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Abstract. It is an open problem in static resource bound analysis to
connect high-level resource bounds with the actual execution time and
memory usage of compiled machine code. This paper proposes to use
machine learning to derive a cost model for a high-level source language
that approximates the execution cost of compiled programs on a specific
hardware platform. The proposed technique starts by fixing a cost se-
mantics for the source language in which certain constants are unknown.
To learn the constants for a specific hardware, a machine learning al-
gorithm measures the resource cost of a set of training programs and
compares the cost with the prediction of the cost semantics. The quality
of the learned cost model is evaluated by comparing the model with the
measured cost on a set of independent control programs. The technique
has been implemented for a subset of OCaml using Inria’s OCaml com-
piler on an Intel x86-64 and ARM 64-bit v8-A platform. The considered
resources in the implementation are heap allocations and execution time.
The training programs are deliberately simple, handwritten micro bench-
marks and the control programs are retrieved from the standard library,
an OCaml online tutorial, and local OCaml projects. Different machine
learning techniques are applied, including (weighted) linear regression
and (weighted) robust regression. To model the execution time of pro-
grams with garbage collection (GC), the system combines models for
memory allocations and executions without GC, which are derived first.
Experiments indicate that the derived cost semantics for the number of
heap allocations on both hardware platforms is accurate. The accuracy
of the cost semantics on the control programs for the x86-64 architecture
for execution time with and without GC is about 19.80% and 13.04%,
respectively. The derived cost semantics are combined with RAML, a
state-of-the-art system for automatically deriving resource bounds for
OCaml programs. Using these semantics, RAML is for the first time
able to make predictions about the actual worst-case execution time.

1 Introduction

Motivated by longstanding problems such as performance bugs [32], side-channel
attacks [31, 10], and to provide development-time feedback to programmers, the
programming language community is developing tools that help programmers
understand the resource usage of code at compile time. There has been great
progress on automatically determining loop bounds in sequential C-like pro-
grams [22, 13, 35, 15], deriving, solving recurrence relations [4, 6, 19, 9], and au-



tomating amortized analysis [25, 23, 24]. There exist several tools that can auto-
matically derive loop and recursion bounds, including SPEED [21, 22], KoAT [13],
PUBS [5], Rank [7], ABC [11], LOOPUS [38, 35], C4B [14], and RAML [23, 24].

Most of these resource analysis tools use high-level cost models, like number
of loop iterations and function calls, and it is often unclear how the derived
bounds relate to the machine code executing on a specific hardware. To make
the connection, one has to take into account compilation, hardware specific cache
and memory effects, instruction pipelines, and garbage collection cycles. While
there exist tools and techniques for analyzing low-level assembly code to produce
worst-case execution time bounds for concrete hardware [37], they are limited in
their expressive power, as analyzing assembly code is a complicated problem.

In this article, we propose a novel technique to derive cost models that can
link high-level resource bounds to the execution of low-level code. We present
a simple operational cost semantics for a subset of OCaml [20] that have been
learned using standard machine learning techniques like linear regression. The re-
sources we are considering are heap allocations, execution time without garbage
collection (GC), and execution time with GC. The subset of OCaml we are con-
sidering is purely functional and includes lists, tuples and pattern matching.
However, the technique is also applicable to programs with side effects.

To learn a cost semantics, we first define an operational big-step semantics
that assign a parametric cost expression to a well-formed expression. This cost
expression is parametric in (yet unknown) constants that correspond to high-
level constructs in OCaml. The assumption is that the number of executions of
each of these constructs constitutes the majority of the execution time of the
expression. We keep track of the number of executions of each of these constructs
in the cost semantics, which has been implemented in an OCaml interpreter. Our
semantics then models the execution time of the program as a linear sum of the
number of executions of each construct. The (unknown) coefficients of this linear
function intuitively represent the execution time of each construct.

We then determine the average values of the coefficients on a specific hard-
ware by experiment. We carefully select a set of relatively simple training pro-
grams and measure the median execution time of these programs on the hard-
ware of interest. To this end, each program is executed with the OCaml native
code compiler 500 times on an Intel x86-64 and a ARM 64-bit v8-A platform.
We then apply machine learning techniques, such as linear regression [30], on
the linear functions obtained by running the cost semantics to determine the
constant costs of the constructs by fitting the prediction of the cost semantics
to the measured costs. We measure the execution time using the Unix library in
OCaml, which is hardware independent. We measure the number of allocation
by relying on the OCaml GC library, which is again hardware independent. As
a result, our approach is completely hardware independent and can be easily
extended to different architectures, as we demonstrate in this work.

Of course, the execution time of, say, an addition cannot be described by
a constant. In fact, it can vary by a large margin depending on whether the
arguments are stored on the stack or in a register. Similarly, a cons operation
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can be costly if one of the arguments is not in the cache has to be fetched from
memory. So the constants that we learn in our experiment will represent roughly
the average cost of the operations on the training programs.

Once we have learned these cost coefficients for a specific hardware and re-
source metric, we validate our cost with control (or test) programs, retrieved
from the standard library, an OCaml online tutorial, and local OCaml projects.
Each control program is first compiled and executed on the hardware and the
median execution cost is measured in the same way we did for training programs.
The program is then run on the interpreter to obtain the parametric linear cost
function. By plugging in the learned coefficients, we get a prediction for the exe-
cution time or memory usage. We compare the predictions of the cost semantics
with the median cost, and report the percentage error on test programs. We
use the median instead of the mean because it is more resilient against outliers
which are often caused by context switches in the OS.

The result of the experiments with the control programs are surprisingly
encouraging. We precisely learn the amount of memory that is allocated by each
construct. For execution time of programs that do not trigger GC, the accuracy
of our model is between 1% and 43%.

In memory intensive programs, the impact of garbage collection cycles on the
execution time is significant. So, we adapt our cost semantics to account for the
time taken by the GC. We make two simplifying assumptions to model the GC
time. One of them is that the time taken by each GC cycle is a constant and
the other is that each GC cycle starts with a full heap, and ends with an empty
heap. These assumptions, as we will see in the experiments and the OCaml
documentation, are quite close to the collections of the minor heap. To model
this behavior, we combine the cost semantics for memory allocations and the
cost semantics for programs without GC. Since the GC cycle occurs periodically
when the minor heap is full, we can predict the number of minor GC cycles in
the lifetime of a program using the allocation semantics. To determine the time
needed for a minor garbage collection, we just measure the median GC time
taken by a GC cycle for the training programs.

The main application of our cost semantics is the integration into Resource
Aware ML (RAML), a state-of-the-art tool for automatic resource analysis. Us-
ing the semantics for execution time on x86, RAML can automatically derive
worst-case bounds for many functions that are close to the measured execution
time of the compiled code. Our results are precise enough, to statically deter-
mine the faster versions of different implementations of list append, Sieve of
Eratosthenes, and factorial.

2 Method and Experimental Setup

In this section, we describe our experimental setup and training method. The
main hypothesis, going into this experiment, is that the resource consumption
of a program, whether time or memory, is a linear combination of the number
of executions of each construct in the program. Moreover, the time (or mem-
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ory) consumed by each construct is averaged out to be a constant. Hence, the
execution time of a program is

T =
∑
c∈C

ncTc (1)

where C represents the set of constructs and nc is the count of each construct
during program execution, and Tc is the execution time of the respective con-
struct. Clearly, these assumptions do not, in general, hold for most of the rele-
vant platforms. Hence, we will analyze the error incurred by these simplifying
assumptions on the execution time (or memory allocation) of a program.

Consider the following OCaml program, which computes the factorial.

let rec fact n = if (n = 0) then 1 else n ∗ fact (n−1);;
(fact 10);;

In the above program, if we count the number of high level constructs, we get 10
function calls, 11 equality checks, 10 subtractions and multiplications and 1 “let
rec” that defines the function. In our model the execution time of a program
is the sum of the execution time of each construct multiplied by the number
of times that construct is executed. For the above program, the total execution
time is

11 ∗ TFunApp + 11 ∗ TIntEq + 10 ∗ TIntSub + 10 ∗ TIntMult + 1 ∗ Tletrec

We are interested in the resources costs Ti that best approximate the actual cost.
With this representative example, we describe our experimental setup.

Language Description We have chosen a subset of OCaml as our modeling
language. In this subset, we include the following program constructs: recursive
functions, conditionals, boolean, integer and float comparisons and arithmetic,
pattern matching and tuples. With this fairly general subset, we can write a
variety of programs including list manipulation, matrix operations and other
numeric programs, as we will demonstrate in our results. We chose OCaml as the
source language for several reasons. For one, OCaml is a widely used language
for functional programming which is quite efficient in practice. Moreover, we
wanted to demonstrate that it is possible to define a practical cost semantics
for a high-level functional language with a sophisticated compiler and automatic
memory management. We assume that defining such a semantics would be easier
for imperative programs, which are closer to assembly code.

A major obstacle when analyzing high-level languages is compiler optimiza-
tion. The resource usage of the generated target assembly code depends greatly
on the choices that are made by the compiler and cannot directly derived from
the original OCaml program. Hence, the cost semantics need to account for com-
piler optimizations. In our experience, we found two compiler optimizations with
a significant impact on the execution time.
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– Tail Call Optimization [36] - If the final action of a function body is a
function call, it is optimized to a jump instruction. This is relevant for the
cost semantics because a jump is faster than a call, hence we need two
different costs for usual function calls and tail calls. Moreover, separating
these costs in the semantics will later help us validate the claim that tail call
optimization indeed reduces the execution time.

– Function Inlining [16] - OCaml compiler inlines functions as an optimization.
Instead of accounting for inlining in our interpreter, we forced the compiler
to not inline any function when generating the native code. We will demon-
strate the effect of this optimization when describing training programs.
Conceptually, inlining is not a problem for our approach since it is possible
to track at compile time which function applications have been inlined.

Training Algorithm We formally describe the algorithm we use to learn the
values of the constructs. Consider again our cost expression T =

∑
c∈C ncTc.

Essentially, we execute the native code obtained from the compiler to obtain the
T value, and we execute the program on the interpreter to obtain the nc values.
Let there be P training programs and suppose we generate M instances of train-
ing data from each training program using the above method. Let us denote the
count of each construct and execution time of the i-th instance of training data

generated by j-th training program by (n
(i,j)
c )c∈C and T(i,j) respectively. Since

we need to learn a linear model on Tc’s, linear regression is the natural choice of
machine learning algorithm. A simple linear regression [33] would produce the
following objective function.

S =

P∑
j=1

M∑
i=1

(
T(i,j) −

∑
c∈C

n(i,j)c Tc

)2

where Tc are the unknowns that need to be learned. However, this approach is
useful only when the error is additive, i.e. the error is independent of nc. Unfortu-
nately, in our case, each instruction has an inherent noise, which is independent
of the instruction. So, as the number of instructions executed increases, the er-
ror in execution time also increases. Such an error is called multiplicative, and a
solution by simple linear regression is skewed towards the constructs which have
a higher cost, leading to inaccurate results. To overcome this problem, we need
to normalize our objective function. We normalize the objective function by the
sum of the execution time for each training program over all inputs. Hence, the
new objective function is

S =

P∑
j=1

M∑
i=1

(
T(i,j)

Sj
−
∑
c∈C

n
(i,j)
c

Sj
Tc

)2

where Sj =
∑M

i=1 T(i,j), i.e. the total execution time of the j-th training pro-
gram. We learn the cost of each construct using the weighted linear regression
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technique. In addition to the above method, we also employ two other regres-
sion techniques. One is robust regression [34], where the objective function is the
L1-norm, instead of the L2-norm (written as SRR below).

SRR =

P∑
j=1

M∑
i=1

∣∣∣∣∣T(i,j)Sj
−
∑
c∈C

n
(i,j)
c

Sj
Tc

∣∣∣∣∣
And the other is the non-negative least squares method [28], where the sum
of squares is minimized under the constraint that all constants need to be non-
negative. We evaluate each algorithm, and compare the results obtained for each
regression technique in Section 7.

Training Programs The main goal of training is to learn appropriate values
Tc for each program construct c in the language described above. Since we have
|C| variables that we need to learn, all we need are at least |C| training programs
to get a sound cost semantics. However, there is a pitfall here that we want to
avoid. Most of the typical machine learning algorithms suffer from the problem
of overfitting, i.e. when the model learned is biased towards the training data,
and performs poorly on the testing data. Specifically, in our case, the function
call construct exists in all the training programs, hence, the learning algorithm
overfits the data w.r.t. the cost for function call. Moreover, the regression algo-
rithm is unaware of the fact that these costs need to all be positive. To overcome
these issues, we need to linearly separate out the cost of each construct. To this
end, we create one training program for each construct. Such a program has a
significant count of one construct while being moderate in other constructs. For
example, the training program for function call is

let id n = n;;
let rec fapp x = if (x = 0) then 0 else fapp (id (id (id (id (x−1)))));

If we don’t account for function inlining, the function id gets inlined, and the
above is treated as 1 application instead of 5. This massively impacts our train-
ing, and we obtain an incorrect cost for function application. Similarly, the train-
ing program for integer addition is

let rec fintadd x = if (x = 0) then 0 else x + x + x + x + fintadd (x−1);;

Once we decided the training programs, we ran each training program with
20 inputs, ranging from 1000 to 20000. In this experimentation, we have a total
of 36 programs, and with 20 inputs for each program, we have a total of 720
training points for our linear regression algorithm. With this small training set,
the regression techniques learn the cost model in less than 1 second.

This set of training might appear overly simplistic but our results show that
this simple setup produces already surprisingly satisfying results.

Hardware Platforms All of the above experiments have been performed on
two separate platforms. One is an Intel NUC5i5RYH which has a 1.6 GHz 5th
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generation Intel Core i5-5250U processor based on the x86-64 instruction set.
Another is a Raspberry Pi 3 which has a 1.2 GHz 64-bit quad-core ARM Cortex-
A53 processor based on the ARM v8-A instruction set. We will report the results
for both these platforms.

3 Operational Cost Semantics

In the following, we define the big-step operational cost semantics. A value en-
vironment V maps variables to values. An evaluation judgment V ` e ⇓ v | t
denotes that in the environment V , the expression e evaluates to the value v with
resource cost t. To differentiate between normal function calls and tail calls, we
perform a semantics-preserving program transformation, which adds a tag to all
function calls. A tag tail is added to tail calls and a tag normal is added to
all other function calls. Our decision to give a positive cost to the constructs
below, while a zero cost to other constructs comes from analyzing the compiled
assembly code. Only the constructs below generated assembly instructions with
a significant relative execution time. Intuitively, the cost of other constructs can
be thought of as absorbed in these constructs. For example, the cost for addition
absorbs the cost for the two addends.

We show some illustrative example rules of the semantics, the full set of rules
can be foundin Appendix A. We start with operations on booleans and integers.

V ` e1 ⇓ v1 | t1 V ` e2 ⇓ v2 | t2 v1, v2 ∈ B
V ` e1 && e2 ⇓ v1 && v2 | t1 + t2 + TBoolAnd

(BoolAnd)

V ` e1 ⇓ v1 | t1 V ` e2 ⇓ v2 | t2 v1, v2 ∈ Z
V ` e1 + e2 ⇓ v1 + v2 | t1 + t2 + TIntAdd

(IntAdd)

V ` e1 ⇓ v1 | t1 V ` e2 ⇓ v2 | t2 v1, v2 ∈ Z
V ` e1 ≤ e2 ⇓ v1 ≤ v2 | t1 + t2 + TIntCondLE

(IntCondLE)

The rules for other boolean, integer and float operations are very similar. For tu-
ples, we introduce two constants TtupleHead and TtupleElem. TtupleHead is counted
every time we create a tuple, and TtupleElem is counted for the length of the tu-
ple. Similarly, for tuple matching, we count a TtupleMatch for every element in
the tuple being matched. When creating a tuple, there is an additional instruc-
tion, which assigns a tag to the tuple that represents the tuple constructor. Since
there is no such instruction during a tuple match, we have an extra TtupleHead

for creating tuples, but not when matching on it.

V ` e1 ⇓ v1 | t1 . . . V ` en ⇓ vn | tn
V ` (e1, . . . , en) ⇓ (v1, . . . , vn) | t1 + . . .+ tn + TtupleHead + nTtupleElem

(Tuple)

V ` tup ⇓ (v1, . . . vn) | t1 V [x1 7→ v1] . . . [xn 7→ vn] ` e ⇓ v | t2
V ` let (x1, . . . , xn) = tup in e ⇓ v | t1 + t2 + n TtupleMatch

(TupleMatch)
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Since we support higher order functions, we need an evaluation rule for func-
tion definition that accounts for closures. We again introduce two constants to
deal with function definitions, TfunDef for creating a function, and Tclosure for
creating a closure and capturing the free variables.

v = (V, λx.e) |FV (e) \ {x}| = n

V ` λx.e ⇓ v | TfunDef + n Tclosure
(Closure)

Here, FV (e) denotes the set of free variables of e. Since x is already bounded as
the function argument, we remove it from the set of free variables of e′. Finally,
we provide the rules for function calls.

V ` e1 ⇓ (V ′, λx.e′) | t1 V ` e2 ⇓ v2 | t2
V ′[x 7→ v2] ` e′ ⇓ v | t3 tag(e1) = tail

V ;TM ` app(e1, e2) ⇓ v | t1 + t2 + t3 + TTailApp

(TailApp)

V ` e1 ⇓ (V ′, λx.e′) | t1 V ` e2 ⇓ v2 | t2
V ′[x 7→ v2] ` e′ ⇓ v | t3 tag(e1) = normal

V ;TM ` app(e1, e2) ⇓ v | t1 + t2 + t3 + TFunApp

(FunApp)

Lastly, we added a constant Tbase to account for initializations made by each
program, irrespective of the program code. Hence, we say that the execution
cost of program p is t+ Tbase if · ` p ⇓ v | t. With these evaluation rules for the
cost semantics, we are ready to train our model by learning the values of the
constructs described in this section.

4 Learning Memory Allocations

Before analyzing the accuracy of our analysis on execution times, we will demon-
strate the effectiveness of our approach by learning a cost semantics for memory
allocations. During the experiments we realized that we did not get accurate
results for floating point and tuple operations. The reason is that they are gen-
erally stored on the heap, but often, optimized to be stored on the stack or the
registers:

– The OCaml compiler performs constant propagation to determine which
floats and tuples can be treated as globals, and need not be allocated on the
heap, every time they are defined.

– If tuples only appear as arguments of a function, they are passed via registers
and not allocated on the heap.

To accurately learn a cost semantics for floats and tuples we would need feedback
from the OCaml compiler about the optimizations that have been performed.
That is why we leave floats and tuples to future work and focus on booleans,
integers, and lists. We use the cost semantics that is described in the previous
section. According to this semantics, M , the number of bytes allocated by a
program is a linear combination M =

∑
c∈C ncMc.
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We use the same training programs for learning memory allocations as for
execution times. An interesting point is that the count nc for each construct
remains the same whether executing the training programs for time or memory.
Hence, while performing the linear regression, we only need to execute the pro-
gram on the interpreter once to obtain the counts nc. We then use the Gc module
in OCaml to obtain the number M of bytes allocated by the program. Since the
memory allocation of a program is constant over different runs, we only need
to measure the memory consumption once. For the Intel x86-64 platform, the
memory costs of each construct obtained by the linear regression are as follows
where Mx = 0.00 for all constants Mx that are not listed.

Mbase = 96.03 MFunDef = 24.00 Mclosure = 7.99 Mcons = 24.00

An analysis of the OCaml compiler indicates that rounding the learned con-
stants to the nearest integer corresponds exactly to the number of bytes that are
allocated by the corresponding construct. For example, our model implies that
integers and booleans are not stored on the heap. And the OCaml manual [20]
indeed confirms that all integers and booleans are immediate, i.e., stored in reg-
isters and on the stack. The value 96 for the constant Mbase is also confirmed as
each program, even without memory allocations, has an initial heap consump-
tion of 96 bytes. The cost MFunDef = 24 and Mclosure = 8 for function closures
is also confirmed by the OCaml manual. If there are free variables trapped in
the closure of a function, there is is an additional memory allocation of 24 bytes
on the heap to indicate that the program has a non-empty closure. Every cons
constructor consumes 24 bytes on the heap; 8 bytes each for the head and tail,
and 8 bytes for the tag to indicate the cons constructor. The empty list ([]) is
represented as an immediate integer 0. Hence, the memory consumption of a list
of size n is 24n bytes.

Similarly, for the ARM v8-A platform, the memory costs of the non-zero
constants obtained by the same linear regression are as follows. The results are
also as expected and the data size seems to be 4 words.

Mbase = 64.05 MFunDef = 12.00 Mclosure = 3.99 Mcons = 12.00

It is notable that we are able to automatically learn the memory repre-
sentation of OCaml values in the heap. Note that we perform a simple linear
regression without the constraint that the learned coefficients need to be integral
or non-negative.

5 Learning Execution Times

As mentioned earlier, we used several regression techniques to train our cost
semantics: linear regression, robust regression, and non-negative least squares.
The accuracy of all three approaches is similar. (See Appendix B for the num-
bers.) Also, we train on the median execution times since they are less prone
to noise than the mean. Below we give the cost of each high-level construct (in
nanoseconds) trained using the normalized linear regression technique for the In-
tel x86-64 architecture. Intuitively, these constants define the median execution
time of the respective construct on this specific platform.
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Tbase = 832.691 TFunApp = 1.505 TTailApp = 0.156
TFunDef = 0.000 Tclosure = 2.921 TBoolNot = 0.424
TBoolAnd = 0.184 TBoolOr = 0.183 TIntUMinus = 0.419
TIntAdd = 0.297 TIntSub = 0.278 TIntMult = 1.299
TIntMod = 19.231 TIntDiv = 19.011 TFloatUMinus = 1.232
TFloatAdd = 2.102 TFloatSub = 2.116 TFloatMult = 1.737
TFloatDiv = 8.575 TIntCondEq = 0.382 TIntCondLT = 0.381
TIntCondLE = 0.381 TIntCondGT = 0.375 TIntCondGE = 0.381
TFloatCondEq = 0.582 TFloatCondLT = 0.619 TFloatCondLE = 0.625
TFloatCondGT = 0.585 TFloatCondGE = 0.629 Tletdata = 2.828
Tletlambda = 1.312 Tletrec = 1.312 TpatternMatch = 0.223
TtupleHead = 5.892 TtupleElem = 1.717 TtupleMatch = 0.237

We make several qualitative observations about the learned cost semantics.

– TFunApp > TTailApp indicates that a tail call is cheaper than a normal func-
tion call, confirming that tail call optimization reduces the execution time.

– TBoolOr ≈ TBoolAnd, which is again expected as the && and ‖ operators just
place jump instructions at appropriate locations in the assembly.

– TIntMod ≈ TIntDiv � TIntMult > TIntAdd ≈ TIntSub. This is again expected,
since whenever we perform integer division or modulo, a check is performed
to see if the denominator is 0 and raise an appropriate exception. Hence,
division and modulo are much more expensive than multiplication. The latter
is more expensive than addition and subtraction.

– TIntCondEq ≈ TIntCondLE ≈ TIntCondLT ≈ TIntCondGT ≈ TIntCondGE is con-
firmed by studying the generated assembly code. A comparison is compiled
to comparing the two integers and storing the result in a register, followed
by a conditional jump. The analogous observation holds for floating point
comparisons.

6 Garbage Collection

The OCaml garbage collector (GC) has 2 major components, the variable size
major heap and the fixed size minor heap. Allocations occur first on the minor
heap. If the minor heap is full, the GC is invoked. Roughly, the GC frees un-
reachable cells, and promotes all live variables on the minor heap to the major
heap, essentially emptying the minor heap. OCaml employs a generational hy-
pothesis, which states that young memory cells tend to die young, and old cells
tend to stay around for longer than young ones.

We roughly model this behavior of the GC. Our hypothesis is that every call
to the GC roughly starts with the full minor heap and empties the minor heap.
We currently do not model the major heap. Hence, the time taken for each call
to the GC in our model is roughly the same. We need two parameters to model
the time taken by the GC, one is ngc, which is the number of calls to the GC,
and the other is Tgc, which is the time taken by 1 call to the GC. Our hypothesis

states that ngc =
⌊

M
H0

⌋
, where H0 is the size of the minor heap, and M is the

total number of memory allocations. Since we can already model the number of
heap allocations, all we need is the size of the minor heap.
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Conesquently, the two parameters Tgc and H0 can be learnt from our training
programs. OCaml offers a Gc module, which provides the number of calls to
the GC. We use this module to find out the first call to the GC, the number
of memory allocations and the time taken by the GC call, thereby learning H0,
which is equal to the number of memory allocations (due to our hypothesis), and
Tgc. With these parameters learned, the total execution time of the program is

T =
∑
c∈C

ncTc +

⌊∑
c∈C ncMc

H0

⌋
· Tgc

7 Experiments with Control Programs

For our testing experiment, we used programs from the standard List library [2]
and an OCaml tutorial [1].

Testing Method For each test program, we first fix inputs of different sizes. For
input i, we execute the compiled test program 500 times, measure the execution
time, and compute the median T actual

i . We then execute the test program on
our interpreter to obtain the count of each construct nc for c ∈ C, and calculate
T expected
i =

∑
c∈C ncTc. The average percentage error for each test program is

Error(%) =
1

n

(
n∑

i=1

|T actual
i − T expected

i |
T actual
i

)
× 100

Experiments Figure 1 shows the results on a compilation of control programs.
factorialTR is a tail recursive implementation of factorial. append concatenates
two lists. map is a higher-order map function, which maps a list of integers to
booleans. Positive integers are mapped to true and negative integers to false.
bubblesort sorts a list using the bubblesort algorithm.

The measurement noise is significant, particularly in cases where high over-
head is caused by context switches in the OS. Nevertheless, our prediction is
surprisingly accurate given the simplicity of our model. This is particularly true
for functions without allocations, like factorialTR. For append our prediction
is very accurate till the point of the first GC cycle (x ≈ 2.9). The execution time
after the first GC cycle is very unpredictable, as we observe that often there are
unexpected jumps (e.g. x ≈ 7) and drops (e.g. x ≈ 14). For bubblesort the GC
jumps become invisible since the runtime of the GC is dominated by the actual
computation. For all functions, we can very accurately predict the input size at
which the GC cycles are triggered. This validates the accuracy of our model for
learning memory allocations.

Table 1 summarizes the results obtained by evaluating our approach on 43
control programs. We implemented 3 different training algorithms for training in
programs without GC, linear regression (LR), robust regression (RR) and non-
negative least squares (NNLS). Each column represents the average percentage
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Fig. 1. Graph showing actual and expected time for factorialTR (input sizes ×103)
(top), append (input ×104) (2nd), map (input ×104) (3rd), and bubblesort (input
×102) (bottom). The red and blue lines denote the actual and expected times, respec-
tively. The vertical bars show the inherent noise in execution time. The lower and upper
end of the vertical line denote the minimum and maximum execution time, while the
lower and upper end of the box denotes the 1st and 3rd quartile of the execution time.
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Architecture Err (LR) Err (RR) Err (NNLS) Err (GC)

x86-64 13.29 13.04 13.32 19.80
ARM v8-A 21.81 22.94 21.36 20.12

Table 1. Results on x86-64 and ARM architectures

error for both architectures. We also tested all memory-intensive programs with
larger inputs to evaluate our cost model for the GC. The last column presents
the percentage error for programs with GC cycles. Note that the error increase of
programs with GC cycles is not significant, and it indeed decreases for ARM ar-
chitecture, indicating that our accuracy for GC cycles is also accurate. A detailed
description of our experimental results is given in Appendix B.

8 Applications

Integration with Resource Aware ML We have integrated our learned cost
semantics into Resource Aware ML[24], a static resource analysis tool for OCaml.
RAML is based on an automatic amortized resource analysis (AARA) [25, 23,
24] that is parametric in a user defined cost metric. Such a metric can be defined
by providing a constant cost (in floating point) for each syntactic form. This
parametricity in a resource metric, and the ability to provide a cost to each
syntactic form makes RAML very suitable for our integration purposes. Given
an OCaml function, a resource metric, and a maximal degree of the search space
of bounds, RAML statically derives a multivariate resource polynomial that is
an upper bound on the resource usage as defined by the metric. The resource
polynomial is parametric in the input sizes of the functions and contains concrete
constant factors. The analysis is fully automatic and reduces bound inference to
off-the-shelf LP solving. The subset of OCaml that is currently supported by
RAML contains all language constructs that we consider in this paper. We used
the experiments performed for this work to further refine the cost semantics
and automatic analysis. For example, we added an analysis phase prior to the
analysis that marks tail calls.

With the new cost metrics, we can use RAML for the first time to make
predictions about the worst-case behavior of compiled code. For example, if we
use the new execution-time metric (without GC) for x86 then we derive the
following bounds in Table 2. The variables in the bounds are the input sizes.
The table also contains runtime of the analysis and the number of generated
constraint (cumulative for both bounds).

Program Time Bound (ns) Heap Bound (B) Time (s) #Cons

append 0.45 + 11.28M 24M 0.02 50

map 0.60 + 13.16M 24M 0.02 59

insertion sort 0.45 + 6.06M + 5.83M2 12M + 12M2 0.04 298

echelon
0.60 + 17.29LM2 +
23.11M + 37.38M2

24LM2 + 24M +
72M2 0.59 16297

Table 2. Symbolic bounds from RAML on x86-64
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We can also use RAML to predict the execution time of programs with GC.
To this end, we just derive two bounds using the execution metric and the metric
for the number of allocations, respectively. We then combine the two bounds
using our model for GC which basically, accounts for a constant cost after a
constant number of allocations. For example for append we obtain the following
bound (heap size = 2097448 bytes, GC cycle = 3125429.15 ns on x86).

0.45 + 11.28M +

⌊
2097448× 24M

3125429.15

⌋
Since the derived bounds for execution time and allocations are tight, this bound
precisely corresponds to the prediction of our model as plotted in Figure 1.

Qualitative Analysis In addition to quantitative validation, we can also infer
qualitative results from our learned cost semantics. For instance, we can com-
pare two semantically-equivalent programs, and determine which one is more
efficient on a specific hardware. Our model, predicts for example correctly the
fastest version of different implementations of factorial, append, and sieve of
Eratosthenes. Consider for example our Intel x86 machine and the following
versions of append. (The other two examples can be found in Appendix C.)

let rec append1 l1 l2 =
match l1 with
| [] −> l2
| hd::tl −> hd::(append1 tl l2);;

let rec append2 l1 l2 = match l1 with
| [] −> l2
| x::[] −> x::l2
| x::y::[] −> x::y::l2
| x::y::tl −> x::y::(append2 tl l2);;

The trade-off in the above implementations is that the first has twice the
number of function calls but half the number of pattern matches, as the second
one. Since TFunApp = 1.505 > 4 × 0.223 = 2 × TpatternMatch, hence, using our
cost semantics concludes that the second version is more efficient. To reach this
conclusion we can now analyze the two programs in RAML and automatically
derive the execution-time bounds 0.45+11.28M and 0.45+10.53M for append1
and append2, respectively. The fact that append2 is faster carries over to the
execution-time bounds with GC since the memory allocation bound for both
functions is 24M bytes.

9 Related Work

The problem of modeling and execution time of programs has been extensively
studied for several decades. Static bound analysis on the source level [22, 13, 35,
15, 4, 6, 19, 9, 25] do not take into account compilation and concrete hardware.

Closer related are analyses that target real-time systems by modeling and
analyzing worst case execution times (WCET) of programs. Wilhelm et al. [37]
provides an overview of these techniques, which can be classified into static [18],
measurement-based methods, and simulation [8]. Lim et al. [29] associate a worst
case timing abstraction containing detailed information of every execution path
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to get tighter WCET bounds. Colin and Puaut [17] study the effect of branch
prediction on WCET. The goals of our work are different since we are not aiming
at a sound bound of the worst-case but rather an approximation of the average
case. Advantages of our approach include hardware independence, modeling of
GC, and little manual effort after the cost semantics is defined.

Lambert et al. [27] introduced a hardware independent method of estimating
time cost of Java bytecode instructions. Unlike our work, they do not take into
account GC and compilation. Huang et al. [26] build accurate prediction models
of program performance using program execution on sample inputs using sparse
polynomial regression. The difference to our work is that they build a model for
one specific program, are not interested in low-level features, and mainly want
to predict the (high-level) execution time for a given input.

Acar et al. [3] learn cost models for execution time to determine whether
tasks need to run sequentially or in parallel. They observe executions to learn
the cost of one specific program. In contrast, we build a cost semantics to make
predictions for all programs. There exist many works that build on high-level
cost semantics[23], for instance to model cache and I/O effects [12]. However,
these semantics do not incorporate concrete constants for specific hardware.

10 Conclusion and Future Work

We have presented an operational cost semantics learned using standard machine
learning techniques, like linear regression, robust regression, etc. These semantics
were able to model the execution time of programs with surprising accuracy; even
in the presence of compilation and garbage collection. Since both these models
can be learned without relying on hardware specifics, our method is completely
hardware independent and easily extensible to other hardware platforms. We
have also presented an integration of the cost semantics with RAML, hence,
allowing static analyzers to predict the execution time and heap allocations of
assembly code for the first time.

One of the significant future directions is a more precise model for the garbage
collector. Our model is limited to the minor heap, we need a model for the ma-
jor heap and heap compactions as well. The size of the major heap is variable,
hence, modeling the major heap is an important and complicated problem. We
also need to incorporate other language features, especially user-defined data
types in our semantics. Another challenge with real-world languages is com-
piler optimizations. We modeled a few optimizations in these semantics, but we
should extend our semantics to incorporate more. Since these optimizations are
performed at compile time, using static analysis techniques, it should be possible
to model all of them. Finally, we think that it is possible to extend this technique
to other programming languages, and we only need an appropriate interpreter
to achieve that. We would like to validate this claim. We believe this connection
between high-level program constructs and low-level program resources like time
and memory is a first step towards connecting theoretical features of a language
and its practical applications.
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15. Cerný, P., Henzinger, T.A., Kovács, L., Radhakrishna, A., Zwirchmayr, J.: Segment Ab-
straction for Worst-Case Execution Time Analysis. In: 24th European Symposium on
Programming (ESOP’15). pp. 105–131 (2015)

16. Chen, W.Y., Chang, P.P., Conte, T.M., Hwu, W.W.: The effect of code expanding opti-
mizations on instruction cache design. IEEE Transactions on Computers 42(9), 1045–1057
(Sep 1993)

17. Colin, A., Puaut, I.: Worst case execution time analysis for a processor with branch pre-
diction. Real-Time Systems 18(2), 249–274 (2000)

18. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In: Proceedings of the 4th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages. pp. 238–252.
POPL ’77, ACM, New York, NY, USA (1977)

16



19. Danner, N., Licata, D.R., Ramyaa, R.: Denotational Cost Semantics for Functional Lan-
guages with Inductive Types. In: 29th Int. Conf. on Functional Programming (ICFP’15)
(2012)
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A Detailed Cost Semantics

This section gives the complete cost semantics. We denote the value environment
by V and we write V ` e ⇓ v | t for the expression e evaluating to the value
v in cost t under environment V . Before evaluating the program, we perform a
simple semantics-preserving program transformation, where we add a tag tail

to all tail calls, and a tag normal to all the other function calls.

v = (V, λx.e) |FV (e) \ {x}| = n

V ` λx.e ⇓ v | TfunDef + n Tclosure
(Closure)

V ` e1 ⇓ (V ′, λx.e′) | t1 V ` e2 ⇓ v2 | t2
V ′[x 7→ v2] ` e′ ⇓ v | t3 tag(e1) = tail

V ;TM ` app(e1, e2) ⇓ v | t1 + t2 + t3 + TTailApp

(TailApp)

V ` e1 ⇓ (V ′, λx.e′) | t1 V ` e2 ⇓ v2 | t2
V ′[x 7→ v2] ` e′ ⇓ v | t3 tag(e1) = normal

V ;TM ` app(e1, e2) ⇓ v | t1 + t2 + t3 + TFunApp

(FunApp)

These rules define functions. We now define boolean arithmetic.

V ` e ⇓ v | t v ∈ B
V ` not e ⇓ ¬v | t+ TBoolNot

(BoolNot)

V ` e1 ⇓ v1 | t1 V ` e2 ⇓ v2 | t2 v1, v2 ∈ B
V ` e1 && e2 ⇓ v1 ∧ v2 | t1 + t2 + TBoolAnd

(BoolAnd)

V ` e1 ⇓ v1 | t1 V ` e2 ⇓ v2 | t2 v1, v2 ∈ B
V ` e1 || e2 ⇓ v1 ∨ v2 | t1 + t2 + TBoolOr

(BoolOr)

We now consider rules for integer arithmetic.

V ` e1 ⇓ v1 | t1 V ` e2 ⇓ v2 | t2 v1, v2 ∈ Z
V ` e1 + e2 ⇓ v1 + v2 | t1 + t2 + TIntAdd

(IntAdd)

V ` e1 ⇓ v1 | t1 V ` e2 ⇓ v2 | t2 v1, v2 ∈ Z
V ` e1 − e2 ⇓ v1 − v2 | t1 + t2 + TIntSub

(IntSub)

V ` e1 ⇓ v1 | t1 V ` e2 ⇓ v2 | t2 v1, v2 ∈ Z
V ` e1 ∗ e2 ⇓ v1 ∗ v2 | t1 + t2 + TIntMult

(IntMult)

V ` e1 ⇓ v1 | t1 V ` e2 ⇓ v2 | t2 v1, v2 ∈ Z
V ` e1 mod e2 ⇓ v1 mod v2 | t1 + t2 + TIntMod

(IntMod)
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V ` e1 ⇓ v1 | t1 V ` e2 ⇓ v2 | t2 v1, v2 ∈ Z
V ` e1/e2 ⇓ v1/v2 | t1 + t2 + TIntDiv

(IntDiv)

V ` e ⇓ v | t v ∈ Z
V ` −e ⇓ −v | t+ TIntUMinus

(IntUMinus)

We skip float arithmetic, which is completely analogous to integer arithmetic as
defined above. We move on to defining integer comparisons.

V ` e1 ⇓ v1 | t1 V ` e2 ⇓ v2 | t2 v1, v2 ∈ Z
V ` e1 = e2 ⇓ v1 = v2 | t1 + t2 + TIntCondEq

(IntCondEq)

V ` e1 ⇓ v1 | t1 V ` e2 ⇓ v2 | t2 v1, v2 ∈ Z
V ` e1 < e2 ⇓ v1 < v2 | t1 + t2 + TIntCondLT

(IntCondLT)

V ` e1 ⇓ v1 | t1 V ` e2 ⇓ v2 | t2 v1, v2 ∈ Z
V ` e1 ≤ e2 ⇓ v1 ≤ v2 | t1 + t2 + TIntCondLE

(IntCondLE)

V ` e1 ⇓ v1 | t1 V ` e2 ⇓ v2 | t2 v1, v2 ∈ Z
V ` e1 > e2 ⇓ v1 > v2 | t1 + t2 + TIntCondGT

(IntCondGT)

V ` e1 ⇓ v1 | t1 V ` e2 ⇓ v2 | t2 v1, v2 ∈ Z
V ` e1 ≥ e2 ⇓ v1 ≥ v2 | t1 + t2 + TIntCondGE

(IntCondGE)

The semantics float comparisons are analogous to integer comparisons, so we
will omit them. We instead move on to tuples and pattern matches.

V ` e1 ⇓ v1 | t1 . . . V ` en ⇓ vn | tn
V ` (e1, . . . , en) ⇓ (v1, . . . , vn) | t1 + . . .+ tn + TtupleHead + n TtupleElem

(Tuple)

V ` e′ ⇓ (v1, . . . vn) | t1
V [x1 7→ v1] . . . [xn 7→ vn] ` e ⇓ v | t2

V ` let (x1, . . . , xn) = e′ in e ⇓ v | t1 + t2 + n TtupleMatch

(TupleMatch)

V ` e ⇓ nil | t1 V ` e0 ⇓ v | t2
V ` match (e, e0, x.y.e1) ⇓ v | t1 + t2 + TpatternMatch

(PatMatchNil)

V ` e ⇓ cons(h, t) | t1 V [x 7→ h][y 7→ t] ` e1 ⇓ v | t2
V ` match (e, e0, x.y.e1) ⇓ v | t1 + t2 + 2 TpatternMatch

(PatMatchCons)

The reason we count TpatternMatch differently in the nil and cons case is because
in the assembly, pattern matches are compiled down to conditionals. In the nil
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case, there is only one conditional check, while in the cons case, there are two
conditional checks. Moving on to function definitions, we observe that in terms
of assembly code, let is treated differently depending on whether defining a
function or an expression of a data type. Hence, we perform another program
transformation, basically tagging the expressions of function type as lambda,
and expressions of data type as data.

V ` e1 ⇓ v1 | t1 V [x 7→ v1] ⇓ v2 | t2 tag(e1) = lambda

V ` let x = e1 in e2 ⇓ v2 | t1 + t2 + Tletlambda

(LetLambda)

V ` e1 ⇓ v1 | t1 V [x 7→ v1] ⇓ v2 | t2 tag(e1) = data

V ` let x = e1 in e2 ⇓ v2 | t1 + t2 + Tletdata
(LetBase)

V ` e1 ⇓ v1 | t1 V [x 7→ v1] ⇓ v2 | t2
V ` let rec x = e1 in e2 ⇓ v2 | t1 + t2 + Tletrec

(LetRec)

B Detailed Experimentation

We give a detailed description of results in this section. Tables 3 and 4 describe
our test functions. We test each program on several inputs. The start input, the
end input and the increment are described in columns Start, End and Inc respec-
tively. LOC denotes the lines of code for each test program. Table 5 describes the
results obtained on each test program for the Intel x86-64 architecture. We im-
plemented 3 training algorithms, linear regression (LR), robust regression (RR)
and non-negative least squares (NNLS). Table 5 describes the percentage error
obtained on each training algorithm. The percentage error is calculated by

Error(%) =
1

n

(
n∑

i=1

|T actual
i − T expected

i |
T actual
i

)
× 100

where T actual
i and T expected

i denote the actual and expected execution time for
the i-th input of the test program. Table 6 describes the same results for the ARM
architecture. Note that since our training and testing algorithm are completely
hardware independent, we simply implement the training and test programs on
a new architecture to test the effectiveness of our method. Table 7 describes the
percentage error for the same programs with larger inputs. Experiments for the
garbage collector are performed by increasing the size of the inputs by a factor of
10. Some of the functions are marked with (HOF) indicating that these functions
are higher-order functions, taking a function as an argument. Figures 2-7 present
the graphs for more experiments with our cost semantics. As in Figure 1, these
experiments are also performed on x86 using linear regression as the training
algorithm.
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C Qualitative Analysis

We consider two more examples of functions with same asymptotic complexity,
and determine which one is faster on a specific hardware.

Factorial

Consider the following two versions of the factorial function.

let rec fact1 n =
if (n = 0) then 1 else n ∗ fact1 (n−1);;

let rec facth n res =
if (n = 0) then 1 else facth (n−1) (n∗res);;

let fact2 n = facth n 1;;

Observing the cost semantics, we see that TFunApp = 1.505 >> 0.156 = TTailApp.
Since function application is the dominant cost for this function, our cost model
indeed confirms that fact2 is more time efficient than fact1.

Sieve of Eratosthenes

Sieve of Eratosthenes is a standard method for computing the list of prime num-
bers from the list of all natural numbers. This method involves removing all
multiples of a prime number successively from the list. Consider two implemen-
tations of the remove function.

let rec remove1 l n =
match l with
| [] −> []
| hd::tl −>

if (hd mod n = 0) then remove1 tl n
else hd::(remove1 tl n);;

let rec removeh l mul n =
match l with
| [] −> []
| hd::tl −>

if (hd = mul) then removeh tl (mul+n) n
else if (hd > mul) then

hd::(removeh tl (mul+n) n)
else hd::(removeh tl (mul+n) n);;

let remove2 l n = removeh l (2∗n) n;;

Again, testing the two functions with our cost semantics, we infer that the second
implementation is faster because TIntMod = 19.231 >> 0.382+0.375 = TIntEq +
TIntCondGt.
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D Execution Times

We give the intuitive definition of the cost associated with each construct here.

1. Tbase denotes the base time of a program, irrespective of the program con-
tents, i.e. the time taken for minimum initializations.

2. TFunApp and TTailApp denote the time for usual function call and tail call,
respectively.

3. TFunDef and Tclosure denote the time for defining a function, and its closure,
respectively.

4. TBoolNot, TBoolAnd, TBoolOr denote the time for boolean computations.
5. TIntUMinus, TIntAdd, TIntSub, TIntMult, TIntMod and TIntDiv denote the time

for integer arithmetic computation.
6. TFloatUMinus, TFloatAdd, TFloatSub, TFloatMult and TFloatDiv denote the time

for floating point arithmetic computation.
7. TIntCondEq, TIntCondLT , TIntCondLE , TIntCondGT and TIntCondGE denote the

time for integer comparisons.
8. TFloatCondEq, TFloatCondLT , TFloatCondLE , TFloatCondGT and TFloatCondGE

denote the time for integer comparisons.
9. Tletdata and Tletlambda denote the time for a let statement for a base type

(int, float, bool, etc.) and for a function respectively. Tletrec denotes the time
for defining a recursive function.

10. TtupleHead and TtupleElem denote the time for creating tuples.
11. TpatternMatch and TtupleMatch denote the time for pattern matches and tuple

matches, respectively.
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Name Start End Inc LOC Description

Standard List library and OCaml tutorial (list)

append 1000 20000 1000 12 appends one list to another
all (HOF) 1000 20000 1000 15 checks if all elements of list satisfy a pred-

icate
compress 1000 20000 1000 19 eliminates consecutive duplicates of a list
drop 1000 20000 1000 15 drops every N -th element of list
duplicate 1000 20000 1000 14 duplicates elements of list
encode 1000 20000 1000 30 performs run-length encoding of list
eq 1000 20000 1000 24 checks if two lists are equal
exists (HOF) 1000 20000 1000 15 checks if there exists an element in the list

satisfying a particular predicate
fastappend 1000 20000 1000 24 appends one list to another by pattern

matching on several elements in each it-
eration

filter (HOF) 1000 20000 1000 15 filters out elements not satisfying a partic-
ular predicate

flatten 1000 20000 1000 26 flatten a nested list structure
foldl (HOF) 1000 20000 1000 15 standard foldl implementation from list li-

brary
foldr (HOF) 1000 20000 1000 16 standard foldr implementation from list li-

brary
insertAt 1000 20000 1000 12 insert an element at a given position
last 1000 20000 1000 17 returns the last element of list
listiter 1000 20000 1000 13 iterates over list and returns unit
map (HOF) 1000 20000 1000 18 standard map implementation from list li-

brary
pack 1000 20000 1000 30 packs consecutive duplicates of list ele-

ments into sublists
removeat 1000 20000 1000 12 removes the element at a given position
replicate 500 12000 500 27 replicates the elements of a list a given

number of times
reverse 1000 20000 1000 15 reverses a list
rotate 1000 20000 1000 40 rotates a list by a given quantity
slice 1000 20000 1000 20 extracts a slice from a list
split 1000 20000 1000 24 split a list into two parts, given the size of

first part
appendTR 1000 20000 1000 22 tail recursive implementation of append
isort 100 1000 100 19 insertion sort on a list
isort (HOF) 50 400 20 35 higher order insertion sort on a list of lists

sorted by list size
last two 1000 20000 1000 20 extracts last two elements of list
at 1000 20000 1000 13 returns the element at a given position in

a list
length 1000 20000 1000 14 returns the length of list
reverseTR 1000 20000 1000 13 tail recursive implementation of reverse
palindrome 1000 20000 1000 27 checks if a list is a palindrome
range 1000 20000 1000 7 creates a list from a range of numbers

Table 3. Description of Test Programs
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Name Start End Inc LOC Description

OCaml tutorial (arithmetic)

add 100000 2000000 100000 7 adds two numbers by recursively taking
successor

factorialTR 1000 20000 1000 7 tail recursive implementation of factorial
factorial 100 2000 100 7 factorial of a number
fibonacci 8 20 1 7 computes numbers of Fibonacci sequence
mult 1000 20000 1000 8 multiplies a list by successively adding
phi 1000 20000 1000 15 computes the Euler’s totient function
factors 1001 20001 1000 9 creates a list of all factors of a given num-

ber

OCaml project (matrix)

matrix add 100 2000 100 31 adds two n-dimensional matrices
matrix sub 100 2000 100 31 subtracts two n-dimensional matrices
matrix mult 10 40 2 36 multiplies two n-dimensional matrices

Table 4. Description of Test Programs
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Name Error (%) (LR) Error (%) (RR) Error (%) (NNLS)

Standard List library and OCaml tutorial (list)

append 13.68 15.91 13.37
all (HOF) 1.21 1.54 1.29
compress 7.02 6.69 5.17
drop 15.39 17.61 15.04
duplicate 15.40 17.05 15.68
encode 4.56 2.02 2.92
eq 37.29 42.24 40.44
exists (HOF) 1.20 1.51 1.59
fastappend 11.55 12.94 10.27
filter (HOF) 31.17 17.13 31.44
flatten 17.21 32.50 17.69
foldl (HOF) 1.12 1.56 1.60
foldr (HOF) 12.14 12.36 13.15
insertAt 5.73 1.90 6.40
last 22.92 21.41 21.94
listiter 1.60 2.19 0.99
map (HOF) 19.80 20.96 19.08
pack 2.32 1.72 1.84
removeat 5.51 1.64 5.63
replicate 2.85 0.85 3.64
reverse 1.94 1.27 4.41
rotate 16.27 17.98 16.46
slice 6.29 5.31 6.72
split 6.89 1.38 5.96
appendTR 2.93 1.32 1.43
isort 26.61 27.30 26.49
isort (HOF) 23.33 20.81 21.18
last two 42.62 46.96 41
at 5.52 1.98 6.66
length 3.44 1.25 1.76
reverseTR 2.44 0.97 2.34
palindrome 9.12 8.91 8.84
range 30.90 33.03 30.48

OCaml tutorial (arithmetic)

add 0.76 4.22 0.74
factorialTR 11.77 7.88 10.67
factorial 9.03 8.31 8.15
fibonacci 8.87 4.66 9.31
mult 2.81 6.72 2.08
phi 10.43 10.50 10.46
factors 76.05 74.68 73.99

OCaml project (matrix)

matrix add 11.91 12.37 10.11
matrix sub 11.55 12.32 9.76
matrix mult 20.70 19.02 34.69
Table 5. Results of different ML techniques on Intel x86-64 architecture
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Name Error (%) (LR) Error (%) (RR) Error (%) (NNLS)

Standard List library and OCaml tutorial (list)

append 26.56 30.55 26.57
all (HOF) 14.35 15.81 12.56
compress 29.88 30.15 31.54
drop 30.84 33.57 31.48
duplicate 30.74 34.61 31.20
encode 18.62 20.43 19.76
eq 8.63 13.98 4.94
exists (HOF) 22.02 23.31 20.26
fastappend 19.35 24.02 20.04
filter (HOF) 44.48 46.96 44.16
flatten 38.04 39.65 38.52
foldl (HOF) 39.99 41.04 38.56
foldr (HOF) 33.52 33.75 32.73
insertAt 1.85 7.08 1.72
last 4.91 1.22 7.20
listiter 6.07 7.06 5.81
map (HOF) 33.44 36.46 37.52
pack 19.23 21.00 20.48
removeat 1.88 8.04 1.86
replicate 8.60 13.74 7.56
reverse 6.56 11.52 6.86
rotate 35.15 35.34 35.26
slice 0.69 0.95 0.98
split 0.96 8.12 1.05
appendTR 10.72 13.76 10.85
isort 59.48 59.65 59.87
isort (HOF) 61.31 64.46 27.93
last two 8.26 3.79 12.44
at 1.14 8.04 0.87
length 8.29 9.43 8.09
reverseTR 7.43 11.00 5.66
palindrome 1.31 4.75 6.02
range 33.22 38.79 33.21

OCaml tutorial (arithmetic)

add 14.80 15.53 2.89
factorialTR 105.56 98.66 107.16
factorial 30.71 16.42 11.03
fibonacci 28.18 30.23 32.03
mult 13.70 4.70 15.34
phi 0.86 1.04 2.22
factors 6.53 5.62 5.05

Table 6. Results of different ML techniques on ARM architecture
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Name Start End Inc Error (%) (x86) Error (%) (ARM)

append 1000 200000 1000 16.02 18.60
all (HOF) 1000 200000 1000 11.60 5.76
compress 1000 200000 1000 17.54 17.87
drop 1000 200000 1000 15.57 18.99
duplicate 1000 200000 1000 9.65 9.78
encode 1000 200000 1000 10.70 18.84
eq 1000 200000 1000 17.88 8.40
exists (HOF) 1000 200000 1000 11.54 4.44
fastappend 1000 200000 1000 10.54 10.53
filter (HOF) 1000 200000 1000 12.34 14.20
flatten 1000 200000 1000 19.87 26.91
foldl (HOF) 1000 200000 1000 10.63 6.66
foldr (HOF) 1000 200000 1000 3.24 14.52
insertAt 1000 200000 1000 21.10 8.65
last 1000 200000 1000 12.89 5.99
listiter 1000 200000 1000 10.80 5.17
map (HOF) 1000 200000 1000 17.32 21.60
pack 1000 200000 1000 10.69 19.08
removeat 1000 200000 1000 20.55 8.99
replicate 500 120000 500 8.67 7.98
reverse 1000 200000 1000 20.69 14.43
rotate 1000 200000 1000 18.06 23.33
slice 1000 200000 1000 12.48 6.97
split 1000 200000 1000 20.77 8.47
appendTR 1000 200000 1000 25.31 23.83
isort 100 10000 100 190.78 212.51
isort (HOF) 50 4000 20 27.93 32.17
last two 1000 200000 1000 13.42 5.38
at 1000 200000 1000 20.99 8.63
length 1000 200000 1000 11.03 5.18
reverseTR 1000 200000 1000 21.71 14.84
palindrome 1000 200000 1000 6.02 4.32
range 1000 200000 1000 14.33 15.72

Table 7. Results on x86-64 and ARM with garbage collector

27



 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  2  4  6  8  10  12  14  16  18  20

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
s
)

Error
Actual Time

Expected Time

 0

 2

 4

 6

 8

 10

 12

 0  2  4  6  8  10  12  14  16  18  20

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
s
)

Error
Actual Time

Expected Time

 0

 5

 10

 15

 20

 25

 30

 0  2  4  6  8  10  12  14  16  18  20

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
s
)

Error
Actual Time

Expected Time

Fig. 2. Graph showing actual and expected time for add (input ×105) (top), at (input
×104) (middle) and drop (input ×104) (bottom)
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Fig. 3. Graph showing actual and expected time for all (HOF) (input ×104) (top),
duplicate (input ×104) (middle) and encode (input ×104) (bottom)
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Fig. 4. Graph showing actual and expected time for fastappend (input ×104) (top),
factorial (input ×102) (middle) and fibonacci (bottom)
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Fig. 5. Graph showing actual and expected time for isort (HOF) (input ×102) (top),
mult (input ×103) (middle) and pack (input ×104) (bottom)
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Fig. 6. Graph showing actual and expected time for phi (input ×103) (top), replicate
(input ×104) (middle) and reverseTR (input ×104) (bottom)
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Fig. 7. Graph showing actual and expected time for matrix add (input ×10) (top),
matrix sub (input ×10) (middle) and matrix mult (bottom)
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