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Abstract. In this paper we present a method to improve the automatic detection 

of events in short sentences when in the presence of a large number of event 

classes. Contrary to standard classification techniques such as Support Vector 

Machines or Random Forest, the proposed Fuzzy Fingerprints method is able to 

detect all the event classes present in the ACE 2005 Multilingual Corpus, and 

largely improves the obtained G-Mean value.  

Keywords: Event Detection; Support Vector Machines; Fuzzy Fingerprints; 

ACE2005. 

1   Introduction 

Automatic event detection is an important Information Extraction task that can be 

used to help finding specific content of interest to a user. By event detection we refer 

to the ability to properly classify text excerpts according to specific categories such as 

“Meet”, Transport”, Attack, etc. For example, the following news excerpt “The 

construction of the high speed train line from Madrid to Lisbon, scheduled to start 

operation in 2017 has been cancelled” should be automatically detected as a 

“Transport” event. 

Event detection has been largely explored in the context of Question Answering, 

Topic Detection and Tracking (TDT), and Summarization (see Section 2). Here we 

specifically address the problem of single event detection when in the presence of a 

large number of classes’ scenario.  So we have specific case of a single-label/multi-

class classification problem, where each sentence in a document is classified to one 

target event or to “no event”. 

In our experiments we use the ACE 2005 Multilingual Corpus [2], which was 

specifically developed with this task in mind. Even if this corpus was manually 

annotated for 27 different single label event types, usually only a few event types are 

used due to the (arguably) insufficient number of instances necessary to train more 

traditional classifiers. For example, in [13], only 6 events types are used due to the 

difficulties in obtaining results with more classes when using Support Vector 



Machines (SVMs) [7] or Random Forest [9]; i.e., less than 20% of the possible event 

types are used. 

In this paper we propose the use of Fuzzy Fingerprints [15] as a mechanism to 

improve automatic event detection for a large number of classes. When applying 

Fuzzy Fingerprints to the ACE 2005 Multilingual Corpus, it was possible to detect up 

to 100% of the event types, obtaining a much higher G – mean [12,22], an assessment 

measure especially adequate to imbalanced multiclass classification problems, when 

comparing to the best prior event detection method, the SVMs [13].  

In order to obtain the results, we started by replicating and confirming the work 

described by Naughton, and then improved their results by adding several new 

features to the used Machime Learning Algorithms. We achieved a 4.6% 

improvement in F1 scores over the results reported by [13]. Then we created a Fuzzy 

Fingerprints Event library, and adapted the similarity score proposed in [5] to retrieve 

events in order to improve the results when using all the event types in the ACE 2005 

corpus. 

This paper is organized as follows: Section 2 introduces the related work. The corpus 

used to train and evaluate the methods is presented in Section 3. Section 4 details the 

Machine learning methods used to detect events, and the Fingerprint event detection 

method is presented in Section 5. Evaluation and results are shown in Section 6. 

Finally, Section 7 presents the overall conclusions discusses future work. 

2 Related Work  

In the late 1990s, the event detection problem was addressed under the Topic 

Detection and Tracking (TDT) trend [6,8,23,24]. The TDT project was divided into 2 

primary tasks: First Story Detection or New Event Detection (NED), and Event 

Tracking. In the NED task, the goal was to discover documents that discuss breaking 

news articles from a news stream. The Event Tracking task was focused on the 

tracking of articles describing the same event or topic over time. More recent work 

using the TDT datasets [1,21,17] on Event Threading tried to organize news articles 

about armed clashes into a sequence of events, but still assumed that each article 

described a single event. Passage Threading [1] extends the event threading by 

relaxing the one event per news article assumption and uses a binary classifier to 

identify “violent” paragraphs.   

Even though the TDT program ended in 2004, new event detection research followed. 

Automatic Content Extraction (ACE) is the most pertinent example for this work. The 

goal of ACE Event is detection and recognition of events in text. In addition to the 

identification events, the ACE 2005 task gives identifies participants, relations, and 

attributes of each event. This extraction is an important step towards the overarching 

goal of building a knowledge base of events [4]. The most recent research [19,20] 

explores bootstrapping techniques and cross-document techniques augmenting the 

ACE 2005 with other corpora, including MUC-6 (Message Understanding 

Conference). In this work, the identification task is treated as a word classification 

task using 34 labels (33 event types + off-event). It is also common to use various 



lexical features, WordNet1 synonyms, dependency parsing (only to identify relations), 

and named-entities extraction [19,20]. 

3 Corpus  

The ACE2005 Corpus was created for the ACE evaluations, where an event is defined 

as a specific occurrence involving participants described in a single sentence. The 

corpus has a total of 12,298 sentences. Each sentence is identified with event types or 

off event. There are 33 event types: Be-Born, Marry, Divorce, Injure, Die, Transport, 

Transfer-Ownership, Transfer-Money, Start-Org, Merge-Org, Declare-Bankruptcy, 

End-Org, Attack, Demonstrate, Meet, Phone-Write, Start-Position, End-Position, 

Nominate, Elect, Arrest-Jail, Release-Parole, Trial-Hearing, Charge-Indict, Sue, 

Convict, Sentence, Fine, Execute, Extradite, Acquit, Appeal, Pardon.  

From these 33 events, only the following 6 have a high number of instances or 

sentences in the corpus: Die, Attack, Transport, Meet, Injure, and Charge-Indict. 

These are the only ones used in the previous referred works. 

About 16% of the sentences contain at least 1 event, and 15% of those sentences are 

classified as multi-event (or multi-label); for example, the sentence “three people died 

and two were injured when their vehicle was attacked” involves 4 event types (or one 

event with 4 event type labels).  This means that multi-event sentences correspond to 

only 2.50% of the corpus, and were removed since we are addressing single label 

classification. Also, six event types only occur in multi-event sentences, which means 

they are not present in the used test and training datasets. Finally, the event Extradite 

only occurs once in the corpus, and was removed since it is not possible to separate 1 

instance into test and training sets. As a result, the dataset used in this work contains 

26 different event types. 

4 Machine Learning Event detection 

A state-of-art way to solve a text multi-class problem, like single event detection, is to 

use Support Vector Machines (SVM) techniques [25]. Random Forests (RF) [9] are 

also seen as an alternative to SVM because they are considered one of the most 

accurate classifier [16]. RF has also advantages on datasets where the number of 

features is larger than the number of observations [16]. In our dataset, the number of 

features extracted is between two and three times more than the total number of 

examples of events. 

We followed a fairly traditional approach of training a SVM and RF classifier to 

classify each sentence into an event label. We used Weka [11] implementations of 

SVM and RF. These implementation enabled us to test several features, which to the 

best of our knowledge, have not been used for this purpose. These features include the 
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use of signal words, sentiment analysis, etc. Some of these features lead to significant 

improvements in the previous G-mean results. 

4.1 Feature Extraction 

The spoken transcripts documents found in the ACE2005 corpus contain raw 

Automatic Speech Recognized (ASR) single-case words with punctuation. This 

means that the transcriptions were either manually produced or were generated by a 

standard ASR with minimal manual post-processing. Absence of capitalization is 

known to negatively influence the performance of parsing, sentence boundaries 

identification, and NLP tasks in general. Recovery of capitalization entails 

determining the proper capitalization of words from the context. This task was 

performed using a discriminative approach described in [3].  We capitalized every 

first letter of a word after a full stop, exclamation, and question mark. After true-

casing, we automatically populate three lists for each article: list K of key phrases, list 

V of verbs, and list E of named entities. The key phrase extraction is performed using 

a supervised automatic key phrase extraction method [10]. Verbs are identified using 

Stanford Parser, and named-entities using Stanford NER. This extraction is performed 

over all English documents of the corpus. The K, V, and E lists are used in the 

extraction of lexical features and dependency parsing-based features. The lists K and 

V were also augmented using WordNet synsets to include less frequent synonyms. 

Furthermore, we manually created list M of modal verbs, and list N of negation terms.  

The feature space for the classification of sentences consists of all entries in the lists 

V, E, K, M, and N which are corpus specific. The value of each feature is the number 

of its occurrence in the sentence. These numbers indicate the description of events by 

numbering the number of participants, actions, locations, and temporal information. 

We have also explored other uncommon types of features: Rhetorical Signals [10] and 

Sentiment Scores [14]. Finally, we removed all features with constant values across 

classes. This process reduced by half the number of features and improved the 

classification results. 

5 Fingerprint Event detection 

In this work, we propose the use of an adaptation of the Fuzzy Fingerprints 

classification method described in [15,5] to tackle the problem of Event detection. In 

[15] the authors approach the problem of text authorship by using the crime scene 

fingerprint analogy to claim that a given text has its authors writing style embedded in 

it. If the fingerprint is known, then it is possible to identify whether a text whose 

author is unknown, has a known author’s fingerprint on it. 

The algorithm itself works as follows: 

1) Gather the top-k word frequencies in all known texts of each known author; 

2) Build the fingerprint by applying a fuzzifying function to the top-k list. The 

fuzzified fingerprint is based on the word order and not on the frequency value; 



3) Perform the same calculations for the text being identified and then compare 

the obtained text fuzzy fingerprint with all available author fuzzy fingerprints. The 

most similar fingerprint is chosen and the text is assigned to the fingerprint author; 

The proposed fuzzy fingerprint method for Event Detection, while similar in intention 

and form, differs in a few crucial steps. 

Firstly it is important to establish the parallel between the context of author ownership 

and Event Detection. Instead of author fingerprints, in this work we are looking to 

obtain the fingerprints of Events. Once we have an event fingerprint library, each 

unclassified sentence can be processed and compared to the fingerprints existing in 

the event library. 

Secondly, a different criterion was used in ordering the top-k words for the 

fingerprint. While in [15] it is used the word frequency as the main feature to create 

and order the top-k list, here we use an adaptation of an Inverse Document Frequency 

(idf) technique, aiming at reducing the importance of frequent terms that are common 

across several events. 

Finally, the similarity score differs from the original, based on the fact that the source 

sentence are, by design, very short texts, while the original Fuzzy Fingerprint method 

was devised to classify much longer texts (newspaper articles, books, etc. ranging 

from thousands to millions of characters). Here we propose the use of a score with 

values between 0 and 1, where the lowest score indicates that the sentence in question 

is not related to the topic fingerprint, and the highest value indicates that the sentence 

and the event fingerprints are the same. 

5.1 Building the Event Fingerprint Library 

In order to build the Event fingerprint library, the proposed method goes over the 

event training set, which is composed of 80% of the sentences annotated as describing 

the event in question, and counts the word frequency. Only the top-k most frequent 

words are considered. 

The main difference between the original method and the one used here is due to the 

small size of each sentence: in order to make the different event fingerprints as unique 

as possible, its words should also be as unique as possible. Therefore, in addition to 

counting each word occurrence, we also account for of its Inverse Topic Frequency 

(itf), an adaptation of the traditional inverse document frequency – idf: 

𝑖𝑡𝑓𝑣  =
𝑁

𝑛𝑣
,     (1) 

where N is the cardinality of the event fingerprint library (i.e., the total number of 

events), and nv becomes the number of fingerprint events where the specific word v is 

present. The ITF allows moving the position of common words down on top-k list, 

therefore decreasing their relevance. 

After obtaining the top-k list for a given event, we follow the original method and 

apply a fuzzy membership function to build the fingerprint. The selected membership 

function is a Pareto-based linear function, where 20% of the top k elements assume 

80% of the membership degree: 



𝜇(𝑖) = {
1 − (1 − 𝑏)

𝑖

𝑘
 , 𝑖 ≤ 𝑎

𝑎 (1 − 
𝑖−𝑎

𝑘−𝑎
) , 𝑖 > 𝑎

, 𝑎, 𝑏 = 0.2     (2) 

The fingerprint is a k sized bi-dimensional array, where the first column contains the 

list of the top-k words ordered by their tf-ITF, and the second column contains the 

word i membership value μ(i) obtained by the application of (2). 

5.2 Retrieving the Sentence-to-Event Score 

In the original method, checking the authorship of a given document would proceed 

as follows: build the document fingerprint (using the exact procedure described 

above); compare the document fingerprint with each fingerprint present in the library 

and choose the highest score. Within the Event detection context, such approach 

would not work due to the very small number of words contained in one sentence 

since it simply does not make sense to count the number of individual word 

occurrences. Therefore we developed a Sentence-to-Event score (S2E) that tests how 

much a sentence fits to a given event fingerprint. The S2E function (3), provides a 

normalized value ranging between 0 and 1, that takes into account the size of the 

(preprocessed) sentence (i.e., its number of features). In the present work, the features 

are simply the set of words present in the sentence. Not even stop-word removal is 

performed (empirical results shown that the best results were obtained without stop-

words removal, or imposing a minimum word size).  

𝑆2𝐸(Φ, 𝑆) =
∑ 𝜇Φ(𝑣):𝑣𝜖(Φ∩𝑆)𝑣

∑ 𝜇Φ(𝑤𝑖)
𝑗
𝑖=0

   (3) 

In (3), Φ is the Event fingerprint, S is the set of words of the sentence, μΦ(v) is the 

membership degree of word v in the event fingerprint, and j is the is the number of 

features of the tweet. Essentially, S2E divides the sum of the membership values 

μΦ(v) of every word v that is common between the sentence and the event fingerprint, 

by the sum of the top j membership values in μΦ(wi) where w∈(Φ).  Eq. (3) will tend 

to 1 when most to all words of the sentence belong to the top words of the fingerprint, 

and tend to 0 when none or very few words of the sentence belong to the bottom 

words of the fingerprint. 

6 Evaluation and Results 

6.1 Evaluation metrics 

The standard evaluation metrics used in text classification tasks are Precision (Pi), 

Recall (Ri), and F1-measure (F1i), where i is the class index. Precision is the fraction 

of sentences correct classified (a.k.a. true positives, tp) over all sentences classified 

with the same event label, i.e., the sum of tp with false positives (fp): 

𝑃𝑖 =  
#𝑡𝑝

#𝑡𝑝 + #𝑓𝑝
 



Recall is the fraction of sentences belonging to an event label that were successfully 

identified: 

𝑅𝑖 =  
#𝑡𝑝

#𝑡𝑝 + #𝑓𝑛
 

The F1-measure combines the precision and recall in the following way: 

𝐹1𝑖 =
2 𝑃𝑖𝑅𝑖

𝑃𝑖+𝑅𝑖

 

The disadvantage of these metrics is in the sensibility to imbalanced distribution of 

the data.  The average F1-measure is not the best evaluation metric for datasets with 

several classes, because it is possible to obtain high F1-measure values while still 

failing to detect a relevant number of classes. To overcome this limitation, Kubat et 

al. proposed the G-mean metric (4)[12] to evaluate imbalanced binary classification 

problems. The extension of G-mean to imbalanced multiclass classification problems 

was proposed by Sun et al. in [22].  G-mean is defined as the geometric mean of the 

recall values Ri, and therefore has the disadvantage of assuming the value zero when 

at least one recall value Ri is zero. To overcome this limitation, we introduce a 

smoothing G-Mean version, the SG-Mean (5). A smoothing constant (e.g., 𝛿 = 0,001) 

added to each Ri solves the problem of multiplication by zero if a class is not detected. 

With this metric it is possible to evaluate the performance of a method while still 

considering the loss of classes. 

 𝐺 − 𝑀𝑒𝑎𝑛 = (∏ 𝑅𝑖
𝑛
𝑖=1 )

1

𝑛    (4) 

 𝑆𝐺 − 𝑀𝑒𝑎𝑛 = (∏ 𝑅𝑖
𝑛
𝑖=1 +  𝛿)

1

𝑛, 𝛿 > 0   (5) 

To complement these metrics, we also report the number of classes that the methods 

fail to detect (#Ri=0). 

6.2 Results 

The SVM performed better than Random Forest to detect events in low to medium 

number of classes. For these reason we chose SVM to investigate the inclusion of the 

additional features over the baseline set proposed by Naughton [3]. We have also 

investigated the influence of the new features introduced in this work by using all 

features except for the ones under test. These novel features raised the G-Mean scores 

by 16.6% (Table 1) when detecting six events. The average F1 value was also 

improved to 0.496.  

The inclusion of the dependency parse based features raised the G-Mean score by 

16,3 %, which is the highest contribution among the new features. The second best 

result, using domain-Id features, is 2,93%. The relevance based features, such as the 

sentiment analysis, and rhetorical features had the lowest contribution with 

respectively 2,7% and 1,7%. As expected, the introduction of new features reduced 

the recall of the majority class (no-event or off event) between -1,9% and -1,3%, but 

improved the recall of the remaining labels. The exception to this fact is the detection 



of “Die” events that was also penalized. This can be explained in part by the 

imbalanced distribution of the event types, which bias the classifier towards more 

frequent event types. In this case, the classifier is bias towards “Attack” events, which 

is three times more frequent than “Die” and share similar new features values. 

When increasing the number of event types to cover all the 26 events present in the 

ACE 2005 database, the SVM performed very poorly, failing to detect 11 of the 26 

events. This implied a G-Mean = 0, and the F1 decreased to 0.241. The SG-Mean was 

also a rather poor 0.0029. 

 

Table 1 Feature Extraction analysis using Ri results in ACE 2005 using SVM with improved 

features 

Labels 

All 

Features 

All - 

Rhetorical 

Signals 

All -  

Dependency 

Parsing 

All - 

Sentiment 

Analysis 

All - 

Domain 

Id 

Baseline 

Features 

Injure 0,444 0,444 0,333 0,444 0,444 0,444 

Transport 0,233 0,219 0,123 0,233 0,247 0,164 

Attack 0,435 0,413 0,449 0,406 0,449 0,406 

N 0,932 0,930 0,935 0,936 0,930 0,948 

Meet 0,583 0,583 0,500 0,583 0,583 0,542 

Charge-Indict 0,444 0,444 0,444 0,444 0,333 0,222 

Die 0,375 0,375 0,375 0,333 0,375 0,417 

G-Mean 0,456 0,448 0,392 0,444 0,443 0,391 

 

Several tests were done in order to find the best Fuzzy Fingerprint parameters. The 

best empirical results led to the inclusion of all words in the fingerprints (i.e., include 

stop words and small sized words). The fingerprint size K was optimized for the best 

SG-mean. Figs 1-3 show the obtained SG-Mean and number of undetected event 

classes for 6 and 26 events for several values of K. 

With 6 events, the best G-Mean=0.564 and SG-Mean=0.565, were obtained for 

K=200, and represent an improvement of around 25% when compared to the best 

SVM result. However, the F1=0.367, was lower. 



 

Fig. 1 SG-Mean results in the ACE 2005 with 6 events using Fuzzy Fingerprints with several K 

values  

When tested for the 26 events database, the Fuzzy Fingerprints method is able to 

detect all the classes for the values of K>=400, while the SVM only detects 15 out of 

26 classes. The best SG-Mean is 0.441, a 15x improvement over the best SVM result. 

The best F1=0.244 is similar for both methods. 

 

Fig. 2 SG-Mean results in the ACE 2005 with 26 events using Fuzzy Fingerprints with several 

K values  
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Fig. 3 #Ri=0 (number of event classes missed) results in the ACE 2005 with 26 events using 

Fuzzy Fingerprints with several K values  

Finally, Tables 4 and 5 show the comparative results (including RF) for the 6 and 26 

events ACE2005 database. Best results are shown in bold. 

Table 4 – Results in the ACE 2005 corpus with 6 events 

Measure Random 

Forest 

SVM 

(SMO) 

Fuzzy Fingerprints 

(best) 

F1 (Avg.) 0.371 0.496 0.367 

G-Mean 0 0.456 0.564 

SG-Mean 0.008 0.457 0.565 

#Ri = 0 4 0 0 

 

Table 5 – Results in the ACE 2005 corpus with 26 events 

Measure Random 

Forest 

SVM 

(SMO) 

Fuzzy Fingerprints 

(best) 

F1 (Avg.) 0.037 0.241 0.244 

G-Mean 0 0 0.440 

SG-Mean 0.002 0.029 0.441 

#Ri = 0 23 11 0 

7 Conclusions and Future work 

In this paper, we approached the problem of detecting events at sentence level, a 

single label classification procedure whose results can be used to improve several 

NLP tasks such as personalization, recommendation, question answering, and/or 

summarization. We are specifically interested in the cases where a large number or 
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event classes must be detected, since more traditional classifiers, such as SVM or RF, 

usually loose a large number of classes. We started by improving the best previously 

known approaches, and then proposed the use of Fuzzy Fingerprints. The ACE2005 

corpus, which contains 26 different single event classes was used throughout the 

experiments. The results show that it is possible to detect all 26 different event types 

when using the Fuzzy fingerprints approach, while the best competitor, an SVM with 

enhanced features, only detects roughly 60% of the different types of events. This 

leads to a huge increase in the G-Mean results when using the Fuzzy Fingerprints 

method. 

Even if not mentioned throughout the paper, the Fuzzy Fingerprints method also has 

the advantage of being much more efficient in computational terms. In our test 

conditions, more than 20x faster to classify 26 event types than when using SVMs. 

The application of the Fuzzy Fingerprints is still in an early development phase. 

Future work includes using advanced features such as key phrases to build the 

fingerprints, and also the fuzzification of key phrases.  It is also in our plans to apply 

the method to the detection of multiple events in single sentences. 
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