
Textual Event Detection using Fuzzy Fingerprints

Luís Marujo1,2, Joao Paulo Carvalho1, Anatole Gershman2

Jaime Carbonell2, João P. Neto1, David Martins de Matos1

1 INESC-ID, IST – Universidade de Lisboa,

2 Languages Tecnologies Institute, Carnegie Mellon University

lmarujo@cs.cmu.edu, joao.carvalho@inesc-id.pt, anatoleg@cs.cmu.edu

jgc@cs.cmu.edu, joao.neto@inesc-id.pt, david.matos@inesc-id.pt

Abstract. In this paper we present a method to improve the automatic detection

of events in short sentences when in the presence of a large number of event

classes. Contrary to standard classification techniques such as Support Vector

Machines or Random Forest, the proposed Fuzzy Fingerprints method is able to

detect all the event classes present in the ACE 2005 Multilingual Corpus, and

largely improves the obtained G-Mean value.

Keywords: Event Detection; Support Vector Machines; Fuzzy Fingerprints;

ACE2005.

1 Introduction

Automatic event detection is an important Information Extraction task that can be

used to help finding specific content of interest to a user. By event detection we refer

to the ability to properly classify text excerpts according to specific categories such as

“Meet”, Transport”, Attack, etc. For example, the following news excerpt “The

construction of the high speed train line from Madrid to Lisbon, scheduled to start

operation in 2017 has been cancelled” should be automatically detected as a

“Transport” event.

Event detection has been largely explored in the context of Question Answering,

Topic Detection and Tracking (TDT), and Summarization (see Section 2). Here we

specifically address the problem of single event detection when in the presence of a

large number of classes’ scenario. So we have specific case of a single-label/multi-

class classification problem, where each sentence in a document is classified to one

target event or to “no event”.

In our experiments we use the ACE 2005 Multilingual Corpus [2], which was

specifically developed with this task in mind. Even if this corpus was manually

annotated for 27 different single label event types, usually only a few event types are

used due to the (arguably) insufficient number of instances necessary to train more

traditional classifiers. For example, in [13], only 6 events types are used due to the

difficulties in obtaining results with more classes when using Support Vector

Machines (SVMs) [7] or Random Forest [9]; i.e., less than 20% of the possible event

types are used.

In this paper we propose the use of Fuzzy Fingerprints [15] as a mechanism to

improve automatic event detection for a large number of classes. When applying

Fuzzy Fingerprints to the ACE 2005 Multilingual Corpus, it was possible to detect up

to 100% of the event types, obtaining a much higher G – mean [12,22], an assessment

measure especially adequate to imbalanced multiclass classification problems, when

comparing to the best prior event detection method, the SVMs [13].

In order to obtain the results, we started by replicating and confirming the work

described by Naughton, and then improved their results by adding several new

features to the used Machime Learning Algorithms. We achieved a 4.6%

improvement in F1 scores over the results reported by [13]. Then we created a Fuzzy

Fingerprints Event library, and adapted the similarity score proposed in [5] to retrieve

events in order to improve the results when using all the event types in the ACE 2005

corpus.

This paper is organized as follows: Section 2 introduces the related work. The corpus

used to train and evaluate the methods is presented in Section 3. Section 4 details the

Machine learning methods used to detect events, and the Fingerprint event detection

method is presented in Section 5. Evaluation and results are shown in Section 6.

Finally, Section 7 presents the overall conclusions discusses future work.

2 Related Work

In the late 1990s, the event detection problem was addressed under the Topic

Detection and Tracking (TDT) trend [6,8,23,24]. The TDT project was divided into 2

primary tasks: First Story Detection or New Event Detection (NED), and Event

Tracking. In the NED task, the goal was to discover documents that discuss breaking

news articles from a news stream. The Event Tracking task was focused on the

tracking of articles describing the same event or topic over time. More recent work

using the TDT datasets [1,21,17] on Event Threading tried to organize news articles

about armed clashes into a sequence of events, but still assumed that each article

described a single event. Passage Threading [1] extends the event threading by

relaxing the one event per news article assumption and uses a binary classifier to

identify “violent” paragraphs.

Even though the TDT program ended in 2004, new event detection research followed.

Automatic Content Extraction (ACE) is the most pertinent example for this work. The

goal of ACE Event is detection and recognition of events in text. In addition to the

identification events, the ACE 2005 task gives identifies participants, relations, and

attributes of each event. This extraction is an important step towards the overarching

goal of building a knowledge base of events [4]. The most recent research [19,20]

explores bootstrapping techniques and cross-document techniques augmenting the

ACE 2005 with other corpora, including MUC-6 (Message Understanding

Conference). In this work, the identification task is treated as a word classification

task using 34 labels (33 event types + off-event). It is also common to use various

lexical features, WordNet1 synonyms, dependency parsing (only to identify relations),

and named-entities extraction [19,20].

3 Corpus

The ACE2005 Corpus was created for the ACE evaluations, where an event is defined

as a specific occurrence involving participants described in a single sentence. The

corpus has a total of 12,298 sentences. Each sentence is identified with event types or

off event. There are 33 event types: Be-Born, Marry, Divorce, Injure, Die, Transport,

Transfer-Ownership, Transfer-Money, Start-Org, Merge-Org, Declare-Bankruptcy,

End-Org, Attack, Demonstrate, Meet, Phone-Write, Start-Position, End-Position,

Nominate, Elect, Arrest-Jail, Release-Parole, Trial-Hearing, Charge-Indict, Sue,

Convict, Sentence, Fine, Execute, Extradite, Acquit, Appeal, Pardon.

From these 33 events, only the following 6 have a high number of instances or

sentences in the corpus: Die, Attack, Transport, Meet, Injure, and Charge-Indict.

These are the only ones used in the previous referred works.

About 16% of the sentences contain at least 1 event, and 15% of those sentences are

classified as multi-event (or multi-label); for example, the sentence “three people died

and two were injured when their vehicle was attacked” involves 4 event types (or one

event with 4 event type labels). This means that multi-event sentences correspond to

only 2.50% of the corpus, and were removed since we are addressing single label

classification. Also, six event types only occur in multi-event sentences, which means

they are not present in the used test and training datasets. Finally, the event Extradite

only occurs once in the corpus, and was removed since it is not possible to separate 1

instance into test and training sets. As a result, the dataset used in this work contains

26 different event types.

4 Machine Learning Event detection

A state-of-art way to solve a text multi-class problem, like single event detection, is to

use Support Vector Machines (SVM) techniques [25]. Random Forests (RF) [9] are

also seen as an alternative to SVM because they are considered one of the most

accurate classifier [16]. RF has also advantages on datasets where the number of

features is larger than the number of observations [16]. In our dataset, the number of

features extracted is between two and three times more than the total number of

examples of events.

We followed a fairly traditional approach of training a SVM and RF classifier to

classify each sentence into an event label. We used Weka [11] implementations of

SVM and RF. These implementation enabled us to test several features, which to the

best of our knowledge, have not been used for this purpose. These features include the

1 http://wordnet.princeton.edu

use of signal words, sentiment analysis, etc. Some of these features lead to significant

improvements in the previous G-mean results.

4.1 Feature Extraction

The spoken transcripts documents found in the ACE2005 corpus contain raw

Automatic Speech Recognized (ASR) single-case words with punctuation. This

means that the transcriptions were either manually produced or were generated by a

standard ASR with minimal manual post-processing. Absence of capitalization is

known to negatively influence the performance of parsing, sentence boundaries

identification, and NLP tasks in general. Recovery of capitalization entails

determining the proper capitalization of words from the context. This task was

performed using a discriminative approach described in [3]. We capitalized every

first letter of a word after a full stop, exclamation, and question mark. After true-

casing, we automatically populate three lists for each article: list K of key phrases, list

V of verbs, and list E of named entities. The key phrase extraction is performed using

a supervised automatic key phrase extraction method [10]. Verbs are identified using

Stanford Parser, and named-entities using Stanford NER. This extraction is performed

over all English documents of the corpus. The K, V, and E lists are used in the

extraction of lexical features and dependency parsing-based features. The lists K and

V were also augmented using WordNet synsets to include less frequent synonyms.

Furthermore, we manually created list M of modal verbs, and list N of negation terms.

The feature space for the classification of sentences consists of all entries in the lists

V, E, K, M, and N which are corpus specific. The value of each feature is the number

of its occurrence in the sentence. These numbers indicate the description of events by

numbering the number of participants, actions, locations, and temporal information.

We have also explored other uncommon types of features: Rhetorical Signals [10] and

Sentiment Scores [14]. Finally, we removed all features with constant values across

classes. This process reduced by half the number of features and improved the

classification results.

5 Fingerprint Event detection

In this work, we propose the use of an adaptation of the Fuzzy Fingerprints

classification method described in [15,5] to tackle the problem of Event detection. In

[15] the authors approach the problem of text authorship by using the crime scene

fingerprint analogy to claim that a given text has its authors writing style embedded in

it. If the fingerprint is known, then it is possible to identify whether a text whose

author is unknown, has a known author’s fingerprint on it.

The algorithm itself works as follows:

1) Gather the top-k word frequencies in all known texts of each known author;

2) Build the fingerprint by applying a fuzzifying function to the top-k list. The

fuzzified fingerprint is based on the word order and not on the frequency value;

3) Perform the same calculations for the text being identified and then compare

the obtained text fuzzy fingerprint with all available author fuzzy fingerprints. The

most similar fingerprint is chosen and the text is assigned to the fingerprint author;

The proposed fuzzy fingerprint method for Event Detection, while similar in intention

and form, differs in a few crucial steps.

Firstly it is important to establish the parallel between the context of author ownership

and Event Detection. Instead of author fingerprints, in this work we are looking to

obtain the fingerprints of Events. Once we have an event fingerprint library, each

unclassified sentence can be processed and compared to the fingerprints existing in

the event library.

Secondly, a different criterion was used in ordering the top-k words for the

fingerprint. While in [15] it is used the word frequency as the main feature to create

and order the top-k list, here we use an adaptation of an Inverse Document Frequency

(idf) technique, aiming at reducing the importance of frequent terms that are common

across several events.

Finally, the similarity score differs from the original, based on the fact that the source

sentence are, by design, very short texts, while the original Fuzzy Fingerprint method

was devised to classify much longer texts (newspaper articles, books, etc. ranging

from thousands to millions of characters). Here we propose the use of a score with

values between 0 and 1, where the lowest score indicates that the sentence in question

is not related to the topic fingerprint, and the highest value indicates that the sentence

and the event fingerprints are the same.

5.1 Building the Event Fingerprint Library

In order to build the Event fingerprint library, the proposed method goes over the

event training set, which is composed of 80% of the sentences annotated as describing

the event in question, and counts the word frequency. Only the top-k most frequent

words are considered.

The main difference between the original method and the one used here is due to the

small size of each sentence: in order to make the different event fingerprints as unique

as possible, its words should also be as unique as possible. Therefore, in addition to

counting each word occurrence, we also account for of its Inverse Topic Frequency

(itf), an adaptation of the traditional inverse document frequency – idf:

𝑖𝑡𝑓𝑣 =
𝑁

𝑛𝑣
, (1)

where N is the cardinality of the event fingerprint library (i.e., the total number of

events), and nv becomes the number of fingerprint events where the specific word v is

present. The ITF allows moving the position of common words down on top-k list,

therefore decreasing their relevance.

After obtaining the top-k list for a given event, we follow the original method and

apply a fuzzy membership function to build the fingerprint. The selected membership

function is a Pareto-based linear function, where 20% of the top k elements assume

80% of the membership degree:

𝜇(𝑖) = {
1 − (1 − 𝑏)

𝑖

𝑘
 , 𝑖 ≤ 𝑎

𝑎 (1 −
𝑖−𝑎

𝑘−𝑎
) , 𝑖 > 𝑎

, 𝑎, 𝑏 = 0.2 (2)

The fingerprint is a k sized bi-dimensional array, where the first column contains the

list of the top-k words ordered by their tf-ITF, and the second column contains the

word i membership value μ(i) obtained by the application of (2).

5.2 Retrieving the Sentence-to-Event Score

In the original method, checking the authorship of a given document would proceed

as follows: build the document fingerprint (using the exact procedure described

above); compare the document fingerprint with each fingerprint present in the library

and choose the highest score. Within the Event detection context, such approach

would not work due to the very small number of words contained in one sentence

since it simply does not make sense to count the number of individual word

occurrences. Therefore we developed a Sentence-to-Event score (S2E) that tests how

much a sentence fits to a given event fingerprint. The S2E function (3), provides a

normalized value ranging between 0 and 1, that takes into account the size of the

(preprocessed) sentence (i.e., its number of features). In the present work, the features

are simply the set of words present in the sentence. Not even stop-word removal is

performed (empirical results shown that the best results were obtained without stop-

words removal, or imposing a minimum word size).

𝑆2𝐸(Φ, 𝑆) =
∑ 𝜇Φ(𝑣):𝑣𝜖(Φ∩𝑆)𝑣

∑ 𝜇Φ(𝑤𝑖)
𝑗
𝑖=0

 (3)

In (3), Φ is the Event fingerprint, S is the set of words of the sentence, μΦ(v) is the

membership degree of word v in the event fingerprint, and j is the is the number of

features of the tweet. Essentially, S2E divides the sum of the membership values

μΦ(v) of every word v that is common between the sentence and the event fingerprint,

by the sum of the top j membership values in μΦ(wi) where w∈(Φ). Eq. (3) will tend

to 1 when most to all words of the sentence belong to the top words of the fingerprint,

and tend to 0 when none or very few words of the sentence belong to the bottom

words of the fingerprint.

6 Evaluation and Results

6.1 Evaluation metrics

The standard evaluation metrics used in text classification tasks are Precision (Pi),

Recall (Ri), and F1-measure (F1i), where i is the class index. Precision is the fraction

of sentences correct classified (a.k.a. true positives, tp) over all sentences classified

with the same event label, i.e., the sum of tp with false positives (fp):

𝑃𝑖 =
#𝑡𝑝

#𝑡𝑝 + #𝑓𝑝

Recall is the fraction of sentences belonging to an event label that were successfully

identified:

𝑅𝑖 =
#𝑡𝑝

#𝑡𝑝 + #𝑓𝑛

The F1-measure combines the precision and recall in the following way:

𝐹1𝑖 =
2 𝑃𝑖𝑅𝑖

𝑃𝑖+𝑅𝑖

The disadvantage of these metrics is in the sensibility to imbalanced distribution of

the data. The average F1-measure is not the best evaluation metric for datasets with

several classes, because it is possible to obtain high F1-measure values while still

failing to detect a relevant number of classes. To overcome this limitation, Kubat et

al. proposed the G-mean metric (4)[12] to evaluate imbalanced binary classification

problems. The extension of G-mean to imbalanced multiclass classification problems

was proposed by Sun et al. in [22]. G-mean is defined as the geometric mean of the

recall values Ri, and therefore has the disadvantage of assuming the value zero when

at least one recall value Ri is zero. To overcome this limitation, we introduce a

smoothing G-Mean version, the SG-Mean (5). A smoothing constant (e.g., 𝛿 = 0,001)

added to each Ri solves the problem of multiplication by zero if a class is not detected.

With this metric it is possible to evaluate the performance of a method while still

considering the loss of classes.

 𝐺 − 𝑀𝑒𝑎𝑛 = (∏ 𝑅𝑖
𝑛
𝑖=1)

1

𝑛 (4)

 𝑆𝐺 − 𝑀𝑒𝑎𝑛 = (∏ 𝑅𝑖
𝑛
𝑖=1 + 𝛿)

1

𝑛, 𝛿 > 0 (5)

To complement these metrics, we also report the number of classes that the methods

fail to detect (#Ri=0).

6.2 Results

The SVM performed better than Random Forest to detect events in low to medium

number of classes. For these reason we chose SVM to investigate the inclusion of the

additional features over the baseline set proposed by Naughton [3]. We have also

investigated the influence of the new features introduced in this work by using all

features except for the ones under test. These novel features raised the G-Mean scores

by 16.6% (Table 1) when detecting six events. The average F1 value was also

improved to 0.496.

The inclusion of the dependency parse based features raised the G-Mean score by

16,3 %, which is the highest contribution among the new features. The second best

result, using domain-Id features, is 2,93%. The relevance based features, such as the

sentiment analysis, and rhetorical features had the lowest contribution with

respectively 2,7% and 1,7%. As expected, the introduction of new features reduced

the recall of the majority class (no-event or off event) between -1,9% and -1,3%, but

improved the recall of the remaining labels. The exception to this fact is the detection

of “Die” events that was also penalized. This can be explained in part by the

imbalanced distribution of the event types, which bias the classifier towards more

frequent event types. In this case, the classifier is bias towards “Attack” events, which

is three times more frequent than “Die” and share similar new features values.

When increasing the number of event types to cover all the 26 events present in the

ACE 2005 database, the SVM performed very poorly, failing to detect 11 of the 26

events. This implied a G-Mean = 0, and the F1 decreased to 0.241. The SG-Mean was

also a rather poor 0.0029.

Table 1 Feature Extraction analysis using Ri results in ACE 2005 using SVM with improved

features

Labels

All

Features

All -

Rhetorical

Signals

All -

Dependency

Parsing

All -

Sentiment

Analysis

All -

Domain

Id

Baseline

Features

Injure 0,444 0,444 0,333 0,444 0,444 0,444

Transport 0,233 0,219 0,123 0,233 0,247 0,164

Attack 0,435 0,413 0,449 0,406 0,449 0,406

N 0,932 0,930 0,935 0,936 0,930 0,948

Meet 0,583 0,583 0,500 0,583 0,583 0,542

Charge-Indict 0,444 0,444 0,444 0,444 0,333 0,222

Die 0,375 0,375 0,375 0,333 0,375 0,417

G-Mean 0,456 0,448 0,392 0,444 0,443 0,391

Several tests were done in order to find the best Fuzzy Fingerprint parameters. The

best empirical results led to the inclusion of all words in the fingerprints (i.e., include

stop words and small sized words). The fingerprint size K was optimized for the best

SG-mean. Figs 1-3 show the obtained SG-Mean and number of undetected event

classes for 6 and 26 events for several values of K.

With 6 events, the best G-Mean=0.564 and SG-Mean=0.565, were obtained for

K=200, and represent an improvement of around 25% when compared to the best

SVM result. However, the F1=0.367, was lower.

Fig. 1 SG-Mean results in the ACE 2005 with 6 events using Fuzzy Fingerprints with several K

values

When tested for the 26 events database, the Fuzzy Fingerprints method is able to

detect all the classes for the values of K>=400, while the SVM only detects 15 out of

26 classes. The best SG-Mean is 0.441, a 15x improvement over the best SVM result.

The best F1=0.244 is similar for both methods.

Fig. 2 SG-Mean results in the ACE 2005 with 26 events using Fuzzy Fingerprints with several

K values

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 500 1000 1500 2000

S
G

-M
ea

n

K

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 500 1000 1500 2000

S
G

-M
ea

n

K

Fig. 3 #Ri=0 (number of event classes missed) results in the ACE 2005 with 26 events using

Fuzzy Fingerprints with several K values

Finally, Tables 4 and 5 show the comparative results (including RF) for the 6 and 26

events ACE2005 database. Best results are shown in bold.

Table 4 – Results in the ACE 2005 corpus with 6 events

Measure Random

Forest

SVM

(SMO)

Fuzzy Fingerprints

(best)

F1 (Avg.) 0.371 0.496 0.367

G-Mean 0 0.456 0.564

SG-Mean 0.008 0.457 0.565

#Ri = 0 4 0 0

Table 5 – Results in the ACE 2005 corpus with 26 events

Measure Random

Forest

SVM

(SMO)

Fuzzy Fingerprints

(best)

F1 (Avg.) 0.037 0.241 0.244

G-Mean 0 0 0.440

SG-Mean 0.002 0.029 0.441

#Ri = 0 23 11 0

7 Conclusions and Future work

In this paper, we approached the problem of detecting events at sentence level, a

single label classification procedure whose results can be used to improve several

NLP tasks such as personalization, recommendation, question answering, and/or

summarization. We are specifically interested in the cases where a large number or

0

1

2

3

4

5

6

7

8

#
R

i
=

 0

K

event classes must be detected, since more traditional classifiers, such as SVM or RF,

usually loose a large number of classes. We started by improving the best previously

known approaches, and then proposed the use of Fuzzy Fingerprints. The ACE2005

corpus, which contains 26 different single event classes was used throughout the

experiments. The results show that it is possible to detect all 26 different event types

when using the Fuzzy fingerprints approach, while the best competitor, an SVM with

enhanced features, only detects roughly 60% of the different types of events. This

leads to a huge increase in the G-Mean results when using the Fuzzy Fingerprints

method.

Even if not mentioned throughout the paper, the Fuzzy Fingerprints method also has

the advantage of being much more efficient in computational terms. In our test

conditions, more than 20x faster to classify 26 event types than when using SVMs.

The application of the Fuzzy Fingerprints is still in an early development phase.

Future work includes using advanced features such as key phrases to build the

fingerprints, and also the fuzzification of key phrases. It is also in our plans to apply

the method to the detection of multiple events in single sentences.

8 Acknowledgements

This work was supported by national funds through FCT Fundação para a Ciencia e a

Tecnologia, project PTDC/IVC-ESCT/4919/2012, project PEstOE/EEI/LA0021/2013,

and through the FCT-Carnegie Mellon Portugal Program under grant

SFRH/BD/33769/2009.

References

1. A. Feng and J. Allan (2007). Finding and linking incidents in news. In Proceedings of the

sixteenth ACM conference on Conference on information and knowledge management, pp.

821-830, ACM.

2. C. Walker, S. Strassel, J. Medero. ACE2005 Multilingual training Corpus. LDC2006.

3. F. Batista, H. Moniz, I. Trancoso, N. Mamede. Bilingual Experiments on Automatic

Recovery of Capitalization and Punctuation of Automatic Speech Transcripts. IEEE

Transactions on Audio, Speech, and Language Processing, 20(2):474 - 485, 2012.

4. H. Ji and R. Grishman. Knowledge base population: Successful approaches and challenges.

In Proceedings of the 49th Annual Meeting of the Association for Computational

Linguistics (ACL 2011), pages 1148 - 1158, Portland, Oregon, USA, 2011.

5. H. Rosa, F. Batista, J.P. Carvalho, Twitter Topic Fuzzy Fingerprints, Proc. of the

WCCI2014 – World Congress of Computational Intelligence, 2014, Beijing, China, IEEE

Xplorer

6. J. Allan, J. Carbonell, G. Doddington, J. Yamron, Y. Yang, B. Archibald, and M. Scudder.

Topic Detection and Tracking Pilot Study Final Report. In Proceedings of the Broadcast

News Transcription and Understanding Workshop, 1998.

7. J. C. Platt, Fast training of support vector machines using sequential minimal optimization,

Advances in kernel methods, 1999, pp 185-208

8. J. Carbonell, Y. Yang, J. Laerty, R. Brown, T. Pierce, and X. Liu. CMU Approach to TDT:

Segmentation, Detection, and Tracking. In Proceedings of the 1999 Darpa Broadcast News

Conference, 1998.

9. L. Breiman, (2001). Random forests. Machine learning, 45(1), 5-32.

10. L. Marujo, A. Gershman, J. Carbonell, R. Frederking, and J. P. Neto. Supervised Topical

Key Phrase Extraction of News Stories using Crowdsourcing, Light Filtering and Co-

reference Normalization Pre-Processing. In Proceedings of 8th International Conference on

Language Resources and Evaluation (LREC), 2012.

11. M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I. H. Witten (2009); The

WEKA Data Mining Software: An Update; SIGKDD Explorations, Volume 11, Issue 1.

12. M. Kubat, S. Matwin. Addressing the curse of imbalanced training sets: one-sided

selection. In Proceedings of ICML, pages 179-186, 1997.

13. M. Naughton, N. Strokes, J. Carthy. Investigating Statistical Techniques for Sentence-Level

Event Classification. Proceedings of the 22nd International Conference on Computational

Linguistics-Volume 1. Association for Computational Linguistics, 2008.

14. M. Thelwall, K. Buckley, G. Paltoglou, and D. Cai. Sentiment strength detection in short

informal text. Journal of the American Society for Information Science and Technology,

61(12):2544 - 2558, 2010.

15. N. Homem, J.P. Carvalho, Authorship Identification and Author Fuzzy Fingerprints; Proc.

of the NAFIPS2011 - 30th Annual Conference of the North American Fuzzy Information

Processing Society, 2011, IEEE Xplorer

16. R. Diaz-Uriarte, S.A. De Andres, Gene selection and classification of microarray data using

random forest, 2006, BMC bioinformatics, 7(1):3.

17. R. Nallapati, A. Feng, F. Peng, and J. Allan. Event threading within news topics. In

Proceedings of the Thirteenth ACM conference on Information and knowledge

management - CIKM '04, pp 446-453, New York, New York, USA, 2004. ACM Press.

18. R. Saurí, R. Knippen, M. Verhagen, J. Pustejovsky. Evita: a robust event recognizer for QA

systems. HLT/EMNLP2005.

19. S. Liao and R. Grishman. Filtered ranking for bootstrapping in event extraction. In

Proceedings of the 23rd International Conference on Computational Linguistics (Coling

2010), number August, pages 680 - 688, Beijing, 2010.

20. S. Liao and R. Grishman. Using document level cross-event inference to improve event

extraction. In Proceedings of the 48th Annual Meeting of the Association for

Computational Linguistics (ACL 2010), number July, pages 789-797, Uppsala, Sweden,

2010.

21. Y. Hong, J. Zhang, B. Ma, and J. Yao. Using cross-entity inference to improve event

extraction. In Proceedings of the 49th Annual Meeting of the Association for

Computational Linguistcs (ACL 2011), number 4, pages 1127 - 1136, Portland, Oregon,

USA, 2011.

22. Y. Sun, M.S. Kamel, and Y. Wang. Boosting for learning multiple classes with imbalanced

class distribution. In Proc. of ICDM'06, pages 592-602. IEEE, 2006.

23. Y. Yang, J. Carbonell, R. Brown, T. Pierce, B. Archibald, and X. Liu. Learning approaches

for detecting and tracking news events. IEEE Intelligent Systems and their Applications,

14(4):32-43, 1999.

24. Y. Yang, T. Pierce, and Carbonell. A Study of Retrospective and On-line Event Detection.

Proceedings of the 21st annual international ACM SIGIR 98, 1998.

25. Y. Yang, X. Liu. A re-examination of text categorization methods. In Proceedings of the

22nd annual international ACM SIGIR conference on Research and development in

information retrieval, 1999, pp. 42-49. ACM.

