Student-t Processes as Alternatives to Gaussian Processes

Supplementary Material

In Appendix 1, we provide proofs of Lemmas and Corollaries from our paper. We describe the derivatives of the
log marginal likelihood of the Student-t process which is useful for hyperparameter learning in Appendix 2. In
Appendix 3 we offer more insights as to why two seemingly different covariance priors for a Gaussian process
prior lead to the same marginal distribution.

1 Proofs
Lemma. [1] The multivariate Student-t is consistent under marginalization.

Proof. Assume the generative process of equation 3 of the main text. ¥q; is IW,,, (v, K71) distributed for any
principal submatrix of ¥. Futhermore y;[311 ~ Ny, (0, (v — 2)X11) since the Gaussian distribution is consistent
under marginalization. Hence y; ~ MVT,,, (v, pi1, K11)- O

Lemma. [2] Suppose f ~ TP(v,®,k) and g ~ GP(®,k). Then f tends to g in distribution as v — co.

Proof. It is sufficient to show convergence in density for any finite collection of inputs. Let y ~ MVT, (v, ¢, K)
and set B = (y — ¢)" K~ '(y — ¢) then

B —(v+n)/2 _
p(y)oc(l—l—ViQ) — e P2

an v — co. Hence the distribution of y tends to a N, (¢, K) distribution as v — oo. O

Lemma. [3] Suppose y ~ MVT, (v, ¢, K) and let y1 and ya represent the first ny and remaining ny entries of
y respectively. Then
v+ ﬂl -2

~ MVTy, (v 4+ 1, s,
Y2(y1 VT, (v + 11, P2 E——

X KQQ), (1)
where ¢ = Koy K11 (Y1 — 1) — @2, B1 = (Y1 — ¢1) K11 (y1 — ¢1) and Koo = Koo — Ko1 K7 K.

Proof. Let By = (y2 — ¢2) " Ky (y2 — ¢2). Note that 1 + 2 = (y — @) K~ (y — ¢). We have

, + —(v+n)/2 (v+n1)/2
pyalyn) = p(y1,y2) ~ (1+ B 52) (1+ b1 )
p(y1) v—2 v—2
[32 —(v+n)/2
i+
( ﬂl +v -2
Comparing this expression to the definition of a MVT density function gives the required result. O

Lemma. [4] Let K € II(n), ¢ € R™, v >2, p >0 and

rt~T(v/2,p/2)
ylr ~ Nn(qﬁ,T(V*Q)K/p% (2)

then marginally y ~ MVT, (v, ¢, K).
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Proof. Let B = (y — ¢)" K~ '(y — ¢). We can analytically marginalize out the scalar r,

o) = [ plalpir x [ep (= 5 ) Fe (= )i

(v+n)

- 1 vin
o<(1+ p ) ’ /exp(——)r*(z”)dr
v—2 2r
ﬁ -~ (V-gn)
)
x ( + v—2
Hence y ~ MVT,, (v, ¢, K) . Note the redundancy in p. Without loss of generality, let p = 1. O

Corollary. [7] Suppose ¥ = {y;} is an elliptical process. Any finite collection z = {z1,....,2,} C Y has an
analytically representable density if and only if Y is either a Gaussian process or a Student-t process.

Proof. By Theorem 6, we need to be able to analytically solve [ p(z|r)p(r)dr, where z|r ~ N, (p,7QQ7"). This
is possible either when r is a constant with probability 1 or when r ~ T'"1(v/2,1/2), the conjugate prior. These
lead to the Gaussian and Student-t processes respectively. O

2 Marginal Likelihood Derivatives

Being able to analytically compute the derivative of the likelihood with respect to the hyperparameters is useful
for hyperparameter learning e.g. maximum likelihood or Hamiltonian (Hybrid) Monte Carlo.

Lo v+n
g (ulv, Ko) =~ lou(( 207 — oK)+ tog (120 ) — 5o (14 2,

where 3= (y — @) K, !(y — ¢) and its derivative with respect to a hyperparameter is

0 ln (e g1) %K
8010gp(y|l/,¢7K9)—2ﬁ<(u+52aa Ky ) o )

where a = Ky Y(y — ¢). We may also learn v using gradient based methods and the following derivative

%bgp(y'”’ Ko)=- z(un— 2) J”/J(V;n) ﬂb(%)
_%1og(1+1f2)+2(V_2()”2tr7;)[ﬁy_2) (3)

where ¢ is the digamma function.

3 More Insight Into the Inverse Wishart Process and Inverse Gamma Priors

As a reminder, we define a Wishart distribution as follows

Definition. A random ¥ € II(n) is Wishart distributed with parameters v > n — 1, K € II(n) and we write
Y ~ W, (v, K) if its density is given by

P(S) = culw, KIS exp (- %Tr(K’lE)) (@)

-1
where ¢, (v, K) = (\K|"/22V"/21—‘n(u/2)) .
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3.1 The Multivariate Gamma Function

The function in the normalizing constant of the Wishart distribution is called the multivariate gamma function
and is defined as follows

Definition. The multivariate gamma function, T',,(.), is a generalization of the gamma function defined as
T, (a) = / 1510~ HD/2 e (— Te(S))dS (5)
S>0

where S > 0 means S is positive definite.

In the following lemma we illustrate an explicit relationship between the multivariate gamma function and the
gamma function.

Lemma. [A]

Tp(a) = 7" D/AT]T(a+ (1 - 5)/2) (6)

j=1
Proof.
Iha) = / |S|a= (/2 exp (—Tr(S))dS
5>0
_ S(f;(””Ll)/Q exp ( . Sll) |5122'1|a—(n+1)/2 exp ( . Tr(522.1)>

S5>0
x exp (— Tr(S2157; S12))dS11dS12dS2.1

= / (ﬂSll)(nil)/QS?;(n+l)/2 eXp(—SU)dSU
S11>0

X / |Sa0.1 ]~ (" T/ 2 exp ( - TT(522.1))d522.1
522.1
= 7" D20 ()T, (a — 1/2)

This recursive relationship and the fact that I'y(b) = I'(b) implies
To(a) = [[#V"Y20 (@~ (- 1)/2)
j=1

= w00 [ P+ (1~ 5)/2

j=1
which is as required. O
A simple corollary of this result will be key later.
Corollary. [B]
' (a) I'(a)

= 7
Fn(a=1/2) T(a—n/2) @
3.2 Two Different Covariance Priors

The two generative processes we are interested in are

rt~T(v/2,1/2) Q~W,(v4+n—-1,K1)
y1 ~ N (0, (v = 2)rK) y2 ~N(O, (v = 2)Q71)

where n € N, v > 2 and K is a n X n symmetric, positive definite matrix.
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The marginal distribution for y; is

p(ur) = / p(un [P)p(r)dr

—n/2|fr|—1/2 yi Ky _uporexp(=1/(2r))
:/(27”"(1/72)) 12\K|7Y exp(f m)r / Wdr

_ (2n(v —2)2K|T1? / ~(vtn)/2-1 _ yi K 'y
- 22T (1)2) " e (- (14 -2 )72 )dr

2r(v —2)) /2| K|~1/? TRy, ~(v+n)/2
R ((1 +o=ar )/ 2) I((v+n)/2)
UK ) oD )
(v =2 I(v/2)

= (m(v—2)) K2 (14

The marginal distribution for y; is
(0e) = [ plaalp(@io

- [ o=y o - 20

X en(v4+n—1,KYQ¥2/2exp ( — %Tr(KQ))dQ
= (2n(v - 2))7n/20n(u +n—1,K1)

< [ 1o e (- (50 22 )0) Ja

= (2r(v—2))"*

To—-1\ —
ch(Hn’(Kerzyz) >
v—2

cn(v+n—1,K7h)

—1
= (2n( = 2) 2 (JI| AR (4 - 1)/2))

TK_l —(v+n)/2
U K ey T im0 4y 2

v—2
y;KflyQ)—(VHL)/Q Fn((l/ +n)/2)
v—2 Lo((v+n—1)/2)

x |K|~vFm)/2 (1 +

= (v(v —2)) K| (14

Both marginal distributions are equivalent given the result in Corollary B.



