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Abstract

The task of grouping word definitions from ESL (English as a
Second Language) dictionaries based on the similarity of their
meanings is the focus of this work. It is demonstrated that
lexical features and unsupervised machine learning algorithms
can be effectively used to approach this problem. Analysis of
the efficacy of this methodology for this task and the involved
data which consists of very short and very few definitions per
group is provided.

Index Terms: Clustering, Unsupervised machine learning,
Computer Assisted Language Learning

1. Introduction

The REAP tutoring system [1] provides assistance to ESL
students to improve their vocabulary. For every grade level a
human teacher provides a list of words (focus-words) that the
students should learn and practice in an academic semester.
These words are drawn from the AWL (Academic Word List).
Currently, it is this set of focus-words that REAP assists the
students with. The approach is to teach the focus-words using
descriptive methods in addition to prescriptive methods. This is
achieved by providing reading material that demonstrates usage
of one or more focus-words in real text and thus effectively
implements context-based teaching. Reading material is selected
from the World Wide Web (WWW). The suitability of the
reading material is maintained by selecting only those
documents from the WWW that stand the tests of various
automatic filters implemented in the REAP system, for instance,
text-quality filter, reading-level filter and document length filter.
To maximize the time on task, documents containing multiple
focus-words are preferred. Students can also provide topical
preferences such as, Arts, Science, and Sports, which are taken
into consideration by the system while choosing the documents
for the student. As such, the focus is on improving student’s
vocabulary by showing the words in their natural neighborhood
instead of in isolation and further more providing the words in
student preferred context (the topic preference) and thus
increasing the student motivation as well.

A more direct source of word’s meaning, an ESL dictionary,
a machine readable version of the Cambridge Advanced
Learners Dictionary (CALD) [2] is integrated in REAP.
Students can use CALD while they read a given document, to
lookup the focus or non-focus words. After a student has
finished reading a document he/she is presented with multiple
choice definition questions where the task is to select the most

appropriate definition for a focus-word that the student read in
the document, from the given set of five definitions. The correct
definition and the four distractor definitions are selected from a
different ESL dictionary namely, the Longmans Dictionary of
Contemporary English (LDOCE) [3]. Using two dictionaries
allows us to measure the student’s ability to transfer his/her
learning. This however requires that the two dictionary
definitions be aligned, that is, for each word-definition in
CALD the corresponding LDOCE word-definition(s) that
conveys the similar meaning have to be known. Our work in
direction of dictionary definition alignment using unsupervised
machine learning techniques is described in this paper.

2. Methodology

The problem of definition alignment can be transformed into
that of clustering polysemous (same/similar meaning)
definitions. As a result the requirement of learning an alignment
function changes to learning similarity function. Formulating
the problem in similarity space allows us to use traditional
lexical similarity measures such as word-overlap, cosine
similarity which are described in the Section 2.2. From a
different perspective the definition alignment problem can also
be viewed as a task of separating homonym (distinct meaning)
definitions into different groups where the alignment function
would get transformed to a distance function.

For example given the definitions for the word grant from
CALD and LDOCE in Figure 1 our goal is to group these
definitions such that 3 groups, each containing the polysemous
definitions ({1,a},{2,b},{3,c}) from the two dictionaries are
created.

CALD Definitions:

1. asum of money given especially by the government to a person or
organization for a special purpose

2. to give or allow someone something, usually in an official way

3. to accept that something is true, often before expressing an
opposite opinion

LDOCE Definitions:

a. an amount of money given to someone, especially by the
government for a particular purpose

b. to give someone something that they have asked for, especially
official permission to do something

c.  to admit that something is true although it does not make much
difference to your opinion

Figure 1 CALD and LDOCE definitions for the word “grant”
The following sub-sections provide the details about the data
and the methodology.



2.1. Data Description

The dataset consists of 383 definitions for 80 words from CALD
and LDOCE. The gold standard was created by manually
grouping the 383 definitions into 192 polysemy groups.
Although the definition and group numbers have been specified
in total the grouping was done at word-level, that is, a definition
for wordl from either of the dictionaries was never grouped
with definition for word2, from either of the dictionaries. 90
groups have 2 data-points, 33 groups have 3 data-points, 6
groups have 4 data-points, 3 groups have 5 data-points and 1
class has 6 data-points and 59 groups have 1 data-point. The
majority of the single data-point groups consist of definitions
from LDOCE which indicates that LDOCE has better word-
sense coverage than CALD. On an average each definition
consists of 12 words.

2.2. Features

Each data-point in this task is a short sentence or phrase. Since
both dictionaries, CALD and LDOCE are specifically designed
for ESL students the vocabulary used by the lexicographers to
author the definitions is restricted or controlled. The exact
information about how much the two controlled vocabulary sets
overlap or differ is not available. Nonetheless this provided a
motivation for using lexical similarity measures for capturing
the similarity between a given pair of definitions. The following
feature types have been experimented with:

1. Raw word-overlap w/ and w/o stopwords;
2. Normalized word overlap w/ and w/o stopwords;

3. Cosine similarity w/ and w/o stopwords
The raw word-overlap captures the number of words common to
both the definitions of the pair under consideration. The
assumption here is that larger the number of common words
between the two definitions greater is the chance of them being
polysemous.

The normalized word-overlap feature bounds the overlap
scores to the range of [0,1] by scaling with respect to the
definitions’ length (in words). Performing normalization w.r.t.
the definitions’ length provides a principled way of removing
the bias towards longer definitions and also makes the similarity
scores easily understandable and comparable. For example, it
might not be obvious that an overlap of 4 words between
definitions with lengths 10 and 12 is smaller than an overlap of
3 words between definitions of lengths 7 each. The following
formulation was used to compute the normalized word-overlap
(nwo) score between definitions d* and d°:

rwo(d*,d”) 9 rwo(d*,d")

2 ld| 1d"|
nwo(d®,d") = - -
rwo(d*,d )+rw0(d“,d )
Id®| ld”|

where, rwo stands for the raw word overlap count between
definitions d* and d” and 4"l gives the length of the definition x
in words. The multiplier (2) in the numerator takes care of
scaling the score to 1 in the best case of complete overlap.

The cosine similarity score is computed by first representing
each definition in terms of unique words that occur in the
definitions (vocabulary of the dataset: n), this is often referred to
as the “bag-of-words” approach since the order of occurrence of
words is not captured in this type of representation of the data-

points. The resulting definition representation can be viewed as
a vector where each unique word corresponds to a dimension
and each definition vector has some magnitude (0 or more) in
each of these dimensions. Once these definition vectors are
created the cosine similarity score for each definition pair is
computed using the following formulation:
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where, n is the dimension of each of the definition vectors d*.

All the above feature types are lexically motivated, in other
words, any form of syntactic information is not explicitly used.
The utility of the closed-class words such as articles and
prepositions (stopwords) in combination to the above lexical
features was experimented by using each of the feature types
with and without stopwords. Keeping in mind the short lengths
of our data-points, a conservative stop-list (list of stopwords)
consisting only of the following function words: articles (a, an,
the) and prepositions (of, to, in, for, on, with, as, by, at, from)
and an auxiliary verb be was used.

It is important to note that each of the above features is
symmetric, that is, feat(d®,d’) = feat(d’,d). As a result each of
them can be represented as a symmetric adjacency matrix W of
mXm dimensions where m is the number of definitions to be
grouped.

2.3. Algorithms

Different types of unsupervised clustering algorithms to group
the definitions have been experimented. The inherent data
sparsity in this task has guided most of the experimental design
choices made. As specified in section 2.1 majority of the groups
contain less than 5 definitions. This pattern or property of low
definition density in clusters is not specific to the current dataset
but is a property of the task. Thus datasets with larger number of
words would not change this scenario. It is difficult to learn
reliable classification models using supervised machine learning
algorithms when only small amount of training data is available.
This is so because such models do not generalize well on unseen
data, in other words, they overfit the training data [5]. Taking
these issues into consideration supervised machine learning
algorithms were not experimented with.

The building-blocks of our experimental design are K-means
(flat-clustering), Hierarchical clustering and Spectral clustering.
The following combinations of these three algorithms have been
explored:

1. K-means [6].
Spectral clustering (Ng et. al [8]) followed by K-means.

3. Spectral clustering followed by Hierarchical clustering
(Ward’s algorithm [7]).

4. Spectral clustering followed by Spectral -clustering
followed by K-means.

5. Spectral clustering followed by Spectral clustering
followed by Hierarchical clustering.

K-means algorithm [6] starts with k random cluster means,
where k is specified by the user and all the data-points (here
definitions) are assigned to the closest cluster mean. The



Table 1 Results in terms of clustering error

Algorithm raw word- | raw word- | normalized normalized cosine  with | cosine wlo
overlap with | overlap w/o | word-overlap | word-overlap | stopwords stopwords
stopwords stopwords with w/o
stopwords stopwords
K-means 0.290 0.245 0.305 0.243 0.290 0.258
NJW-Kmeans 0.316 0.331 0.232 0.201 0.245 0.193
NJW-Ward 0.311 0.324 0.230 0.198 0.240 0.188
NJW-NJW-Kmeans 0.284 0.298 0.251 0.214 0.242 0.211
NJW-NJW-Ward 0.290 0.308 0.253 0.217 0.248 0.211

definition of closeness used here is cosine similarity. Next, each
of the data-point is re-assigned to a cluster if doing so improves
the overall similarity score. The cluster mean is recomputed
every time a new data-point is assigned to that cluster. The re-
assigning process is repeated until no more re-assignments
occur or 100 times, to avoid local optimums

The Ward’s algorithm [7] starts with each data-point
(definition) in its own cluster and at every step merges a pair of
clusters that leads to minimal loss in information, which is
measured by the error sum-of-squares criterion. This process
yields a taxonomy of clusters.

The spectral clustering algorithm proposed by Ng et. al [8]
first transforms the higher dimensional feature vectors (m) to a
lower spectral dimension (k) and then clusters the lower
dimensional data. More specifically, given a symmetric
similarity/affinity matrix (W) of mXm dimensions, a diagonal
matrix (D), which is sum of every row of the affinity matrix
placed along the diagonal, is computed. A Laplacian matrix (L
= D'”W D% is computed and its eigen-components are
computed. The eigenvectors corresponding to the top k
eigenvalues are selected to be represented as columns of a new
matrix (X) and then the rows of X are normalized to have unit
length. The rows of this normalized matrix are now clustered as
one would cluster the original data-points; however, the
dimension of each of the new vector is k£ and not m. The top
eigenvectors correspond to the dimensions of largest variance,
that is, the dimensions along which the most information is
present. The lower-ranked vectors are typically viewed as
containing noise or insignificant amount of information and thus
discarding these dimensions leads to purer clusters.

Hence forth the above method will be referred to as NJW.
As describe above NJW consists of two steps: dimensionality
reduction and then clustering in the reduced dimensions. We
experiment with K-means and Ward clustering in the second
step of the NJW. We have also re-applied NJW in the spectral
dimension with the intention of investigating if applying NJW in
the reduced spectral space further adds any value. This
experimental setup is based on [6].

Each of the above algorithms is applied to the adjacency
matrix created by each of the above described feature set
separately to compare the effectiveness of each of the feature set
and the algorithm. The number of clusters were set manually in
all these experiments. Automating the choice of number of
clusters will be a part of the future work.

3. Results and Discussion

Table 1 presents the results of the five clustering algorithms
(rows) when used with the six feature types (columns). The
results are in terms of the clustering error which is a ratio of

number of misclassified definitions and the total number of
definitions (383). For the feature type of raw word-overlap the
spectral clustering algorithm NJW does not improve the
performance, in fact directly using the K-means algorithm is
most effective. As described earlier Spectral clustering uses
Eigen system and thus normalization of the data has a positive
effect on the clustering quality.

When using the normalized word-overlap feature it is
evident that transforming to lower dimensions using spectral
clustering (NJW) before applying either, flat-clustering (K-
means) or hierarchical clustering (Ward) is useful.

K-means is known to find locally optimal clustering solution
while hierarchical clustering strives for globally optimal
clustering solution the effect of which is reflected in their
performances. Performing multiple iterations of spectral
clustering  over-applies the  dimensionality reduction
methodology and leads to loss of information and not just noise
and thus overall does not help.

The efficacy of the cosine similarity feature type indicates
that it is useful to represent the definitions in terms of the
datasets vocabulary and measure the similarity along these
dimensions instead of simply pooling together the word-overlap
counts along any of the dimensions (among any words). K-
means assumes that the data to be clustered is normally
distributed at each cluster. The large reduction in the clustering
error when using NJW, K-means and cosine instead of simply
K-means and cosine indicates that the transformation caused by
NJW makes the data Normal or near-Normal in the lower
dimensions.

Overall it is evident that applying spectral clustering and
thus re-representing the definitions in the reduced space in terms
of their eigenvectors does help. Pre-processing the definitions to
remove the stopwords all shows positive effect.

Evaluating clustering performance is often tricky because
clustering is a very subjective task and thus any gold standard is
unlikely to be universally accepted. Also since the gold standard
was created by a single coder, inter-coder agreement is not
available. Thus to gain further insight about our above results
we examine the best case NWC (NJW-Ward + cosine without
stopwords) in more details.

The metric used for computing the clustering error reported
in the above tables penalizes cases where members of originally
one cluster were split by the clustering algorithm into 2 or more
pure clusters. Instead, if we measure the performance of the
clustering algorithm in terms of the impurity of the generated
clusters then for the best case NWC, the error drops down to
0.1201 (46/383), where 46 is the number of definitions that
made an otherwise pure cluster impure, i.e., all the definitions
that do not belong to the majority group within their cluster. The
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Figure 2 Purity Histogram for NWC

histogram of purity of clusters is shown in Figure 2. This figure
shows that 148 clusters were totally pure, i.e., had zero
misclassified definition, 42 clusters had one misclassified
definition, 2 clusters had two misclassified definitions and none
of the clusters had more than two misclassified definition.
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Figure 3 Cluster-size Histogram

To get a complete picture Figure 3 provides the histogram of
cluster-size of both, the clustering solution given by the NWC
and the gold standard. The plot shows that the proposed
clustering solution by the best case comes quite close to the gold
standard cluster-size wise too. However NWC seems to be
struggling with cluster sizes greater than four. Although, for the
task of clustering definitions the size of a cluster would typical
not exceed five or six definitions, finding an elegant solution for
this problem will be a part of the future work. We can also see
that NWC has confused few (17 definitions) of the single
element clusters by combining them into larger clusters. This is
another direction of the future work — to find feature types
which will be able to capture better discriminating features to
avoid such groupings.

We also plan to look at options which might help us enrich
or expand our terse definitions and thus help us build richer
definition representation.

In a related work [4] the LDOCE and WordNet definitions
are merged based on lexical overlap among two definitions.

They exploit the taxonomy structure of WordNet for the words
for which no WordNet definition is available by including
definitions for synonyms and/or parent nodes. An accuracy of
90% is achieved on words with exactly two definitions in both
the resources and an accuracy of 80% is achieved for words
with five or more definitions.

4. Conclusions

This work shows that lexical features when filtered with an
appropriate stop-list can be effectively used to represent
dictionary definitions. We also show that the layered approach
of spectral clustering, when followed by hierarchical clustering
works better than traditional single phase clustering methods for
this task. On the whole we show that the task of grouping
polysemous definitions can be effectively automated using the
approach described here.
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