
A Comprehensive Evaluation of Workspace Awareness
in Software Configuration Management Systems

Anita Sarma, André van der Hoek, and David F. Redmiles
University of California, Irvine

Irvine, CA 92697-3440
{asarma, andre, redmiles}@ics.uci.edu

Abstract

Workspace awareness has emerged as a new coor-
dination paradigm in software configuration manage-
ment systems, enabling the early detection of potential
conflicts by providing developers with information of
relevant, parallel activities. The focus of our work has
been on detecting and mitigating both direct and indi-
rect conflicts by unobtrusively sharing information
about ongoing code changes. In this paper, we discuss
the results of user experiments designed as a broad
and formative evaluation of workspace awareness,
specifically focusing on whether users detect conflicts
as they arise and act to mitigate potential problems.
Our results confirm that workspace awareness pro-
motes active self-coordination among users and leads
to an improved end-product in terms of the number of
unresolved conflicts remaining in the code.

1. Introduction

Configuration Management (CM) systems have be-

come one of the most popular and widely adopted co-
ordination tools in the software industry [1]. CM sys-
tems depend on repositories with well-defined access
and synchronization protocols to facilitate multiple
developers working on a common set of artifacts. In a
typical scenario, developers check-out the required
artifacts from the repository into private workspaces
and, once their changes are complete, they synchronize
their changes with the repository.

Private workspaces are essential in allowing devel-
opers to work without interference from others’
changes, but have the negative effect of hiding knowl-
edge of fellow team members’ activities. As a result
developers lose the context their work with respect to
others’ changes. Conflicts are thus detected later, only
after developers have finished their changes and are
ready to check-in. Furthermore, only Direct Conflicts –
which arise due to changes to the same artifact – are

detected by CM systems. Indirect Conflicts – which
arise because of changes in one artifact affecting con-
current changes in another artifact – remain undetected
until build testing or the deployment phase. Conflict
resolution at such late stages is expensive and time
consuming [2, 3].

One way to overcome this problem is to inform de-
velopers of ongoing activities that are relevant to the
developer’s current tasks and the effects of these activi-
ties on the local workspace. Developers can then place
their work in the context of others’ changes and self-
coordinate their actions. A number of CM based work-
space awareness tools (e.g., JAZZ [4], Night Watch
[5], BSCW [6]) implement this concept.

However, thus far, there exist no empirical evi-
dences of such tools being effective in promoting self-
coordination among developers to help reduce the inci-
dence of conflicts in the project. In this paper, we dis-
cuss the results of formative evaluations of our work-
space awareness tool, Palantír, in aiding the early de-
tection and resolution of conflicts.

We evaluated Palantír by conducting two sets of pi-
lot user experiments where subjects collaboratively
solved a given set of programming tasks (some of
which conflicted with each other) in three-person
teams. In both experiments we observed that the ex-
perimental group, which used the full functionality of
Palantír, was better in detecting conflicts earlier and
produced a final product with fewer unresolved indirect
conflicts (all direct conflicts had to be resolved during
the check-in). This validates our hypothesis that work-
space awareness promotes self-coordination and leads
to the production of a higher quality end product in
terms of the number of unresolved conflicts.

The remainder of the paper is organized as follows.
In Section 2, we discuss background information on
workspace awareness and our tool, Palantír. Section 3
discusses our user experiments and their results. Sec-
tion 4 presents our conclusions.

2. Background

Awareness is characterized as “an understanding of
the activities of others, which provides a context for
your own activity” [7]. Awareness as a concept can be
applied to many different activities, but within the dis-
cipline of computer science it has been generally asso-
ciated with the field of computer-supported cooperative
work (CSCW). There, efforts have largely focused on
the use of awareness in coordination in group activities
(e.g., shared text editing, group decision making). In
the recent past, researchers have started investigating
the concept of awareness in facilitating coordination in
software development.

One of the primary problems involving coordination
in software development is the lack of understanding of
fellow team members’ activities and how these changes
affect the local workspace. Workspace awareness aims
to overcome this problem by informing developers of
which artifacts are concurrently being changed, which
developers are making those changes, and the effects of
those changes on the local workspace [8].

Palantír is a workspace awareness tool that com-
plements CM workspaces by collecting, distributing,
organizing, and presenting information of workspace
operations (both CM as well as editing operations in-
side the development environment). Specifically,
Palantír informs developers of which artifacts are being
concurrently changed by which other developers, the
size of the changes, and the impact of those changes on
the local workspace through subtle cues peripherally
embedded in the development environment. The pri-
mary goal is to warn developers of emerging conflicts
(both direct and indirect) through awareness icons that
draw the attention of the user, but not distract them
from their primary task. Other complementary compre-
hensive visualizations aid an in-depth investigation of
conflicts. Detailed discussion of Palantír can be found
in our previous work [9].

3. User Experiments

We designed a set of formative evaluations to test

whether workspace awareness promotes users to self-
coordinate in order to avoid conflicts. The objective of
our experiments was to mimic team software develop-
ment where conflicts (both direct and indirect) would
arise and observe individuals take action to resolve the
conflicts with(out) the aid of workspace awareness.

The distributed nature of the activity allowed the
experiments to be designed to test one subject at a time.
Specifically, the experimental setup consisted of a sub-
ject collaboratively solving a given set of programming

(Java) tasks in a three-person team, where the other two
team members were confederates – virtual entities con-
trolled by the research personnel and responsible for
introducing a given number of conflicts with the sub-
ject’s tasks. Subjects could reach their team members
(confederates) via Instant Messaging. The use of con-
federates ensured consistency in the type, number, and
timing of conflicts across experiments.

Subjects were undergraduate or graduate students
from the Computer Science department at UCI and
were familiar with the development environment
(Eclipse + CVS), but not with Palantír. Subjects were
given a brief tutorial of functionalities of both these
tools. The tutorials were designed to ensure that sub-
jects in the experimental group were not biased to ex-
pect conflicts in the experiment. Subjects were asked to
“think aloud” and their progress was observed by re-
search personnel and recorded through screen capture
software. Subjects were randomly assigned to the con-
trol or the experimental group. In both experiments, the
experimental group used Palantír, while the conditions
for the control group differed and are discussed sepa-
rately for each experiment.

Experiment tasks. The software project contained
nineteen Java classes and approximately 500 lines of
code. As part of the experiment, subjects had to im-
plement a set of twelve tasks, which were so designed
that a subset of them conflicted with changes made by
confederates. Of the twelve tasks assigned to the sub-
ject, eight conflicted, namely four direct conflicts (e.g.,
a confederate editing the same file as the subject) and
four indirect conflicts (e.g., a confederate deleting a
method call that the subject is currently using). These
conflicts were further divided into three categories: (1)
conflicts introduced before the subject entered the task,
(2) conflicts introduced during the task (while the sub-
ject was performing the task), and (3) conflicts intro-
duced after the subject had already completed the task.
These conflicts were randomly seeded throughout the
tasks.

3.1. Experimental Findings

For each experiment, we analyzed: 1) detection and

resolution rates of conflicts, 2) actions taken by sub-
jects to self-coordinate, and 3) time-to-completion per
task (including conflict resolution where applicable) to
estimate the benefits of workspace awareness. A de-
tailed discussion of our experiment questions, discus-
sion of findings for each question, and threats to valid-
ity of our experiment are discussed elsewhere (see
[10]). In this paper, we share our experiment results
that distinctly show a trend where users actively utilize
workspace awareness to keep track of emerging con-

flicts and employ various proactive measures to avoid
conflicts or resolve conflicts as soon as they are de-
tected.

3.1.1. Experiment I. We performed six experiments
(three each for the control and the experimental group).
The experimental group used Palantír, which provided
them with warnings of potential direct and indirect con-
flicts, while the control group used only Eclipse and
CVS with no awareness information. There were eight
conflicts (four direct and four indirect) introduced per
subject. Figure 1(a) shows the results of our analysis, as
divided into four cases: direct and indirect conflicts
(DC versus IC) for each condition group (Control ver-
sus Experimental). For each case, then, there were 12
seeded conflicts (4 conflicts and 3 subjects). We found
no distinction between detection and resolution rates;
subjects resolved all the conflicts that they detected.

 In the case of direct conflicts, the total numbers of
conflicts resolved were similar across both groups.
However, the control group discovered conflicts later,
once they had completed their task and were trying to
check-in; whereas the experimental group detected
conflicts earlier, while subjects were still editing their
tasks. An interesting point to note is that subjects rarely
bothered to resolve conflicts in tasks once they were
completed and checked-in. In the case of indirect con-
flicts, the experimental group discovered and resolved
a larger number of conflicts than the control group.
Only one out of three conflicts was detected by the
control group, which was accidentally discovered be-
cause the file that caused an indirect conflict also
caused a direct conflict later in the experiment.

Time-to-completion. Figure 1(b) shows time-to-
completion for the conflicting tasks. Times show natu-
ral fluctuations caused by variations in the technical
aptitude of subjects. However, conflict 5 (IC) shows a
marked difference, with the experimental group taking
longer (three minute difference in the mean) than the
control group. This anomaly was because the changes
causing this conflict were still work-in-progress and the

subjects spent time communicating with the confeder-
ate. The point to note is that, although the experimental
group took longer to complete the task they proactively
resolved the indirect conflict. The control group did not
detect the problem in the code and never resolved it.

3.1.2. Experiment II. In this experiment our goal was
to determine the effectiveness of impact analysis in
aiding detection of indirect conflicts. Both conditions
used Palantír. We provided the control group with only
notifications of direct conflicts. Subjects had to use
their understanding of the software structure (they were
provided UML design diagrams) to manually identify
indirect conflicts. The experimental group had explicit
notifications of both direct and indirect conflicts.

In total, we performed eight experiments (four each
for the control and experimental group).The total time
to completion of the assignment was restricted to one
hour. The average number of tasks that subjects com-
pleted within the time limit was eight. Our analysis,
therefore, considers these first eight tasks, which in-
cluded four conflicts (two direct and two indirect). Fig-
ure 2(a) presents our analysis, as split into four cases
representing each kind of conflict for every condition.
Each case therefore had a total of 8 conflicts (2 con-
flicts and 4 subjects).

For direct conflicts, all of the measured perform-
ance indicators for both the groups were the same since
they used the same tool functionality. Similar to results
form our previous experiments, subjects were not in-
clined to resolve conflicts once they had completed
their task. For indirect conflicts, subjects had detected
fewer indirect conflicts (only three out of eight were
detected), despite being provided with information of
the changes that caused the conflict and UML diagrams
detailing dependency relations among artifacts.

Subjects in the experimental group identified and
resolved all the indirect conflicts. They used different
strategies to avoid or resolve conflicts: they skipped the
task and came back to it, updated their workspace,

Figure 1. Experimental Results: (a) Conflict Detection and Resolution for Direct and Indirect Conflicts for Control and
Experimental Groups; (b) Time-to-Completion.

asked their team member to implement their tasks, or
coded the task with a place holder

Time-to-completion: Figure 2(b) shows time-to-
completion for conflicting tasks. The times show minor
variations caused by differences in the technical apti-
tude of subjects. Similar to our previous experiment
set, the experimental group took longer to complete
one task with an indirect conflict (conflict 4), which
involved a work-in-progress task of the confederate.
But the experimental group resolved the conflict, while
the control group did not.

4. Conclusions

Our formative user experiments clearly show that

subjects monitor awareness cues, especially for arti-
facts which they consider important and on detecting
conflicts take actions to self-coordinate. Further, we
found that subjects were quite comfortable in filtering
out information (icons) that they felt were not impor-
tant for their tasks. In our study, the experimental group
was much more successful in discerning conflicts early
and resolving them leading to an end product of higher
quality (in terms of the number of indirect conflicts left
unresolved in the project).

Although pilot in nature, our experiments clearly
provide positive results and the impetus to conduct
further studies that investigate the role of awareness in
promoting self-coordination. Towards this goal, we are
conducting a next set of experiments, which measures
quantitative benefits and statistical proofs of workspace
awareness promoting self-coordination and a better
quality software (in terms of fewer conflicts left in the
code) through. To overcome the problem of variances
in the time-to-completion of tasks we will design the
experiment to be text-based and not use the think aloud
methodology.

5. Acknowledgments

We thank Suzanne Schaefer and Gerald Bortis for

their help in designing the experiments. Effort partially
funded by NSF grants: CCR-0093489, IIS-0205724,
and IIS-0534775, as well as an IBM Eclipse Innovation
grant and an IBM Technology Fellowship.

6. References

[1] J. Estublier, et al., Impact of Software Engineering Re-

search on the Practice of Software Configuration Man-
agement. TOSEM, 2005. 14(4): p. 1-48.

[2] C.R.B. de Souza, et al. Sometimes You Need to See
Through Walls - A Field Study of Application Program-
ming Interfaces. CSCW. 2004. p. 63-71.

[3] A. Sarma and A. van der Hoek. A Conflict Detected Ear-
lier is a Conflict Resolved Easier. Workshop on Open
Source Software Engineering. 2004. p. 82-86.

[4] L.-T. Cheng, et al. Jazzing up Eclipse with Collaborative
Tools. Eclipse Technology Exchange Workshop. 2003. p.
102-103.

[5] C. O'Reilly, P. Morrow, and D. Bustard. Improving Con-
flict Detection in Optimistic Concurrency Control Mod-
els. Eleventh International Workshop on Software Con-
figuration Management. 2003. p. 191-205.

[6] W. Appelt. WWW Based Collaboration with the BSCW
System. Conference on Current Trends in Theory and In-
formatics. 1999. p. 66-78.

[7] P. Dourish and V. Bellotti. Awareness and Coordination
in Shared Workspaces. CSCW. 1992. p. 107-114.

[8] M.-A. Storey, D. Cubranic, and D.M. German. On the
Use of Visualization to Support Awareness of Human Ac-
tivities in Software Development: A Survey and a
Framework. SOFTViz. 2005. p. 193-202.

[9] A. Sarma, Z. Noroozi, and A. van der Hoek. Palantír:
Raising Awareness among Configuration Management
Workspaces. Twenty-fifth International Conference on
Software Engineering. 2003. p. 444-454.

[10] A. Sarma, A. Van der Hoek, and D. Redmiles, A Com-
prehensive Evaluation of Workspace Awareness in Soft-
ware Configuration Management Systems. 2007, Univer-
sity of California, TR: UCI-ISR-07-2.

