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ABSTRACT 

We describe a system for recommending news articles, called 

NewsPer, which learns news-reading preferences of its users and 

suggests recently published articles that may be of interest to 

specific readers based on their interest profiles. The underlying 

algorithm is based on representing articles by bags of words and 

named entities, and applying support vector machines to this 

representation. We present this algorithm and give initial 

empirical results. We also discuss broader issues in the news 

personalization and the challenges of performance evaluation 

based on historical data. 
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1. INTRODUCTION 
The modern news sources provide a flood of information, and 

finding the most interesting and relevant news items is often a 

difficult problem. Traditionally, people have selected several 

preferred sources, such as a national newspaper, a local 

newspaper, a few specialty magazines, a radio station, and a TV 

station, and have relied on the editorial choices of these sources. 

This model of news consumption is being increasingly challenged 

in the online world by the emerging news aggregators, such as 

Google News, which provide an almost unlimited selection of 

news items and a variety of customization tools. Smartphones and 

tablets are becoming the platform of choice for news access. 

Intuitively, readers want to see only relevant news items, 

presented in the order of their relevance. But what is “relevant” 

for one person may not be relevant for another; what is relevant 

today may not be relevant tomorrow. Hence we need a 

personalized model of what is currently relevant for each reader. 

In some ways, this challenge is analogous to building 

recommenders for consumer goods, such as Amazon products and 

Netflix movies; however, news personalization differs from 

product recommendation in the followings ways, which make 

traditional recommender algorithms inapplicable to this problem. 

 Most people are unwilling to invest time into explicitly rating 

news items. The system has to infer the users‟ tastes by 

watching various aspects of their behavior, such as how long 

they kept a specific article open on their screen, whether they 

saved a link, posted it to Facebook, or e-mailed it to friends. 

 Different news items may be closely related. For example, they 

may be about the same event, and they may or may not provide 

different details or offer different viewpoints. As another 

example, a more recent article about the same event may be just 

a repetition of the earlier article or may describe new 

developments. The recommender system has to account for 

these dependencies 

 The value of news is time-sensitive and the system has to 

account for the tradeoffs between relevance and recency of an 

article. 

The development of news recommenders gives rise to the 

following challenges, which are similar to the problems involved 

in building product recommendation systems and search engines. 

 While we can usually get positive examples of user preferences, 

by identifying news articles read by the user, the reliable 

selection of negative examples is a harder problem. The fact 

that a reader has skipped a specific news item does not always 

mean that she has no interest in the related news. She may 

ignore an article because she has already read about a related 

event; because she presently has no time to read it; or because 

the article title provides all the information she needs. 

 The data about reading top news often obscures information 

about more specific individual interests. While we often have 

enough learning examples related to the top news, we get far 

fewer examples in less common areas. For instance, we may 

not have enough data to learn that a specific user is interested in 

news on cosmology but not planetary astronomy. 

 When developing a recommender, we need to test it on past 

logs of news-reading behavior before deploying a live version, 

which gives rise to the problem of predicting its live 

performance based on experiments with static data. 

The recent growth of online news services has caused an 

increased interest in news recommendation techniques. 

Researchers have experimented with various strategies for 

identifying relevant news, such as customizable profiles, which 

enable users to specify their preferences manually [2]; content-

based filtering, which involves learning news contents that 

interest specific users, such as for example keywords, preferred 

sources and news categories, and relevant semantic information 

[5, 11, 14]; and collaborative filtering, which involves identifying 

people with similar interests and using this similarity in news 

recommendations [4, 10]. Since every strategy has its limitations, 

researchers have also studied synergetic approaches, such as 

combining content-based and collaborative filtering [12], and 

allowing manual tuning of automatically learned profiles [1]. The 

reader may find a summary of recent work on news 

personalization and related key challenges in a review article by 

Pazzani and Billsus [13]. 

Although researchers have studied a variety of recommender 

techniques, to date, there are no widely used deployed news 

personalization systems. We have recently begun work on 

developing a new approach to news recommendation, based on 

application of support vector machines to building personalized 

content-based profiles. The main novelty claim of our system 

called NewsPer is the use of multiple profiles for each user. 

2. ARTICLE REPRESENTATION AND 

SIMILARITY 

A quantitative measure of similarity between news articles is a 

key concept in NewsPer, which helps identify similar articles Copyright is held by the authors. 
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covering the same event. We measure the similarity on the scale 

from 0.0 (completely dissimilar) to 1.0 (near-identical). The 

definition of similarity is based on the cosine similarity between 

bags of words and bags of named entities. 

For each article, we construct its bag of words, which is a list of 

words in the article. We apply a stemming procedure that merges 

words with common stems. Furthermore, we prune common 

words, such as prepositions and conjunctions, which are called 

stop words; as well as extremely rare words. We then compute the 

TF-IDF value of each word in each bag. We view the resulting bags 

of words as vectors in multidimensional space, where each word 

is a coordinate axis and the related TF-IDF value is a specific 

coordinate on that axis. We define the similarity between two 

articles u and v as the scalar product of the two respective vectors, 

words(u) and words(v), normalized to their length, which is called 

their cosine similarity. 

Similarity threshold: The initial experiments show that the 

similarity of two articles about the same event, published within a 

day from each other, is usually between 0.5 and 0.8. We have 

currently set this threshold to 0.75, which means that the system 

views articles with higher-than-0.75 similarity as similar 

descriptions of the same event. 

Named entities: We define an article‟s bag of named entities in 

the same way as the bag of words. We prune rare named entities, 

which are mentioned in less than a certain pre-set number of 

documents. Note that we do not prune common named entities.. 

We compute the TF-IDF values for the entities and prune the ones 

with the TF-IDF values below a certain threshold, specified by a 

pre-set parameter. 

3. SVM LEARNING 

The system learns the interests of a user based on her past reading 

history and constructs a classifier that predicts her interest in 

previously unseen articles. The intuitive idea is to recommend 

articles that are (1) similar to the user‟s past readings and 

(2) dissimilar to the articles that the user skipped in the past. We 

explain the selection of training examples, give a list of features 

used in training, and present the learning algorithm. 

3.1 Training examples 

When learning to recognize articles of interest for a specific user, 

the system selects positive and negative examples based on the 

user‟s past reading history. The procedure for selecting examples 

distinguishes among five types of articles in the user‟s reading 

log, which are defined based on two global time thresholds. 

Time thresholds: 

 The read-time parameter is the length of time sufficient for 

reading at least part of an article, such as the first paragraph; we 

have set it to 7 seconds. 

 The skim-time parameter is the length of time that may be 

sufficient for skimming through the article without reading it; 

we have set it to 5 seconds. 

Article types: 

 Read article: The user opened this article and kept it open for at 

least read-time. 

 Skimmed article: The user opened this article and kept it open 

for strictly less than read-time but at least skim-time. 

 Rejected articles: The user opened this article and then closed it 

in strictly less than skim-time. 

 Scrolled article: The user “scrolled over” this article; that is, 

saw its title in a news list but did not open it. 

 Unseen article: The user has not seen this article; that is, its 

title has never been displayed in the user interface. 

If an article falls into multiple categories, the earlier category in 

the above list takes precedence. For example, if the user opened 

an article for a short period (rejected article), later opened it for a 

long period (read article), and also scrolled over it on other 

occasions (scrolled article), then we view it as a read article. 

Example selection: We currently use the following rules for 

identifying positive and negative learning examples. 

 Positive: The read articles are positive examples. 

 Negative: The rejected and scrolled articles are negative 

examples if they are not similar to any of the positive examples. 

The reason for using similarity is to avoid confusing the 

learning algorithms in situations when the user read an article 

and scrolled over other similar articles. The current system does 

not distinguish between the rejected and the scrolled articles. In 

the future, we may experiment with assigning different weights 

to these two categories. 

 Other: The skimmed and unseen articles are not used in 

training, since we cannot determine whether the user liked or 

disliked them. 

The training examples are selected from a specific training period. 

It can be as short as one session, that is, the time between the 

user‟s login and logout. Alternatively, it can span several sessions. 

We skip the short sessions during which the user read fewer than 

5 articles because we believe that the user was under time 

pressure and the negative examples from the short sessions do not 

correctly reflect the user‟s dislikes. 

3.2 Features 

We use four types of features of a news article in training the 

system; that is, we represent an article as a vector of these 

features, which serves as input to the learning algorithm. 

 The popularity is a measure of interest in an article among all 

users, defined as log(1+n), where n is the number of people 

who read it before the user saw the headline for the first time. 

 The age is a measure that becomes larger as an article gets 

older. Specifically, if t is the time since the article publication, 

measured in hours, then its age is log(1+t). 

 The bag of words is a vector of TF-IDF values for the words in 

an article. 

 The bag of named entities is a vector of TF-IDF values for the 

named entities in an article. 

We have experimented with various subsets of these feature types 

and have used the L2 normal form of the selected features to 

represent an article. 

3.3 Application of support vector machines 

After selecting positive and negative examples for a user, the 

system constructs a classifier that represents the user‟s interests 

during the training period. Specifically, it applies a support vector 

machine (SVM) learner, which generates a hyperplane that 

separates positive and negative examples. We have experimented 

with two different SVM algorithms. 

 SVM-Perf 
(www.cs.cornell.edu/People/tj/svm_light/svm_perf.html) [8, 9]: 



An open-source package for standard SVM learning, which 

constructs a hyperplane that divides positive and negative 

examples. 

 SVM-Rank 
(www.cs.cornell.edu/people/tj/svm_light/svm_rank.html) [7, 

9]: An open-source package for a different version of SVM 

learning. It constructs a classifier that ranks previously unseen 

examples rather than just dividing them into positive and 

negative. 

3.4 Recommendation list 

For each news-reading session, the system applies the learned 

classifier to the candidate set of articles and assigns each article a 

relevance value. Using these values, the system constructs an 

ordered list of article clusters. The article with the highest score 

starts the first cluster, and all articles similar to it are added to the 

same cluster. The article with the highest score among the 

remaining articles starts the next cluster and so on. This ordered 

list of article clusters is the system‟s recommendation for the user. 

4. EVALUATION METRICS 

While the best way to evaluate a recommender is to conduct 

experiments with live users, the designers of prototype systems 

usually do not have access to a live news system. Even if they do, 

the managers usually require evaluation on historical data before 

integrating a recommender into a live system. 

We developed two types of tests and two metrics that can be 

applied to historical data. In all cases, the unit of testing is a user 

session. We have the ground truth in the form of a log of the 

session and classify the articles as positive, negative, or other as 

described in Section 3.1. A recommendation cluster is considered 

relevant if any of its articles is similar to any of the positive 

articles (rel = 1); otherwise, it is irrelevant (rel = 0). Articles 

published more than a day apart are always considered dissimilar. 

Note that during the experiments with historical data, we have no 

control over what was actually presented to the user. For the 

purpose of evaluation, we assume that the user would have 

opened any similar article if it were presented to him or her. 

Hence, we make no distinction between similar articles. 

The two tests we used are called “seen” and “all”. In the “seen” 

test, the candidate list for recommendations includes only the 

articles from the user session. In the “all” test, all articles 

published within 24 hours prior to the beginning of the user 

session are included. The two evaluation metrics are normalized 

Discounted Cumulative Gain (nDCG) [3, 6] and Mean Average 

Precision (MAP). 

5. EXPERIMENTS 

Available data: We used logs of a news-reading system with 37 

thousand users and 1 thousand news sources (newspapers) over a 

period from June 14 to July 9 of 2010. The total number of news 

articles for that period available through the system is about 0.5 

million. We have not had access to the live system and thus have 

run the experiments on past logs without live user feedback. 

We randomly selected 100 frequent users who, on average, read 

between 10 and 50 articles per day. Most of them had 1 or 2 

“valid” sessions per day, that is, sessions during which they read 

at least 5 articles. Typically, the number of positive, negative, and 

other articles in a session is between 30 and 100 each. The total 

number of articles published within 24 hours prior to a session is 

between 17,000 and 20,000. 

We used the data from June 14 to July 4 for training and the rest 

for testing. We made and scored recommendations for each user 

and each session during the test period and then averaged the 

results for each user. For comparison, we created two baselines, 

called RAND and POP. For the RAND baseline, each candidate 

article received a random score. For POP, each article received the 

score equal to its popularity at the beginning of the user session, 

that is, log(1+n), where n is the number of people who read the 

article before the session. As expected, POP performed much 

better than RAND. We then trained SVM-Perf on 50 positive and 

50 negative examples from the sessions immediately preceding 

the testing period and applied it to the test session. The results 

were disappointing. While they were much better than RAND, 

they were worse than POP. We understood that people tend to 

read top stories, which explains why POP is a fairly good 

predictor, but we thought that the addition of the content-sensitive 

features should improve its performance. We tried various feature 

subsets, various parameter settings, larger training samples, and 

the use of SVM-Rank instead of SVM-Perf, but nothing could 

outperform POP. 

At this point, we decided to revise the recommendation procedure. 

First, since popularity is such a strong predictor by itself, its 

influence is probably getting diluted by mixing it with less 

predictive features. We decided to take it out of the feature set and 

score articles separately for content relevance and for popularity. 

Second, we noticed that users were showing different interests at 

different sessions. For example, one day they were reading about 

the oil spill in the Gulf of Mexico and skipping other news; the 

next day they were focusing on Iraq. The stories on the same 

subject from two different days were sufficiently different to get 

into the training set as both positive and negative samples, thus 

reducing the effectiveness of learning. To address this issue, we 

used a separate user model for each session, based only on the 

content features. This model is a hyperplane created by training an 

SVM on that session. 

When scoring a new article, we need to integrate all user models 

from the previous sessions and the popularity of the article. To 

accomplish it, we introduce two parameters, denoted α and γ, the 

values of which are between 0.0 and 1.0. The first parameter 

determines the relative weight of popularity and content scoring, 

and the second controls the integration of the prior user models. 

The content relevance CR of an article A is  

CR = r1 + γ · (r2 + γ · (r3 + …)) = r1 + γ · r2 + γ2 · r3 + …, 

where r1 is the content relevance of the article computed using the 

user model from the session immediately preceding the current 

session, r2 is the content relevance computed from the session 

before that, and so on. Intuitively, γ is the discount factor for old 

sessions. The total relevance R of the article is the weighted sum 

of its content relevance CR and its popularity P: 

R = α · CR + (1 – α) · P. 

We used hill climbing to find the optimal values for α and γ for 

each training session. These values vary from session to session, 

ranging from 0.3 to 0.7 for α and from 0.7 to 1.0 for γ. When we 

use the model to score the articles for a test session, we take the 

averages of these parameters over the preceding two sessions. 

When we use this approach, the recommender outperforms the 

POP benchmark. We summarize the results in Tables 1 and 2. We 

used the paired difference z-test to determine the p value. The 

results for SVM-Rank are not significantly different from the SVM-

Perf results. 

 



Table 1. The results of the “all” test for 100 users. 

 MAP nDCG 

avg sigma avg sigma 

RAND 0.099 0.043 0.101 0.027 

POP 0.189 0.066 0.245 0.084 

PERF 0.266 0.107 0.270 0.097 

PERF vs. POP p value is 10
−17

 p value is 0.003 

Table 2. The results of the “seen” test for 100 users. 

 MAP nDCG 

avg sigma avg sigma 

RAND 0.485 0.089 0.707 0.070 

POP 0.660 0.105 0.834 0.078 

PERF 0.663 0.084 0.835 0.062 

PERF vs. POP p value is 0.3 p value is 0.5 

Discussion: The initial results look encouraging. The developed 

algorithms have performed much better than the random sorting. 

The popularity of articles plays an important role, which is 

understandable, since most people tend to read the same front-

page news about the recent events. It is surprisingly hard to beat 

POP. The improvement over POP is significant only in the “all” 

test, in which we scored all recent articles, not just the ones with 

headlines seen by the user. Arguably, for our dataset, it is a better 

test then the “seen” test for the following reason. The available 

data is from users browsing the online versions of the actual 

newspapers, which preserve the original paper layout. It is likely 

that the users select the papers and their sections based on their 

content preferences, which increases the proportion of articles 

with relevant content in the “seen” set. This hypothesis would 

explain the statistical equivalence of the results in the “seen” test. 

The available dataset is based on a short time period, which is 

insufficient for detecting more subtle but stable long-term user 

interests. A reader may be interested in a dozen of topics, such as 

astronomy or reptiles, but not enough to read about them every 

week. However, collectively these topics may account for a 

significant portion of the user‟s reading. It is hard to detect such 

preferences over a few weeks. Short-term interests, on the other 

hand, are much more volatile, changing from session to session. 

We believe that is the reason why the original approach of 

training an SVM over a longer period of time did not work as well 

as the session-based approach. 

6. CONCLUSION 

We have developed a system for recommending news articles 

based on previously observed reading habits. The initial results 

suggest that the system is effective in recommending relevant 

items. While its recommendations are imperfect, it makes 

appropriate suggestions most of the time. We believe that using it 

is better than manually filtering a flood of news. 

The key limitation of the initial experiments is that they are based 

on past data. We plan to run live tests with real-time user 

feedback as part of the future work. The other direction of the 

future research is to develop collaborative filtering techniques, 

which will identify groups of users with similar tastes and account 

for this similarity in recommending articles. We aim to integrate 

the collaborative filtering with the current approach. 
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