
News Personalization using Support Vector Machines
Anatole Gershman

anatoleg@cs.cmu.edu
www.cs.cmu.edu/~anatoleg

Travis Wolfe
tgw@andrew.cmu.edu

Eugene Fink
eugenefink@cmu.edu

www.cs.cmu.edu/~eugene

Jaime Carbonell
jgc@cs.cmu.edu

www.cs.cmu.edu/~jgc

Language Technologies Institute, Carnegie Mellon University, Pittsburgh, PA 15213, United States

ABSTRACT

We describe a system for recommending news articles, called

NewsPer, which learns news-reading preferences of its users and

suggests recently published articles that may be of interest to

specific readers based on their interest profiles. The underlying

algorithm is based on representing articles by bags of words and

named entities, and applying support vector machines to this

representation. We present this algorithm and give initial

empirical results. We also discuss broader issues in the news

personalization and the challenges of performance evaluation

based on historical data.

Keywords

News recommendation, personalization, support vector machines,

learning, natural language.

1. INTRODUCTION
The modern news sources provide a flood of information, and

finding the most interesting and relevant news items is often a

difficult problem. Traditionally, people have selected several

preferred sources, such as a national newspaper, a local

newspaper, a few specialty magazines, a radio station, and a TV

station, and have relied on the editorial choices of these sources.

This model of news consumption is being increasingly challenged

in the online world by the emerging news aggregators, such as

Google News, which provide an almost unlimited selection of

news items and a variety of customization tools. Smartphones and

tablets are becoming the platform of choice for news access.

Intuitively, readers want to see only relevant news items,

presented in the order of their relevance. But what is “relevant”

for one person may not be relevant for another; what is relevant

today may not be relevant tomorrow. Hence we need a

personalized model of what is currently relevant for each reader.

In some ways, this challenge is analogous to building

recommenders for consumer goods, such as Amazon products and

Netflix movies; however, news personalization differs from

product recommendation in the followings ways, which make

traditional recommender algorithms inapplicable to this problem.

 Most people are unwilling to invest time into explicitly rating

news items. The system has to infer the users‟ tastes by

watching various aspects of their behavior, such as how long

they kept a specific article open on their screen, whether they

saved a link, posted it to Facebook, or e-mailed it to friends.

 Different news items may be closely related. For example, they

may be about the same event, and they may or may not provide

different details or offer different viewpoints. As another

example, a more recent article about the same event may be just

a repetition of the earlier article or may describe new

developments. The recommender system has to account for

these dependencies

 The value of news is time-sensitive and the system has to

account for the tradeoffs between relevance and recency of an

article.

The development of news recommenders gives rise to the

following challenges, which are similar to the problems involved

in building product recommendation systems and search engines.

 While we can usually get positive examples of user preferences,

by identifying news articles read by the user, the reliable

selection of negative examples is a harder problem. The fact

that a reader has skipped a specific news item does not always

mean that she has no interest in the related news. She may

ignore an article because she has already read about a related

event; because she presently has no time to read it; or because

the article title provides all the information she needs.

 The data about reading top news often obscures information

about more specific individual interests. While we often have

enough learning examples related to the top news, we get far

fewer examples in less common areas. For instance, we may

not have enough data to learn that a specific user is interested in

news on cosmology but not planetary astronomy.

 When developing a recommender, we need to test it on past

logs of news-reading behavior before deploying a live version,

which gives rise to the problem of predicting its live

performance based on experiments with static data.

The recent growth of online news services has caused an

increased interest in news recommendation techniques.

Researchers have experimented with various strategies for

identifying relevant news, such as customizable profiles, which

enable users to specify their preferences manually [2]; content-

based filtering, which involves learning news contents that

interest specific users, such as for example keywords, preferred

sources and news categories, and relevant semantic information

[5, 11, 14]; and collaborative filtering, which involves identifying

people with similar interests and using this similarity in news

recommendations [4, 10]. Since every strategy has its limitations,

researchers have also studied synergetic approaches, such as

combining content-based and collaborative filtering [12], and

allowing manual tuning of automatically learned profiles [1]. The

reader may find a summary of recent work on news

personalization and related key challenges in a review article by

Pazzani and Billsus [13].

Although researchers have studied a variety of recommender

techniques, to date, there are no widely used deployed news

personalization systems. We have recently begun work on

developing a new approach to news recommendation, based on

application of support vector machines to building personalized

content-based profiles. The main novelty claim of our system

called NewsPer is the use of multiple profiles for each user.

2. ARTICLE REPRESENTATION AND

SIMILARITY

A quantitative measure of similarity between news articles is a

key concept in NewsPer, which helps identify similar articles Copyright is held by the authors.

ENIR„11, July 28, 2011, Beijing, China.

covering the same event. We measure the similarity on the scale

from 0.0 (completely dissimilar) to 1.0 (near-identical). The

definition of similarity is based on the cosine similarity between

bags of words and bags of named entities.

For each article, we construct its bag of words, which is a list of

words in the article. We apply a stemming procedure that merges

words with common stems. Furthermore, we prune common

words, such as prepositions and conjunctions, which are called

stop words; as well as extremely rare words. We then compute the

TF-IDF value of each word in each bag. We view the resulting bags

of words as vectors in multidimensional space, where each word

is a coordinate axis and the related TF-IDF value is a specific

coordinate on that axis. We define the similarity between two

articles u and v as the scalar product of the two respective vectors,

words(u) and words(v), normalized to their length, which is called

their cosine similarity.

Similarity threshold: The initial experiments show that the

similarity of two articles about the same event, published within a

day from each other, is usually between 0.5 and 0.8. We have

currently set this threshold to 0.75, which means that the system

views articles with higher-than-0.75 similarity as similar

descriptions of the same event.

Named entities: We define an article‟s bag of named entities in

the same way as the bag of words. We prune rare named entities,

which are mentioned in less than a certain pre-set number of

documents. Note that we do not prune common named entities..

We compute the TF-IDF values for the entities and prune the ones

with the TF-IDF values below a certain threshold, specified by a

pre-set parameter.

3. SVM LEARNING

The system learns the interests of a user based on her past reading

history and constructs a classifier that predicts her interest in

previously unseen articles. The intuitive idea is to recommend

articles that are (1) similar to the user‟s past readings and

(2) dissimilar to the articles that the user skipped in the past. We

explain the selection of training examples, give a list of features

used in training, and present the learning algorithm.

3.1 Training examples

When learning to recognize articles of interest for a specific user,

the system selects positive and negative examples based on the

user‟s past reading history. The procedure for selecting examples

distinguishes among five types of articles in the user‟s reading

log, which are defined based on two global time thresholds.

Time thresholds:

 The read-time parameter is the length of time sufficient for

reading at least part of an article, such as the first paragraph; we

have set it to 7 seconds.

 The skim-time parameter is the length of time that may be

sufficient for skimming through the article without reading it;

we have set it to 5 seconds.

Article types:

 Read article: The user opened this article and kept it open for at

least read-time.

 Skimmed article: The user opened this article and kept it open

for strictly less than read-time but at least skim-time.

 Rejected articles: The user opened this article and then closed it

in strictly less than skim-time.

 Scrolled article: The user “scrolled over” this article; that is,

saw its title in a news list but did not open it.

 Unseen article: The user has not seen this article; that is, its

title has never been displayed in the user interface.

If an article falls into multiple categories, the earlier category in

the above list takes precedence. For example, if the user opened

an article for a short period (rejected article), later opened it for a

long period (read article), and also scrolled over it on other

occasions (scrolled article), then we view it as a read article.

Example selection: We currently use the following rules for

identifying positive and negative learning examples.

 Positive: The read articles are positive examples.

 Negative: The rejected and scrolled articles are negative

examples if they are not similar to any of the positive examples.

The reason for using similarity is to avoid confusing the

learning algorithms in situations when the user read an article

and scrolled over other similar articles. The current system does

not distinguish between the rejected and the scrolled articles. In

the future, we may experiment with assigning different weights

to these two categories.

 Other: The skimmed and unseen articles are not used in

training, since we cannot determine whether the user liked or

disliked them.

The training examples are selected from a specific training period.

It can be as short as one session, that is, the time between the

user‟s login and logout. Alternatively, it can span several sessions.

We skip the short sessions during which the user read fewer than

5 articles because we believe that the user was under time

pressure and the negative examples from the short sessions do not

correctly reflect the user‟s dislikes.

3.2 Features

We use four types of features of a news article in training the

system; that is, we represent an article as a vector of these

features, which serves as input to the learning algorithm.

 The popularity is a measure of interest in an article among all

users, defined as log(1+n), where n is the number of people

who read it before the user saw the headline for the first time.

 The age is a measure that becomes larger as an article gets

older. Specifically, if t is the time since the article publication,

measured in hours, then its age is log(1+t).

 The bag of words is a vector of TF-IDF values for the words in

an article.

 The bag of named entities is a vector of TF-IDF values for the

named entities in an article.

We have experimented with various subsets of these feature types

and have used the L2 normal form of the selected features to

represent an article.

3.3 Application of support vector machines

After selecting positive and negative examples for a user, the

system constructs a classifier that represents the user‟s interests

during the training period. Specifically, it applies a support vector

machine (SVM) learner, which generates a hyperplane that

separates positive and negative examples. We have experimented

with two different SVM algorithms.

 SVM-Perf
(www.cs.cornell.edu/People/tj/svm_light/svm_perf.html) [8, 9]:

An open-source package for standard SVM learning, which

constructs a hyperplane that divides positive and negative

examples.

 SVM-Rank
(www.cs.cornell.edu/people/tj/svm_light/svm_rank.html) [7,

9]: An open-source package for a different version of SVM

learning. It constructs a classifier that ranks previously unseen

examples rather than just dividing them into positive and

negative.

3.4 Recommendation list

For each news-reading session, the system applies the learned

classifier to the candidate set of articles and assigns each article a

relevance value. Using these values, the system constructs an

ordered list of article clusters. The article with the highest score

starts the first cluster, and all articles similar to it are added to the

same cluster. The article with the highest score among the

remaining articles starts the next cluster and so on. This ordered

list of article clusters is the system‟s recommendation for the user.

4. EVALUATION METRICS

While the best way to evaluate a recommender is to conduct

experiments with live users, the designers of prototype systems

usually do not have access to a live news system. Even if they do,

the managers usually require evaluation on historical data before

integrating a recommender into a live system.

We developed two types of tests and two metrics that can be

applied to historical data. In all cases, the unit of testing is a user

session. We have the ground truth in the form of a log of the

session and classify the articles as positive, negative, or other as

described in Section 3.1. A recommendation cluster is considered

relevant if any of its articles is similar to any of the positive

articles (rel = 1); otherwise, it is irrelevant (rel = 0). Articles

published more than a day apart are always considered dissimilar.

Note that during the experiments with historical data, we have no

control over what was actually presented to the user. For the

purpose of evaluation, we assume that the user would have

opened any similar article if it were presented to him or her.

Hence, we make no distinction between similar articles.

The two tests we used are called “seen” and “all”. In the “seen”

test, the candidate list for recommendations includes only the

articles from the user session. In the “all” test, all articles

published within 24 hours prior to the beginning of the user

session are included. The two evaluation metrics are normalized

Discounted Cumulative Gain (nDCG) [3, 6] and Mean Average

Precision (MAP).

5. EXPERIMENTS

Available data: We used logs of a news-reading system with 37

thousand users and 1 thousand news sources (newspapers) over a

period from June 14 to July 9 of 2010. The total number of news

articles for that period available through the system is about 0.5

million. We have not had access to the live system and thus have

run the experiments on past logs without live user feedback.

We randomly selected 100 frequent users who, on average, read

between 10 and 50 articles per day. Most of them had 1 or 2

“valid” sessions per day, that is, sessions during which they read

at least 5 articles. Typically, the number of positive, negative, and

other articles in a session is between 30 and 100 each. The total

number of articles published within 24 hours prior to a session is

between 17,000 and 20,000.

We used the data from June 14 to July 4 for training and the rest

for testing. We made and scored recommendations for each user

and each session during the test period and then averaged the

results for each user. For comparison, we created two baselines,

called RAND and POP. For the RAND baseline, each candidate

article received a random score. For POP, each article received the

score equal to its popularity at the beginning of the user session,

that is, log(1+n), where n is the number of people who read the

article before the session. As expected, POP performed much

better than RAND. We then trained SVM-Perf on 50 positive and

50 negative examples from the sessions immediately preceding

the testing period and applied it to the test session. The results

were disappointing. While they were much better than RAND,

they were worse than POP. We understood that people tend to

read top stories, which explains why POP is a fairly good

predictor, but we thought that the addition of the content-sensitive

features should improve its performance. We tried various feature

subsets, various parameter settings, larger training samples, and

the use of SVM-Rank instead of SVM-Perf, but nothing could

outperform POP.

At this point, we decided to revise the recommendation procedure.

First, since popularity is such a strong predictor by itself, its

influence is probably getting diluted by mixing it with less

predictive features. We decided to take it out of the feature set and

score articles separately for content relevance and for popularity.

Second, we noticed that users were showing different interests at

different sessions. For example, one day they were reading about

the oil spill in the Gulf of Mexico and skipping other news; the

next day they were focusing on Iraq. The stories on the same

subject from two different days were sufficiently different to get

into the training set as both positive and negative samples, thus

reducing the effectiveness of learning. To address this issue, we

used a separate user model for each session, based only on the

content features. This model is a hyperplane created by training an

SVM on that session.

When scoring a new article, we need to integrate all user models

from the previous sessions and the popularity of the article. To

accomplish it, we introduce two parameters, denoted α and γ, the

values of which are between 0.0 and 1.0. The first parameter

determines the relative weight of popularity and content scoring,

and the second controls the integration of the prior user models.

The content relevance CR of an article A is

CR = r1 + γ · (r2 + γ · (r3 + …)) = r1 + γ · r2 + γ2 · r3 + …,

where r1 is the content relevance of the article computed using the

user model from the session immediately preceding the current

session, r2 is the content relevance computed from the session

before that, and so on. Intuitively, γ is the discount factor for old

sessions. The total relevance R of the article is the weighted sum

of its content relevance CR and its popularity P:

R = α · CR + (1 – α) · P.

We used hill climbing to find the optimal values for α and γ for

each training session. These values vary from session to session,

ranging from 0.3 to 0.7 for α and from 0.7 to 1.0 for γ. When we

use the model to score the articles for a test session, we take the

averages of these parameters over the preceding two sessions.

When we use this approach, the recommender outperforms the

POP benchmark. We summarize the results in Tables 1 and 2. We

used the paired difference z-test to determine the p value. The

results for SVM-Rank are not significantly different from the SVM-

Perf results.

Table 1. The results of the “all” test for 100 users.

 MAP nDCG

avg sigma avg sigma

RAND 0.099 0.043 0.101 0.027

POP 0.189 0.066 0.245 0.084

PERF 0.266 0.107 0.270 0.097

PERF vs. POP p value is 10
−17

 p value is 0.003

Table 2. The results of the “seen” test for 100 users.

 MAP nDCG

avg sigma avg sigma

RAND 0.485 0.089 0.707 0.070

POP 0.660 0.105 0.834 0.078

PERF 0.663 0.084 0.835 0.062

PERF vs. POP p value is 0.3 p value is 0.5

Discussion: The initial results look encouraging. The developed

algorithms have performed much better than the random sorting.

The popularity of articles plays an important role, which is

understandable, since most people tend to read the same front-

page news about the recent events. It is surprisingly hard to beat

POP. The improvement over POP is significant only in the “all”

test, in which we scored all recent articles, not just the ones with

headlines seen by the user. Arguably, for our dataset, it is a better

test then the “seen” test for the following reason. The available

data is from users browsing the online versions of the actual

newspapers, which preserve the original paper layout. It is likely

that the users select the papers and their sections based on their

content preferences, which increases the proportion of articles

with relevant content in the “seen” set. This hypothesis would

explain the statistical equivalence of the results in the “seen” test.

The available dataset is based on a short time period, which is

insufficient for detecting more subtle but stable long-term user

interests. A reader may be interested in a dozen of topics, such as

astronomy or reptiles, but not enough to read about them every

week. However, collectively these topics may account for a

significant portion of the user‟s reading. It is hard to detect such

preferences over a few weeks. Short-term interests, on the other

hand, are much more volatile, changing from session to session.

We believe that is the reason why the original approach of

training an SVM over a longer period of time did not work as well

as the session-based approach.

6. CONCLUSION

We have developed a system for recommending news articles

based on previously observed reading habits. The initial results

suggest that the system is effective in recommending relevant

items. While its recommendations are imperfect, it makes

appropriate suggestions most of the time. We believe that using it

is better than manually filtering a flood of news.

The key limitation of the initial experiments is that they are based

on past data. We plan to run live tests with real-time user

feedback as part of the future work. The other direction of the

future research is to develop collaborative filtering techniques,

which will identify groups of users with similar tastes and account

for this similarity in recommending articles. We aim to integrate

the collaborative filtering with the current approach.

7. ACKNOWLEDGMENTS

We are grateful to Nikolai Mushegian and Peter Liang for their

help with implementation and testing of the NewsPer system. We

also thank Helen Mukomel for her detailed comments, which

helped to focus the presentation.

8. REFERENCES

[1] Jae-wook Ahn, Peter Brusilovsky, Jonathan Grady, Daqing

He, and Sue Yeon Syn. Open user profiles for adaptive news

systems: Help or Harm? In Proceedings of the Sixteenth

International Conference on World Wide Web, pages 11–20,

2007.

[2] Krishna Bharat, Tomonari Kamba, and Michael Albers.

Personalized interactive news on the web. Multimedia Systems,

6(5), pages 349–358, 1998.

[3] Bruce Croft, Donald Metzler, and Trevor Strohman. Search

Engines: Information Retrieval in Practice. Addison Wesley,

2009.

[4] Abhinadan S. Das, Mayur Datar, Ashutosh Garg, and Shyam

Rajaram. Google news personalization: Scalable online

collaborative filtering. In Proceedings of the Sixteenth

International Conference on World Wide Web, pages 271–280,

2007.

[5] Norman Haas, Ruud Bolle, Nevenka Dimitrova, Angel

Janevski, and John Zimmerman. Personalized news through

content augmentation and profiling. In Proceedings of the IEEE

International Conference on Image Processing, pages 9–12, 2002.

[6] Kalervo Jarvelin and Janna Kekalainen. Cumulative gain-

based evaluation of IR techniques. ACM Transactions on

Information Systems, 20(4), pages 422–466, 2002.

[7] Thorsten Joachims. Optimizing search engines using

clickthrough data. In Proceedings of the ACM Conference on

Knowledge Discovery and Data Mining, 2002.

[8] Thorsten Joachims. A support vector method for multivariate

performance measures. In Proceedings of the International

Conference on Machine Learning, 2005.

[9] Thorsten Joachims. Training linear SVMs in linear time. In

Proceedings of the ACM Conference on Knowledge Discovery and

Data Mining, 2006.

[10] Joseph A. Konstan, Bradley N. Miller, David A. Maltz,

Jonathan L. Herlocker, Lee R. Gordon, and John Reidl.

GroupLens: Applying collaborative filtering to Usenet news.

Communications of the ACM, 40(3), pages 77–87, 1997.

[11] Bernardo Magnini and Carlo Strapparava. User modeling for

news web sites with word sense based techniques. User Modeling

and User Adapted Interaction, 14, pages 239–257, 2004.

[12] Geogrios Paliouras, Mouzakidis Alexandros, Christos

Ntoutsis, Angelos Alexopoulos, and Christos Skourlas. PNS:

Personalized multi-source news delivery. In Proceedings of the

Tenth International Conference on Knowledge-Based Intelligent

Information and Engineering Systems, Part II, pages 1152–1160,

2006.

[13] Michael J. Pazzani and Daniel Billsus. Content-based

recommendation systems. In Peter Brusilovsky, Alfred,Kobsa,

and Wolfgang Neidl, editors, The Adaptive Web: Methods and

Strategies of Web Personalization. Lecture Notes in Computer

Science, Vol. 4321. Springer-Verlag, Berlin, Germany, 2007.

[14] Hidekazu Sakagami and Tomonari Kamba. Learning

personal preferences on online newpaper articles from user

behavior. In Proceedings of the Sixth International World Wide

Web Conference, pages 291–300, 1997.

