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ABSTRACT

In a goal-oriented spoken dialog system, the major aim of
language understanding is to classify utterances into one
or more of the pre-defined intents and extract the associ-
ated named entities. Typically, the intents are designed by
a human expert according to the application domain. Fur-
thermore, these systems are trained using large amounts of
data manually labeled using an already prepared labeling
guide. In this paper, we propose a semi-supervised spo-
ken language understanding approach based on the task-
independent semantic role labeling of the utterances. The
goal is to extract the predicates and the associated argu-
ments from spoken language by using semantic role label-
ing and determine the intents based on these predicate/argu-
ment pairs. We propose an iterative approach using the au-
tomatically labeled utterances with semantic roles as the
seed training data for intent classification. We have eval-
uated this understanding approach using two AT&T spo-
ken dialog system applications used for customer care. We
have shown that the semantic parses obtained without using
any syntactically or semantically labeled in-domain data can
represent the semantic intents without a need for manual
intent and labeling guide design and labeling phases. Us-
ing this approach on automatic speech recognizer transcrip-
tions, for both applications, we have achieved the 86.5% of
the performance of a classification model trained with thou-
sands of labeled utterances.

1. INTRODUCTION

Spoken language understanding aims to extract the mean-
ing of the speech utterances. In the last decade, a variety of
practical goal-oriented spoken dialog systems (SDS) have
been built for call routing [3, 4, 5, 6, among others]. These
systems aim to identify intents of humans, expressed in nat-
ural language, and take actions accordingly, to satisfy their
request. In such systems, typically, first the speaker’s ut-
terance is recognized using an automatic speech recognizer
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(ASR). Then, the intent (call-type) of the speaker is identi-
fied from the recognized sequence, using a spoken language
understanding (SLU) component. Finally, the role of the di-
alog manager (DM) is to interact with the user in a natural
way and help the user to achieve the task that the system is
designed to support. As an example, consider the utterance /
have a question about my bill. Assuming that the utterance
is recognized correctly, the corresponding intent would be
Ask(Bill). Then the action that needs to be taken depends on
the DM. It may ask the user to further specify the problem
or route this call to the billing department.

For call-type classification, one can use a domain-de-
pendent statistical approach as in the previous work. But
this approach has some serious drawbacks. First, training
statistical models for intent classification requires large a-
mounts of labeled in-domain data, which is very expensive
and time-consuming to prepare. By “labeling”, we mean
assigning one or more of the predefined call-type(s) to each
utterance using a labeling guide. Moreover, the prepara-
tion of the labeling guide (i.e., designing the intents and the
guidelines) for a given spoken language understanding task
is also time-consuming and involves non-trivial design de-
cisions. If rule-based methods are used for these tasks, this
requires significant human expertise, therefore has similar
problems. These decisions depend on the expert who is de-
signing the task structure and the frequency of the intents
for a given task. Furthermore, one expects the intents to
be clearly defined in order to ease the job of the classifier
and the human labelers. Another issue is the consistency
between different tasks. This is important for manually la-
beling the data quickly and correctly and making the labeled
data re-usable across different applications. For example in
most applications, utterances like I want fo talk to a human
not a machine appear and they can be processed similarly.

On the other hand, in the computational linguistics do-
main, task independent semantic representations have been
proposed since the last few decades. Two notable studies
are FrameNet [7] and PropBank [8] projects. In this pa-
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per we focus on the Propbank project, which aims at cre-
ating a corpus of text annotated with information about ba-
sic semantic propositions. Predicate/argument relations are
added to the syntactic trees of the existing Penn Treebank,
which is mostly grammatical written text. Very recently,
the PropBank corpus has been used for semantic role label-
ing (SRL) at the CoNLL-2004 as the shared task [9]. SRL
aims to put “who did what to whom” kind of structures to
sentences without considering the application using this in-
formation. More formally, given a predicate of the sentence,
the goal of SRL is to identify all of its arguments and their
semantic roles.

The relationship between the arguments of the predi-
cates in a sentence and named entities have been previously
exploited by Surdeanu et al. [10], who have used SRL for
information extraction. In this paper, extending this idea,
we propose a spoken language understanding approach based
on task-independent semantic parsing of the utterances. The
goal is to extract the predicates and the associated argu-
ments from spoken language and design mapping rules to
map them to some output representation which the DM can
work with. This representation can be the same as or more
sophisticated than the intents motivated by the possible routes
in the application. We propose an iterative approach using
the automatically labeled utterances (by the mapping rules)
as the seed training data for intent classification. During
this process no manual labeling or labeling guide prepara-
tion is required and the only human intervention is during
the mapping rule design step, and it is miniscule compared
to the traditional approach.

In the following section we explain the task of semantic
role labeling in more detail. In Section 3 we present our
approach of using semantic role labels for natural language
understanding. Section 4 includes our experimental results
using the AT&T VoiceTone® spoken dialog system data [4].

2. SEMANTIC ROLE LABELING

In the CoNLL-2004 shared task, semantic role labeling is
defined as the task of analyzing the propositions expressed
by some target verbs of the sentence [9]. In particular, the
goal is to extract all the constituents which fill a semantic
role of a target verb. Typical semantic arguments include
Agent, Patient, Instrument, etc. and also adjuncts such as
Locative, Temporal, Manner, Cause, etc. In the PropBank
corpus, these arguments are given mnemonic names, such
as Arg0, Argl, Arg-LOC, etc. For example, for the sen-
tence I have bought myself a blue jacket from your summer
catalog for twenty five dollars last week, the agent (buyer,
or Arg0) is I, the predicate is buy, the thing bought (Argl) is
a blue jacket, the seller or source (Arg?2) is from your sum-
mer catalog, the price paid (Arg3) is twenty five dollars, the
benefactive (Arg4) is myself, and the date (ArgM-TMP) is
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last week'.

Semantic role labeling can be viewed as a multi-class
classification problem. Given a word (or phrase) and its fea-
tures, the goal is to output the most probable semantic role
label. As it can be seen from the shared task summary pa-
per [9], for this purpose, most researchers have used statisti-
cal classifiers with various syntactic and semantic features.
The methods have ranged from Support Vector Machines
(SVM) to Transformation-Based Error-Driven Learning to
Memory-Based Learning. Most approaches have focused
on extracting the most useful features for superior perfor-
mance and have seen the classification algorithms as black
boxes. PropBank corpus includes the semantic roles as well
as other linguistic information, which might be useful for
this task, such as part of speech tags of the words, named
entities, and syntactic parses of the sentences.

In this work, we have used the exact same feature set
that Hacioglu et al. [11] have used, since their system per-
formed the best among others. In their approach, all fea-
tures have contextual counterparts. For example the preced-
ing and following two words, or predicted semantic roles
are also used as features. Furthermore, instead of labeling
the semantic role of each word, we have also employed the
phrase-based labeling approach, where only the head words
of phrases are labeled. This assumes that all words in a
phrase have the same semantic role. Each phrase is rep-
resented with the features of the head word. This reduces
the number of tokens that have to be tagged and enables
the contextual features to span a larger portion of the sen-
tence. The features include token-level features (such as
the current (head) word, its part-of-speech tag, base phrase
type and position, etc.), predicate-level features (such as the
predicate’s lemma, frequency, part-of-speech tag, etc.) and
argument-level features which capture the relationship be-
tween the token (head word/phrase) and the predicate (such
as the syntactic path between the token and the predicate,
their distance, token position relative to the predicate, etc.).

Semantic role labeling of spoken utterances is a research
challenge just by itself, because of various reasons:

e Noisy speech recognition: State of the art ASR sys-
tems operate with a word error rate of around 25% [4],
that is they misrecognize one out of every four words.
This is a big challenge for robust SRL.

o Ungrammatical utterances with disfluencies: Unlike
the newspaper articles in the PropBank corpus, we ex-
pect the input utterances to be more casual and shorter,
but on the other hand very frequently ungrammatical
and including disfluencies, such as repetitions, cor-
rections, etc.

e Open domain: Since the same SRL methods are go-
ing to be used for various SDS applications, such as
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Fig. 1. The semi-supervised spoken language understand-
ing approach.

customer care systems, automobile interaction sys-
tems, etc., we expect the SRL to be robust to domain
changes, and usable for many different applications
with an acceptable performance.

In the CoNLL-2004 shared task, researchers have found that
syntactic information, such as part of speech (POS) tags or
syntactic parses and semantic information, such as named
entities, are extremely useful for SRL [9]. Thus, we need
to syntactically preprocess an utterance and extract named
entities before semantically parsing it. This requires the fea-
ture extraction step (e.g., part of speech tagging) to face the
above problems, as well.

3. APPROACH

In order to build a domain-independent spoken language un-
derstanding system, we propose using the predicates and
their arguments provided by the semantic role labeling of
utterances. Once an utterance is semantically parsed, we
propose to extract the predicates and the related arguments
and use these predicates and some certain arguments as the
intents regardless of the application domain. This approach
ensures the consistency across various domains and eases
the job of the SDS design, which includes the determina-
tion of intents and the corresponding dialog flow. This also
means that there is no need for in-domain data manually la-
beled with intents or a labeling guide to be used by human
labelers. If some amount of in-domain data labeled with
semantic roles is provided this would improve the perfor-
mance of semantic role labeling, though it is not critical.

While building the application, the human expert is pro-
vided with the most frequent predicate/argument pairs from
the training data for the domain. We use the headwords
of the arguments in these pairs. The expert can then se-
lect certain predicate/argument pairs as intents by writing
some mapping rules. For instance, consider a spoken lan-
guage understanding application from a retail domain. One
intent would be placing an order. For example, the utter-
ance I would like to place an order would be assigned the
intent Place(Order). This is similar to the process of map-
ping a sentence to its logical form known as semantic in-
terpretation using semantic role labels [12]. Semantically
equivalent predicate/argument pairs such as make/order and
place/order may be grouped while designing the intents.

One issue with this approach is caused by utterances
with no predicates, such as the utterance account balance.
Another problem is that, due to noisy ASR output, the ut-
terance can not be parsed appropriately. In order to handle
such cases we propose an iterative approach as follows: The
training data is first labeled using the mapping rules. Then
a statistical call-type classification model can be trained us-
ing the portion of the training data automatically labeled by
the mapping rules. Using this model, the very same train-
ing data can be automatically re-labeled and the model can
be re-trained, until the training set labels converge. This
iterative process is depicted in Figure 1. Intuitively, us-
ing the iterative method, the statistical model can capture
more features related to the call-types and hence perform
better. For example, before the first round, the utterance
I'd like to know my account balance would be labeled as
Know(Balance) if there is such a rule for the predicate/argu-
ment pair know/balance. When a statistical classification
model is trained with such labeled utterances, other sim-
ilar utterances, such as account balance, may be labeled
automatically with the same call-type, hence increase the
amount and variability of the utterances in the training data.

4. EXPERIMENTS AND RESULTS

In this section we present the experiments and results to-
wards a task-independent SLU. First, we present the perfor-
mance of the Semantic Role Labeling system we have built
using the 2004 PropBank corpus, then we present experi-
mental results on using SRL for SLU.

4.1. PropBank Semantic Role Labeling Performance

We have trained a semantic role labeling classifier as de-
scribed in Section 2 using the PropBank corpus following
the CoNLL-2004 shared task. This is the Wall Street Jour-
nal part of the Penn Treebank corpus. The training set is
formed from Sections 15-18, and the test set from Section
20. The number of semantic roles is 79. As the classifier



App. 1 App. 2
Training Set 10,000 utt. | 29,577 utt.
Test Set 5,056 utt. 5,537 utt.
No. call-types 34 96
Avg. utt. length 9.2 words | 9.9 words
ASR Word Accuracy (Test) 70.3% 73.8%

Table 1. Data set characteristics

we have used Boostexter with 2000 iterations [13]. As the
evaluation criteria, we have used the F-1 metric as defined in
the CoNLL-2004 shared task for each semantic role (which
requires both the boundary and the label to be correct) [9].

On the test set of the PropBank corpus, using a total of
113 features, we have got an F-1 value of 65.2%. Hacioglu
et al. has reported an F-1 value of 71.7% on this set [9]. Our
system is about 6.5% worse than theirs, though better than
most of the other participants. Aside from certain imple-
mentation details, this difference might be partly due to the
classifier we are using (Boostexter instead of SVM, since
the training time of the former was much shorter) and the
fact that we could only use less than 60% of the available
training data due to memory limitations introduced by this
specific implementation of Boosting.

4.2. SLU Experiments and Results

For our experiments we have used data from the retail and
pharmaceutical domains, collected by the AT&T VoiceTone
spoken dialog system used for customer care. Users usu-
ally call the retail system to purchase or return items, track,
change, or cancel their orders, or ask about store locations,
hours, etc. The other system is called mostly for refilling
drugs, ordering new prescriptions, etc. It has 3 times as
many call-types and training data utterances as the first one.
Table 1 summarizes the characteristics of these data sets.

4.2.1. Semantic Role Labeling Performance

As the POS and NE taggers, we have used simple HMM-
based taggers. In order to train the POS tagger, we have
used the Penn TreeBank corpus training set. For the NE
tagger we have used the MUC data [14]. We have employed
Collins’ parser [15], and used Buchholz’s chunk1ink script
to extract information from the parse trees>.

To identify the predicates we have used a simple rule: A
word is a predicate if its POS tag is a verb (except the verbs
be and have, in order to be consistent with PropBank cor-
pus). We have used a table look up to identify the predicate
lemma (base form).

In order to evaluate performance of SRL on this task, we
have manually annotated 285 manually transcribed utter-
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Predicate | Percent | Example
place 79% place an order
order 9% order a jacket
make 4% make an order
put 1% put in an order

Table 2. Most frequent predicates for the purchase intent
from a retail domain customer care application.

ances. They include 645 predicates (2.3 predicates/utterance).
First we have computed recall and precision rates for eval-
uating the predicate identification performance. The preci-
sion is found to be 93.0% and recall is 91.2%. The vast
majority of the errors are caused by the POS tagger, which
is trained on newspaper domain. A typical example is the
word please, which is very frequent in customer care do-
main but erroneously tagged as verb in most cases, since it
is labeled erroneously or frequently occurs as a verb in the
Penn TreeBank. More than 90% of false alarms for predi-
cate extraction are due to this word. Most of the false rejec-
tions are due to disfluencies and ungrammatical utterances.
An example would be the utterance I'd like to order place
an order, where the predicate place is tagged as noun erro-
neously probably because of the preceding verb order.

Then we have evaluated the argument labeling perfor-
mance using a stricter measure than the CoNLL-2004 shared
task. We call the labeling as correct if both the boundary
and the role of all the arguments of a predicate are correct.
In this work, we have ignored the mistakes on Arg0, since
we can assume that the agent is mostly /, as in the utterance
checking the account balance. In our test set, we have found
out that our SRL tool correctly tags all arguments of 57.6%
of the predicates. The errors are mostly due to:

Disfluencies or sentence fragments (25%)

Missing some arguments (25%)

e Assigning wrong argument labels (10%)

False alarms for predicate extraction (7%)

4.2.2. Call-type Classification Performance

As the next set of experiments we have only focused on
one intent, namely Make(Order), from the first application,
which covers utterances with purchase intents, such as [
would like to order a jacket. In our corpus, there are 7,765
utterances with that intent (about half of all utterances). We
were able to use 7,734 of them, since we could not parse the
remaining 0.4% due to fragmented and cut-off sentences, or
several sentences joined into one sentence. For this set of
utterances, the distribution of the most frequent predicates
are given in Table 2. For that call-type, one predicate (i.e.,
place) is very frequent, and there is a list of infrequent pred-
icates.



Pred./Arg. pair, p | Arg. Type | Call-type, c P(ple) | P(clp)
place/order Argl Make(Order) 0.77 0.96
make/order Argl Make(Order) 0.03 0.93
order/something Argl Make(Order) 0.02 0.86
check/order Argl Check(Order_Status) 0.14 0.95
cancel/order Argl Cancel(Order) 0.07 0.95
check/status Argl Check(Order_Status) 0.50 1.00
talk/someone Arg2 Talk(Human) 0.05 0.89
talk/somebody Arg2 Talk(Human) 0.5 0.91
Table 3. The most frequent predicate/argument pairs along with the associated call-types for the retail domain.
App. 1 App. 2
Trans. ASR Trans. ASR
R1 R2 R1 R2 R1 R2 R1 R2

Correct 56.7% | 62.9% | 28.1% | 30.3% || 42.62% | 52.6% | 26.3% | 29.8%

No Pred/Arg | 24.0% | 24.0% | 63.0% | 63.0% || 30.9% | 30.9% | 61.4% | 61.4%

Error 38% | 6.1% 1.7% | 3.2% 6.3% 12.5% | 2.8% | 6.5%

No Rule 155% | 7.0% | 72% | 3.5% 202% | 4.0% | 95% | 2.3%

Table 4. Analysis of the call classification results using only the mapping rules using both manual and ASR transcriptions.

After these experiments, instead of considering a sin-
gle call-type, we used all utterances from this application.
The most frequent predicate/argument pairs are given in Ta-
ble 3. For each pair, p, we compute its relation with the as-
sociated call-type, ¢, designed by a human user experience
expert, using P(p|c) and P(c|p). Note that for each pred-
icate/argument pair, there is a single call-type with a very
high probability, P(c|p), but a call-type may be represented
by multiple pairs.

Next, we tried to perform call classification without any
labeled in-domain training data. We manually grouped the
most frequent predicate/argument pairs in the training data
into call-types forming the mapping rules, and computed
the accuracy of call classification on the test set using these.
Table 4 presents the results of the call classification on the
test set. We provide results using both human transcriptions
and ASR outputs in order to test the robustness of our ap-
proach to noisy ASR output. We have tried using 2 mapping
rule sets, R1 and R2. R2 is used for setting an upper bound
with this approach where all predicate/argument pairs found
in the training data are mapped to the most frequent call-
types which have those pairs. The more realistic scenario
is using R1, which consists of only the most frequent pred-
icate/argument pairs. R1 has 80 and 170 rules and R2 has
1014 and 3396 rules for Applications 1 and 2 respectively.
Some utterances had no predicate (such as customer service
please or account balance) or the parser was not able to out-
put predicate/argument pairs (as shown in No Pred/Arg row
in Table 4). The other reasons for classification mistakes
are incorrect mapping rules (Error) and absence of mapping
rules from predicate/argument pairs to calltypes (No Rule).
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The absence of a mapping rule was mainly caused by data
sparseness and the absence of argument grouping. For ex-
ample, even though the pair order/pants was in the training
data, order/trousers was not. As can be seen from both this
table, the performances on ASR transcriptions using these
mapping rules are pretty low, mostly due to the lack of ro-
bustness of the semantic parser for the ASR errors.

Finally, we employed the proposed iterative approach.
The results are provided in Table 5. Even with one iter-
ation, there is a significant jump in the performance, espe-
cially for the ASR, since the model has become more robust
to ASR errors. With the upper-bound experiment, using an
extensive mapping rule set, we achieved around 90% (e.g.
79.7% instead of 88.7%) of the performance to that of the
supervised model. Using only a small rule set, this num-
ber reduces to only 86.5% on ASR transcriptions for both
applications.

5. CONCLUSIONS AND FUTURE WORK

We have presented a semi-supervised spoken language un-
derstanding approach depending on the semantic role labels
in an utterance. We have demonstrated the use of this ap-
proach using two real-life SDS applications from retail and
pharmaceutical domains. Using a small rule set, with no
labeled in-domain data, using both ASR output and human
transcriptions, for both applications, we have achieved the
86.5% of the performance of a model trained with thousands
of labeled utterances. We have seen that with manual tran-
scriptions, ungrammatical fragments and disfluencies cause
less problem than expected although the semantic role la-



Iteration App. 1 App. 2
Trans. ASR Trans. ASR
R1 R2 R1 R2 R1 R2 R1 R2

0 56.7% | 62.9% | 28.1% | 30.3% | 42.6% | 52.6% | 26.3% | 29.8%
1 76.6% | 79.7% | 71.1% | 75.7% | 66.8% | 70.7% | 63.4% | 66.3%
2 742% | 78.3% | 11.5% | 743% || 67.4% | 70.5% | 64.2% | 66.2%
3 74.0% - 71.5% - 67.6% - 64.4% -

SUPERVISED | 88.7% | 88.7% | 82.7% | 82.7% | 81.8% | 81.8% | 74.4% | 74.4%

Table 5. Call classification results for the iterative approach using both manual and ASR transcriptions with different rule
sets. The best performance for each case is marked with boldface.

beling tool and the underlying part of speech tagger, named
entity extractor, and syntactic parser are trained using tex-
tual data, mostly newspaper articles. We have seen that SRL
is good at handling the variation in input sentences. This is
mostly due to the fact that the utterances we deal with are
generally short and simple to process. Although semantic
parsing suffered from the ASR errors, the iterative approach
greatly eliminated this drawback.

Note that, the approach is expected to perform inferior
on infrequent call-types, which can be captured using an ac-
tive learning approach [16]. Furthermore, the verbs be and
have are not marked as predicates in the PropBank corpus.
This causes utterances such as I have a billing question to
have no predicate. For our SLU approach, we would like to
have these verbs as special predicates in order to distinguish
them from utterances which do not have a predicate.

As future work, we plan to improve the semantic role
labeler, especially using some labeled spoken dialog data,
and experiment with data from new domains. We also plan
to enhance input pre-processing module for cases such as
disfluencies. Another research direction is exploring tighter
integration of ASR and SLU for semantic role labeling and
necessary feature extraction such as part of speech tagging,
syntactic parsing, and named entity extraction. For exam-
ple, ASR output may be more than just the 1-best string
(best hypothesis), and also include multiple hypotheses, as
well as word confidence scores, which provide an estimate
of the correctness of the recognized words.
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