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ABSTRACT

In a goal-oriented spoken dialog system, the major aim of

language understanding is to classify utterances into one

or more of the pre-defined intents and extract the associ-

ated named entities. Typically, the intents are designed by

a human expert according to the application domain. Fur-

thermore, these systems are trained using large amounts of

data manually labeled using an already prepared labeling

guide. In this paper, we propose a semi-supervised spo-

ken language understanding approach based on the task-

independent semantic role labeling of the utterances. The

goal is to extract the predicates and the associated argu-

ments from spoken language by using semantic role label-

ing and determine the intents based on these predicate/argu-

ment pairs. We propose an iterative approach using the au-

tomatically labeled utterances with semantic roles as the

seed training data for intent classification. We have eval-

uated this understanding approach using two AT&T spo-

ken dialog system applications used for customer care. We

have shown that the semantic parses obtained without using

any syntactically or semantically labeled in-domain data can

represent the semantic intents without a need for manual

intent and labeling guide design and labeling phases. Us-

ing this approach on automatic speech recognizer transcrip-

tions, for both applications, we have achieved the 86.5% of

the performance of a classification model trained with thou-

sands of labeled utterances.

1. INTRODUCTION

Spoken language understanding aims to extract the mean-
ing of the speech utterances. In the last decade, a variety of

practical goal-oriented spoken dialog systems (SDS) have

been built for call routing [3, 4, 5, 6, among others]. These

systems aim to identify intents of humans, expressed in nat-

ural language, and take actions accordingly, to satisfy their

request. In such systems, typically, first the speaker’s ut-

terance is recognized using an automatic speech recognizer

(ASR). Then, the intent (call-type) of the speaker is identi-

fied from the recognized sequence, using a spoken language

understanding (SLU) component. Finally, the role of the di-

alog manager (DM) is to interact with the user in a natural

way and help the user to achieve the task that the system is

designed to support. As an example, consider the utterance I
have a question about my bill. Assuming that the utterance

is recognized correctly, the corresponding intent would be

Ask(Bill). Then the action that needs to be taken depends on

the DM. It may ask the user to further specify the problem

or route this call to the billing department.

For call-type classification, one can use a domain-de-

pendent statistical approach as in the previous work. But

this approach has some serious drawbacks. First, training

statistical models for intent classification requires large a-

mounts of labeled in-domain data, which is very expensive

and time-consuming to prepare. By “labeling”, we mean

assigning one or more of the predefined call-type(s) to each

utterance using a labeling guide. Moreover, the prepara-

tion of the labeling guide (i.e., designing the intents and the

guidelines) for a given spoken language understanding task

is also time-consuming and involves non-trivial design de-

cisions. If rule-based methods are used for these tasks, this

requires significant human expertise, therefore has similar

problems. These decisions depend on the expert who is de-

signing the task structure and the frequency of the intents

for a given task. Furthermore, one expects the intents to

be clearly defined in order to ease the job of the classifier

and the human labelers. Another issue is the consistency

between different tasks. This is important for manually la-

beling the data quickly and correctly and making the labeled

data re-usable across different applications. For example in

most applications, utterances like I want to talk to a human
not a machine appear and they can be processed similarly.

On the other hand, in the computational linguistics do-

main, task independent semantic representations have been

proposed since the last few decades. Two notable studies

are FrameNet [7] and PropBank [8] projects. In this pa-
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per we focus on the Propbank project, which aims at cre-

ating a corpus of text annotated with information about ba-

sic semantic propositions. Predicate/argument relations are

added to the syntactic trees of the existing Penn Treebank,

which is mostly grammatical written text. Very recently,

the PropBank corpus has been used for semantic role label-

ing (SRL) at the CoNLL-2004 as the shared task [9]. SRL

aims to put “who did what to whom” kind of structures to

sentences without considering the application using this in-

formation. More formally, given a predicate of the sentence,

the goal of SRL is to identify all of its arguments and their

semantic roles.

The relationship between the arguments of the predi-

cates in a sentence and named entities have been previously

exploited by Surdeanu et al. [10], who have used SRL for

information extraction. In this paper, extending this idea,

we propose a spoken language understanding approach based

on task-independent semantic parsing of the utterances. The

goal is to extract the predicates and the associated argu-

ments from spoken language and design mapping rules to

map them to some output representation which the DM can

work with. This representation can be the same as or more

sophisticated than the intents motivated by the possible routes

in the application. We propose an iterative approach using

the automatically labeled utterances (by the mapping rules)

as the seed training data for intent classification. During

this process no manual labeling or labeling guide prepara-

tion is required and the only human intervention is during

the mapping rule design step, and it is miniscule compared

to the traditional approach.

In the following section we explain the task of semantic

role labeling in more detail. In Section 3 we present our

approach of using semantic role labels for natural language

understanding. Section 4 includes our experimental results

using the AT&T VoiceTone R spoken dialog system data [4].

2. SEMANTIC ROLE LABELING

In the CoNLL-2004 shared task, semantic role labeling is

defined as the task of analyzing the propositions expressed

by some target verbs of the sentence [9]. In particular, the

goal is to extract all the constituents which fill a semantic

role of a target verb. Typical semantic arguments include

Agent, Patient, Instrument, etc. and also adjuncts such as

Locative, Temporal, Manner, Cause, etc. In the PropBank

corpus, these arguments are given mnemonic names, such

as Arg0, Arg1, Arg-LOC, etc. For example, for the sen-

tence I have bought myself a blue jacket from your summer
catalog for twenty five dollars last week, the agent (buyer,

or Arg0) is I, the predicate is buy, the thing bought (Arg1) is

a blue jacket, the seller or source (Arg2) is from your sum-
mer catalog, the price paid (Arg3) is twenty five dollars, the

benefactive (Arg4) is myself, and the date (ArgM-TMP) is

last week1.

Semantic role labeling can be viewed as a multi-class

classification problem. Given a word (or phrase) and its fea-

tures, the goal is to output the most probable semantic role

label. As it can be seen from the shared task summary pa-

per [9], for this purpose, most researchers have used statisti-

cal classifiers with various syntactic and semantic features.

The methods have ranged from Support Vector Machines

(SVM) to Transformation-Based Error-Driven Learning to

Memory-Based Learning. Most approaches have focused

on extracting the most useful features for superior perfor-

mance and have seen the classification algorithms as black

boxes. PropBank corpus includes the semantic roles as well

as other linguistic information, which might be useful for

this task, such as part of speech tags of the words, named

entities, and syntactic parses of the sentences.

In this work, we have used the exact same feature set

that Hacioglu et al. [11] have used, since their system per-

formed the best among others. In their approach, all fea-

tures have contextual counterparts. For example the preced-

ing and following two words, or predicted semantic roles

are also used as features. Furthermore, instead of labeling

the semantic role of each word, we have also employed the

phrase-based labeling approach, where only the head words

of phrases are labeled. This assumes that all words in a

phrase have the same semantic role. Each phrase is rep-

resented with the features of the head word. This reduces

the number of tokens that have to be tagged and enables

the contextual features to span a larger portion of the sen-

tence. The features include token-level features (such as

the current (head) word, its part-of-speech tag, base phrase

type and position, etc.), predicate-level features (such as the

predicate’s lemma, frequency, part-of-speech tag, etc.) and

argument-level features which capture the relationship be-

tween the token (head word/phrase) and the predicate (such

as the syntactic path between the token and the predicate,

their distance, token position relative to the predicate, etc.).

Semantic role labeling of spoken utterances is a research

challenge just by itself, because of various reasons:

Noisy speech recognition: State of the art ASR sys-

tems operate with a word error rate of around 25% [4],

that is they misrecognize one out of every four words.

This is a big challenge for robust SRL.

Ungrammatical utterances with disfluencies: Unlike

the newspaper articles in the PropBank corpus, we ex-

pect the input utterances to be more casual and shorter,

but on the other hand very frequently ungrammatical

and including disfluencies, such as repetitions, cor-

rections, etc.

Open domain: Since the same SRL methods are go-

ing to be used for various SDS applications, such as

1See http://www.cis.upenn.edu/ dgildea/Verbs for more details
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Fig. 1. The semi-supervised spoken language understand-

ing approach.

customer care systems, automobile interaction sys-

tems, etc., we expect the SRL to be robust to domain

changes, and usable for many different applications

with an acceptable performance.

In the CoNLL-2004 shared task, researchers have found that

syntactic information, such as part of speech (POS) tags or

syntactic parses and semantic information, such as named

entities, are extremely useful for SRL [9]. Thus, we need

to syntactically preprocess an utterance and extract named

entities before semantically parsing it. This requires the fea-

ture extraction step (e.g., part of speech tagging) to face the

above problems, as well.

3. APPROACH

In order to build a domain-independent spoken language un-

derstanding system, we propose using the predicates and

their arguments provided by the semantic role labeling of

utterances. Once an utterance is semantically parsed, we

propose to extract the predicates and the related arguments

and use these predicates and some certain arguments as the

intents regardless of the application domain. This approach

ensures the consistency across various domains and eases

the job of the SDS design, which includes the determina-

tion of intents and the corresponding dialog flow. This also

means that there is no need for in-domain data manually la-

beled with intents or a labeling guide to be used by human

labelers. If some amount of in-domain data labeled with

semantic roles is provided this would improve the perfor-

mance of semantic role labeling, though it is not critical.

While building the application, the human expert is pro-

vided with the most frequent predicate/argument pairs from

the training data for the domain. We use the headwords

of the arguments in these pairs. The expert can then se-

lect certain predicate/argument pairs as intents by writing

some mapping rules. For instance, consider a spoken lan-

guage understanding application from a retail domain. One

intent would be placing an order. For example, the utter-

ance I would like to place an order would be assigned the

intent Place(Order). This is similar to the process of map-

ping a sentence to its logical form known as semantic in-

terpretation using semantic role labels [12]. Semantically

equivalent predicate/argument pairs such as make/order and

place/order may be grouped while designing the intents.

One issue with this approach is caused by utterances

with no predicates, such as the utterance account balance.

Another problem is that, due to noisy ASR output, the ut-

terance can not be parsed appropriately. In order to handle

such cases we propose an iterative approach as follows: The

training data is first labeled using the mapping rules. Then

a statistical call-type classification model can be trained us-

ing the portion of the training data automatically labeled by

the mapping rules. Using this model, the very same train-

ing data can be automatically re-labeled and the model can

be re-trained, until the training set labels converge. This

iterative process is depicted in Figure 1. Intuitively, us-

ing the iterative method, the statistical model can capture

more features related to the call-types and hence perform

better. For example, before the first round, the utterance

I’d like to know my account balance would be labeled as

Know(Balance) if there is such a rule for the predicate/argu-

ment pair know/balance. When a statistical classification

model is trained with such labeled utterances, other sim-

ilar utterances, such as account balance, may be labeled

automatically with the same call-type, hence increase the

amount and variability of the utterances in the training data.

4. EXPERIMENTS AND RESULTS

In this section we present the experiments and results to-

wards a task-independent SLU. First, we present the perfor-

mance of the Semantic Role Labeling system we have built

using the 2004 PropBank corpus, then we present experi-

mental results on using SRL for SLU.

4.1. PropBank Semantic Role Labeling Performance

We have trained a semantic role labeling classifier as de-

scribed in Section 2 using the PropBank corpus following

the CoNLL-2004 shared task. This is the Wall Street Jour-

nal part of the Penn Treebank corpus. The training set is

formed from Sections 15-18, and the test set from Section

20. The number of semantic roles is 79. As the classifier
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App. 1 App. 2
Training Set 10,000 utt. 29,577 utt.

Test Set 5,056 utt. 5,537 utt.

No. call-types 34 96

Avg. utt. length 9.2 words 9.9 words

ASR Word Accuracy (Test) 70.3% 73.8%

Table 1. Data set characteristics

we have used Boostexter with 2000 iterations [13]. As the

evaluation criteria, we have used the F-1 metric as defined in

the CoNLL-2004 shared task for each semantic role (which

requires both the boundary and the label to be correct) [9].

On the test set of the PropBank corpus, using a total of

113 features, we have got an F-1 value of 65.2%. Hacioglu

et al. has reported an F-1 value of 71.7% on this set [9]. Our

system is about 6.5% worse than theirs, though better than

most of the other participants. Aside from certain imple-

mentation details, this difference might be partly due to the

classifier we are using (Boostexter instead of SVM, since

the training time of the former was much shorter) and the

fact that we could only use less than 60% of the available

training data due to memory limitations introduced by this

specific implementation of Boosting.

4.2. SLU Experiments and Results

For our experiments we have used data from the retail and

pharmaceutical domains, collected by the AT&T VoiceTone

spoken dialog system used for customer care. Users usu-

ally call the retail system to purchase or return items, track,

change, or cancel their orders, or ask about store locations,

hours, etc. The other system is called mostly for refilling

drugs, ordering new prescriptions, etc. It has 3 times as

many call-types and training data utterances as the first one.

Table 1 summarizes the characteristics of these data sets.

4.2.1. Semantic Role Labeling Performance

As the POS and NE taggers, we have used simple HMM-

based taggers. In order to train the POS tagger, we have

used the Penn TreeBank corpus training set. For the NE

tagger we have used the MUC data [14]. We have employed

Collins’ parser [15], and used Buchholz’s chunklink script

to extract information from the parse trees2.

To identify the predicates we have used a simple rule: A

word is a predicate if its POS tag is a verb (except the verbs

be and have, in order to be consistent with PropBank cor-

pus). We have used a table look up to identify the predicate

lemma (base form).

In order to evaluate performance of SRL on this task, we

have manually annotated 285 manually transcribed utter-

2http://ilk.kub.nl/ sabine/chunklink/chunklink 2-2-2000 for conll.pl

Predicate Percent Example
place 79% place an order
order 9% order a jacket
make 4% make an order
put 1% put in an order

Table 2. Most frequent predicates for the purchase intent

from a retail domain customer care application.

ances. They include 645 predicates (2.3 predicates/utterance).

First we have computed recall and precision rates for eval-

uating the predicate identification performance. The preci-

sion is found to be 93.0% and recall is 91.2%. The vast

majority of the errors are caused by the POS tagger, which

is trained on newspaper domain. A typical example is the

word please, which is very frequent in customer care do-

main but erroneously tagged as verb in most cases, since it

is labeled erroneously or frequently occurs as a verb in the

Penn TreeBank. More than 90% of false alarms for predi-

cate extraction are due to this word. Most of the false rejec-

tions are due to disfluencies and ungrammatical utterances.

An example would be the utterance I’d like to order place
an order, where the predicate place is tagged as noun erro-

neously probably because of the preceding verb order.

Then we have evaluated the argument labeling perfor-

mance using a stricter measure than the CoNLL-2004 shared

task. We call the labeling as correct if both the boundary

and the role of all the arguments of a predicate are correct.

In this work, we have ignored the mistakes on Arg0, since

we can assume that the agent is mostly I, as in the utterance

checking the account balance. In our test set, we have found

out that our SRL tool correctly tags all arguments of 57.6%

of the predicates. The errors are mostly due to:

Disfluencies or sentence fragments (25%)

Missing some arguments (25%)

Assigning wrong argument labels (10%)

False alarms for predicate extraction (7%)

4.2.2. Call-type Classification Performance

As the next set of experiments we have only focused on

one intent, namely Make(Order), from the first application,

which covers utterances with purchase intents, such as I
would like to order a jacket. In our corpus, there are 7,765

utterances with that intent (about half of all utterances). We

were able to use 7,734 of them, since we could not parse the

remaining 0.4% due to fragmented and cut-off sentences, or

several sentences joined into one sentence. For this set of

utterances, the distribution of the most frequent predicates

are given in Table 2. For that call-type, one predicate (i.e.,

place) is very frequent, and there is a list of infrequent pred-

icates.
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Pred./Arg. pair, Arg. Type Call-type,
place/order Arg1 Make(Order) 0.77 0.96

make/order Arg1 Make(Order) 0.03 0.93

order/something Arg1 Make(Order) 0.02 0.86

check/order Arg1 Check(Order Status) 0.14 0.95

cancel/order Arg1 Cancel(Order) 0.07 0.95

check/status Arg1 Check(Order Status) 0.50 1.00

talk/someone Arg2 Talk(Human) 0.05 0.89

talk/somebody Arg2 Talk(Human) 0.5 0.91

Table 3. The most frequent predicate/argument pairs along with the associated call-types for the retail domain.

App. 1 App. 2
Trans. ASR Trans. ASR

R1 R2 R1 R2 R1 R2 R1 R2

Correct 56.7% 62.9% 28.1% 30.3% 42.62% 52.6% 26.3% 29.8%

No Pred/Arg 24.0% 24.0% 63.0% 63.0% 30.9% 30.9% 61.4% 61.4%

Error 3.8% 6.1% 1.7% 3.2% 6.3% 12.5% 2.8% 6.5%

No Rule 15.5% 7.0% 7.2% 3.5% 20.2% 4.0% 9.5% 2.3%

Table 4. Analysis of the call classification results using only the mapping rules using both manual and ASR transcriptions.

After these experiments, instead of considering a sin-

gle call-type, we used all utterances from this application.

The most frequent predicate/argument pairs are given in Ta-

ble 3. For each pair, , we compute its relation with the as-

sociated call-type, , designed by a human user experience

expert, using and . Note that for each pred-

icate/argument pair, there is a single call-type with a very

high probability, , but a call-type may be represented

by multiple pairs.

Next, we tried to perform call classification without any

labeled in-domain training data. We manually grouped the

most frequent predicate/argument pairs in the training data

into call-types forming the mapping rules, and computed

the accuracy of call classification on the test set using these.

Table 4 presents the results of the call classification on the

test set. We provide results using both human transcriptions

and ASR outputs in order to test the robustness of our ap-

proach to noisy ASR output. We have tried using 2 mapping

rule sets, R1 and R2. R2 is used for setting an upper bound

with this approach where all predicate/argument pairs found

in the training data are mapped to the most frequent call-

types which have those pairs. The more realistic scenario

is using R1, which consists of only the most frequent pred-

icate/argument pairs. R1 has 80 and 170 rules and R2 has

1014 and 3396 rules for Applications 1 and 2 respectively.

Some utterances had no predicate (such as customer service
please or account balance) or the parser was not able to out-

put predicate/argument pairs (as shown in No Pred/Arg row

in Table 4). The other reasons for classification mistakes

are incorrect mapping rules (Error) and absence of mapping

rules from predicate/argument pairs to calltypes (No Rule).

The absence of a mapping rule was mainly caused by data

sparseness and the absence of argument grouping. For ex-

ample, even though the pair order/pants was in the training

data, order/trousers was not. As can be seen from both this

table, the performances on ASR transcriptions using these

mapping rules are pretty low, mostly due to the lack of ro-

bustness of the semantic parser for the ASR errors.

Finally, we employed the proposed iterative approach.

The results are provided in Table 5. Even with one iter-

ation, there is a significant jump in the performance, espe-

cially for the ASR, since the model has become more robust

to ASR errors. With the upper-bound experiment, using an

extensive mapping rule set, we achieved around 90% (e.g.

79.7% instead of 88.7%) of the performance to that of the

supervised model. Using only a small rule set, this num-

ber reduces to only 86.5% on ASR transcriptions for both

applications.

5. CONCLUSIONS AND FUTURE WORK

We have presented a semi-supervised spoken language un-

derstanding approach depending on the semantic role labels

in an utterance. We have demonstrated the use of this ap-

proach using two real-life SDS applications from retail and

pharmaceutical domains. Using a small rule set, with no
labeled in-domain data, using both ASR output and human

transcriptions, for both applications, we have achieved the

86.5% of the performance of a model trained with thousands

of labeled utterances. We have seen that with manual tran-

scriptions, ungrammatical fragments and disfluencies cause

less problem than expected although the semantic role la-
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Iteration App. 1 App. 2
Trans. ASR Trans. ASR

R1 R2 R1 R2 R1 R2 R1 R2

0 56.7% 62.9% 28.1% 30.3% 42.6% 52.6% 26.3% 29.8%

1 76.6% 79.7% 71.1% 75.7% 66.8% 70.7% 63.4% 66.3%
2 74.2% 78.3% 71.5% 74.3% 67.4% 70.5% 64.2% 66.2%

3 74.0% - 71.5% - 67.6% - 64.4% -

SUPERVISED 88.7% 88.7% 82.7% 82.7% 81.8% 81.8% 74.4% 74.4%

Table 5. Call classification results for the iterative approach using both manual and ASR transcriptions with different rule

sets. The best performance for each case is marked with boldface.

beling tool and the underlying part of speech tagger, named

entity extractor, and syntactic parser are trained using tex-

tual data, mostly newspaper articles. We have seen that SRL

is good at handling the variation in input sentences. This is

mostly due to the fact that the utterances we deal with are

generally short and simple to process. Although semantic

parsing suffered from the ASR errors, the iterative approach

greatly eliminated this drawback.

Note that, the approach is expected to perform inferior

on infrequent call-types, which can be captured using an ac-

tive learning approach [16]. Furthermore, the verbs be and

have are not marked as predicates in the PropBank corpus.

This causes utterances such as I have a billing question to

have no predicate. For our SLU approach, we would like to

have these verbs as special predicates in order to distinguish

them from utterances which do not have a predicate.

As future work, we plan to improve the semantic role

labeler, especially using some labeled spoken dialog data,

and experiment with data from new domains. We also plan

to enhance input pre-processing module for cases such as

disfluencies. Another research direction is exploring tighter

integration of ASR and SLU for semantic role labeling and

necessary feature extraction such as part of speech tagging,

syntactic parsing, and named entity extraction. For exam-

ple, ASR output may be more than just the 1-best string

(best hypothesis), and also include multiple hypotheses, as

well as word confidence scores, which provide an estimate

of the correctness of the recognized words.
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