-supported coofieea timing of conflicts across experiments.
work (CSCW). There, efforts have largely focused on ~ Subjects were undergraduate or graduate students
the use of awareness in coordination in group iiev ~ from the Computer Science department at UCI and
(e.g., shared text editing, group decision making). — were familiar with the development environment
the recent past, researchers have started inviistiga (Eclipse + CVS), but not with Palantir. Subjectsrave
the concept of awareness in facilitating coordirain given a brief tutorial of functionalities of bothese
software development. tools. The tutorials were designed to ensure thht s
One of the primary problems involving coordination Jects in the experimental group were not biasedxo
in software development is the lack of understagain pect conflicts in the experiment. Subjects wereeddk
fellow team members’ activities and how these ceang “think aloud” and their progress was observed by re
affect the local workspace. Workspace awareness aim Search personnel and recorded through screen eaptur
to overcome this problem by informing developers of software. Subjects were randomly assigned to tine co
which artifacts are concurrently being changed,civhi trol or the experimental group. In both experimetite
developers are making those changes, and thesfiect €Xxperimental group used Palantir, while the coonli
those changes on the local workspace [8]. for the control group differed and are discussqubse
Palantir is a workspace awareness tool that com-rately for each experiment.
plements CM workspaces by collecting, distributing, =~ Experiment tasks. The software project contained
organizing, and presenting information of workspace Nineteen Java classes and approximately 500 lifies o
operations (both CM as well as editing operations i code. As part of the experiment, subjects had to im
side the development environment). Specifically, Plement a set of twelve tasks, which were so design
Palantir informs developers of which artifactslaeéng ~ that a subset of them conflicted with changes niade
concurrently changed by which other developers, theconfederates. Of the twelve tasks assigned toube s
size of the changes, and the impact of those clsamge ject, eight conflicted, namely foulirect conflicts(e.qg.,
the local workspace through subtle cues peripherall @ confederate editing the same file as the subgew)
embedded in the development environment. The pri-four indirect conflicts(e.g., a confederate deleting a
mary goal is to warn developers of emerging cotsflic Method callthat the subject is currently using). These
(both direct and indirect) through awareness idbas conflicts were further divided into three categeri€l)
draw the attention of the user, but not distraemth conflicts introducedeforethe subject entered the task,

from their primary task. Other complementary compre (2) conflicts introducediuring the task (while the sub-

hensive visualizations aid an in-depth investigawd ~ ject was performing the task), and (3) conflictsan

conflicts. Detailed discussion of Palantir can benti ~ ducedafter the subject had already completed the task.

in our previous work [9]. These conflicts were randomly seeded throughout the
tasks.

3. User Experiments _ o
3.1. Experimental Findings

We designed a set of formative evaluations to test] _]
whether workspace awareness promotes users to self- FOr €ach experiment, we analyzed: 1) detection and
coordinate in order to avoid conflicts. The objeetof ~ resolution rates of conflicts, 2) actions taken sup-
our experiments was to mimic team software develop-1€cts to self-coordinate, and 3) time-to-completer
ment where conflicts (both direct and indirect) ou @Sk (including conflict resolution where appliogpto
arise and observe individuals take action to resghe ~ €Stimate the benefits of workspace awareness. A de-
conflicts with(out) the aid of workspace awareness. ~ tailed discussion of our experiment questions, utisc

The distributed nature of the activity allowed the Sion of findings for each question, and threatsatid-
experiments to be designed to test one subjectimea 'Y of our experiment are discussed elsewhere (see
Specifically, the experimental setup consisted sfila- [10]). In this paper, we share our experiment tssul

ject collaboratively solving a given set of prograing that distinctly show a trend where users activeilj_/ze
workspace awareness to keep track of emerging con-

12
£ < Direct Indirect
= =
c D []
3 s - []
= E
= 8 4
8 2
E 44 i} (] #
S £ - ﬁ
= (= % -E
0
DC:C DC:E IC:C ICE 1 2 3 5 6 7 8
Experiment Conflicts
I Resolved conflicts [Unresolved conflicts m Control m Experimental @ Communication time

(a) (b)su btracted

Figure 1. Experimental Results: (a) Conflict Detection and Resolution for Direct and Indirect Conflicts for Control and
Experimental Groups; (b) Time-to-Completion.
flicts and employ various proactive measures toicavo subjects spent time communicating with the confeder
conflicts or resolve conflicts as soon as they dee ate. The point to note is that, although the expenial
tected. group took longer to complete the task they proabti
resolved the indirect conflict. The control groug dot

3.11. Experiment |. We performed six experiments detect the problem in the code and never resotved i

(threeeach for the control and the experimental group).
The experimental group used Palantir, which pravide
them with warnings of potential direct and indireon-
flicts, while the control group used only Eclipseda
CVS with no awareness information. There were eight
conflicts (four direct and four indirect) introdut@er
subject. Figure 1(a) shows the results of our aimslas
divided into four cases: direct and indirect canfli
(DC versusIC) for each condition groupCéntrol ver-
sus Experimental). For each case, then, there were 12
seeded conflicts (4 conflicts and 3 subjects). \W(endl
no distinction between detection and resolutioegat
subjects resolved all the conflicts that they deigic

In the case of direct conflicts, the total numbefrs
conflicts resolved were similar across both groups.
However, the control group discovered conflictedat
once they had completed their task and were trjong
check-in; whereas the experimental group detected
conflicts earlier, while subjects were still edgitheir
tasks. An interesting point to note is that sulsjeately
bothered to resolve conflicts in tasks once theyewe
completed and checked-in. In the case of indireat ¢
flicts, the experimental group discovered and ne=abl
a larger number of conflicts than the control group
Only one out of three conflicts was detected by the
control group, which was accidentally discovered be
cause the file that caused an indirect conflico als
caused a direct conflict later in the experiment.

Time-to-completion. Figure 1(b) shows time-to-
completion for the conflicting tasks. Times shoviuaa
ral fluctuations caused by variations in the techhi
aptitude of subjects. However, conflict 5 (IC) sisoav
marked difference, with the experimental group nigki
longer (three minute difference in the mean) thaa t
control group. This anomaly was because the change
causing this conflict were still work-in-progressdathe

3.1.2. Experiment I1. In this experiment our goal was
to determine the effectiveness of impact analysis i
aiding detection of indirect conflicts. Both coridits
used Palantir. We provided the control group witlyo
notifications of direct conflicts. Subjects had use
their understanding of the software structure (theye
provided UML design diagrams) to manually identify
indirect conflicts. The experimental group had eipl
notifications of both direct and indirect conflicts

In total, we performed eight experiments (four each
for the control and experimental group).The toitalet
to completion of the assignment was restrictedrte o
hour. The average number of tasks that subjects com
pleted within the time limit was eight. Our anatysi
therefore, considers these first eight tasks, wiich
cluded four conflicts (two direct and two indiredgig-
ure 2(a) presents our analysis, as split into frages
representing each kind of conflict for every coiuatit
Each case therefore had a total of 8 conflictsd@- ¢
flicts and 4 subjects).

For direct conflicts, all of the measured perform-
ance indicators for both the groups were the sanee s
they used the same tool functionality. Similar ésults
form our previous experiments, subjects were net in
clined to resolve conflicts once they had completed
their task. For indirect conflicts, subjects hadedted
fewer indirect conflicts (only three out of eighere
detected), despite being provided with informatadn
the changes that caused the conflict and UML dragra
detailing dependency relations among artifacts.

Subjects in the experimental group identified and
resolvedall the indirect conflicts. They used different
strategies to avoid or resolve conflicts: they pkih the
Yask and came back to it, updated their workspace,

L8 = . T .
B o Direct Indirect
= o]
5 ° 2
o . £ +
5 8| 1
—
o 2 = » { }
= @
E E <
S0 [
=z DC:iC Ic:C ICE
Experiment 1 2 b 4
Conflicts
I Subject noticed conflict and addressed it immediately
771 Subject noticed conflict, ignored it, resolved eventual merge conflict = Control
[#5 Subject noticed conflict, ignored it, problem remains in code ® Experimental
| Subject did not notice conflict, ignored it, problem remains in code @ Communication time subtracted

(@) (b)

asked their team member to implement their tasks, o 5, Acknowledgments
coded the task with a place holder

Time-to-completion: Figure 2(b) shows time-to- We thank Suzanne Schaefer and Gerald Bortis for
completion for conflicting tasks. The times shownani their help in designing the experiments. Efforttiadly
variations caused by differences in the technigdi-a funded by NSF grants: CCR-0093489, 11S-0205724,
tude of subjects. Similar to our previous experimen and 11S-0534775, as well as an IBM Eclipse Innaati
set, the experimental group took longer to complete grant and an IBM Technology Fellowship.
one task with an indirect conflict (conflict 4), ish
involved a work-in-progress task of the confederate g References
But the experimental group resolved the conflidtjlev

the control group did not. [1] J. Estublier, et allmpact of Software Engineering Re-
search on the Practice of Software ConfiguratiornMa
4. Conclusions agementTOSEM, 2005. 14(4): p. 1-48.

[2] C.R.B. de Souza, et @ometimes You Need to See

Our formative user experiments clearly show that Throulgiti V;/a”S CAS‘ g/e\/ldzit(;]fy of6gp7plication Progra

: : f . ming Interfaces . . p- 63-71.
SubjeCtS_monltor awaienes_s cues, especially for z?\rt [3] A. Sarma and A. van der Hoek.Conflict Detected Ear-
facts which they consider important and on detgctin

. . . lier is a Conflict Resolved EasieWorkshop on Open
conflicts take actions to self-coordinate. Further Source Software Engineering. 2004. p. 82-86.

found that subjects were quite comfortable in fifttg [4] L.-T. Cheng, et aldazzing up Eclipse with Collaborative
out information (icons) that they felt were not ionp Tools Eclipse Technology Exchange Workshop. 2003. p.
tant for their tasks. In our study, the experimegtaup 102-103.

was much more successful in discerning conflictiyea [5] C. O'Reilly, P. Morrow, and D. Bustartiproving Con-
and resolving them leading to an end product offiduig flict Detection in Optimistic Concurrency Controlod-
quality (in terms of the number of indirect conitideft els Eleventh International Workshop on Software Con-

figuration Management. 2003. p. 191-205.

unr;lstﬁlvedhln trI]et p.I’OjeCJ;[). . ts clearl [6] W. Appelt. WWW Based Collaboration with the BSCW
ough piiot in nature, our experiments clearly == gystemconference on Current Trends in Theory and In-

provide positive results and the impetus to conduct 5 matics. 1999. p. 66-78.
further studies that investigate the role of awassnn (7] p. Dourish and V. Bellottiwareness and Coordination

promoting self-coordination. Towards this goal, ave in Shared Workspace€SCW. 1992. p. 107-114.
conducting a next set of experiments, which measure [8] M.-A. Storey, D. Cubranic, and D.M. German the
guantitative benefits and statistical proofs of kepace Use of Visualization to Support Awareness of Huen

awareness promoting self-coordination and a better tivities in Software Development: A Survey and a
quality software (in terms of fewer conflicts léft the 9 Krasmeworlésl\? FTViz. 203?6; P 193'2?_'2' Slelanti:
code) through. To overcome the problem of variances[] A. Sarma, Z. Noroozi, and A. van der HoBlalantir:

. Raising Awareness among Configuration Management
in the time-to-completion of tasks we will desidgret

] : WorkspacesTwenty-fifth International Conference on
experiment to be text-based and not use the thoda Software Engineering. 2003. p. 444-454.

methodology. [10] A. Sarma, A. Van der Hoek, and D. RedmilasCom-
prehensive Evaluation of Workspace Awareness i Sof
ware Configuration Management Syste2@07, Univer-
sity of California, TR: UCI-ISR-07-2.

