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Abstract 

The task of grouping word definitions from ESL (English as a 

Second Language) dictionaries based on the similarity of their 

meanings is the focus of this work. It is demonstrated that 

lexical features and unsupervised machine learning algorithms 

can be effectively used to approach this problem. Analysis of 

the efficacy of this methodology for this task and the involved 

data which consists of very short and very few definitions per 

group is provided.  

Index Terms: Clustering, Unsupervised machine learning, 

Computer Assisted Language Learning 

1. Introduction 

The REAP tutoring system [1] provides assistance to ESL 

students to improve their vocabulary. For every grade level a 

human teacher provides a list of words (focus-words) that the 

students should learn and practice in an academic semester. 

These words are drawn from the AWL (Academic Word List). 

Currently, it is this set of focus-words that REAP assists the 

students with. The approach is to teach the focus-words using 

descriptive methods in addition to prescriptive methods. This is 

achieved by providing reading material that demonstrates usage 

of one or more focus-words in real text and thus effectively 

implements context-based teaching. Reading material is selected 

from the World Wide Web (WWW). The suitability of the 

reading material is maintained by selecting only those 

documents from the WWW that stand the tests of various 

automatic filters implemented in the REAP system, for instance, 

text-quality filter, reading-level filter and document length filter. 

To maximize the time on task, documents containing multiple 

focus-words are preferred. Students can also provide topical 

preferences such as, Arts, Science, and Sports, which are taken 

into consideration by the system while choosing the documents 

for the student. As such, the focus is on improving student’s 

vocabulary by showing the words in their natural neighborhood 

instead of in isolation and further more providing the words in 

student preferred context (the topic preference) and thus 

increasing the student motivation as well. 

A more direct source of word’s meaning, an ESL dictionary, 

a machine readable version of the Cambridge Advanced 

Learners Dictionary (CALD) [2] is integrated in REAP. 

Students can use CALD while they read a given document, to 

lookup the focus or non-focus words. After a student has 

finished reading a document he/she is presented with multiple 

choice definition questions where the task is to select the most 

appropriate definition for a focus-word that the student read in 

the document, from the given set of five definitions. The correct 

definition and the four distractor definitions are selected from a 

different ESL dictionary namely, the Longmans Dictionary of 

Contemporary English (LDOCE) [3]. Using two dictionaries 

allows us to measure the student’s ability to transfer his/her 

learning. This however requires that the two dictionary 

definitions be aligned, that is, for each word-definition in 

CALD the corresponding LDOCE word-definition(s) that 

conveys the similar meaning have to be known. Our work in 

direction of dictionary definition alignment using unsupervised 

machine learning techniques is described in this paper.  

2. Methodology 

The problem of definition alignment can be transformed into 

that of clustering polysemous (same/similar meaning) 

definitions. As a result the requirement of learning an alignment 

function changes to learning similarity function. Formulating 

the problem in similarity space allows us to use traditional 

lexical similarity measures such as word-overlap, cosine 

similarity which are described in the Section 2.2. From a 

different perspective the definition alignment problem can also 

be viewed as a task of separating homonym (distinct meaning) 

definitions into different groups where the alignment function 

would get transformed to a distance function.  

For example given the definitions for the word grant from 

CALD and LDOCE in Figure 1 our goal is to group these 

definitions such that 3 groups, each containing the polysemous 

definitions ({1,a},{2,b},{3,c}) from the two dictionaries are 

created.  

 
CALD Definitions: 

1. a sum of money given especially by the government to a person or 

organization for a special purpose 

2. to give or allow someone something, usually in an official way 

3. to accept that something is true, often before expressing an 

opposite opinion 

LDOCE Definitions: 

a. an amount of money given to someone, especially by the 

government for a particular purpose 

b. to give someone something that they have asked for, especially 

official permission to do something 

c. to admit that something is true although it does not make much 

difference to your opinion 

Figure 1 CALD and LDOCE definitions for the word “grant” 

The following sub-sections provide the details about the data 

and the methodology. 



2.1. Data Description 

The dataset consists of 383 definitions for 80 words from CALD 

and LDOCE. The gold standard was created by manually 

grouping the 383 definitions into 192 polysemy groups. 

Although the definition and group numbers have been specified 

in total the grouping was done at word-level, that is, a definition 

for word1 from either of the dictionaries was never grouped 

with definition for word2, from either of the dictionaries. 90 

groups have 2 data-points, 33 groups have 3 data-points, 6 

groups have 4 data-points, 3 groups have 5 data-points and 1 

class has 6 data-points and 59 groups have 1 data-point. The 

majority of the single data-point groups consist of definitions 

from LDOCE which indicates that LDOCE has better word-

sense coverage than CALD. On an average each definition 

consists of 12 words. 

2.2. Features 

Each data-point in this task is a short sentence or phrase. Since 

both dictionaries, CALD and LDOCE are specifically designed 

for ESL students the vocabulary used by the lexicographers to 

author the definitions is restricted or controlled. The exact 

information about how much the two controlled vocabulary sets 

overlap or differ is not available. Nonetheless this provided a 

motivation for using lexical similarity measures for capturing 

the similarity between a given pair of definitions. The following 

feature types have been experimented with: 

1. Raw word-overlap w/ and w/o stopwords; 

2. Normalized word overlap w/ and w/o stopwords;  

3. Cosine similarity w/ and w/o stopwords 

The raw word-overlap captures the number of words common to 

both the definitions of the pair under consideration. The 

assumption here is that larger the number of common words 

between the two definitions greater is the chance of them being 

polysemous.  

The normalized word-overlap feature bounds the overlap 

scores to the range of [0,1] by scaling with respect to the 

definitions’ length (in words). Performing normalization w.r.t. 

the definitions’ length provides a principled way of removing 

the bias towards longer definitions and also makes the similarity 

scores easily understandable and comparable. For example, it 

might not be obvious that an overlap of 4 words between 

definitions with lengths 10 and 12 is smaller than an overlap of 

3 words between definitions of lengths 7 each. The following 

formulation was used to compute the normalized word-overlap 

(nwo) score between definitions da and db: 









+

××

=

||

),(

||

),(

||

),(

||

),(
2

),(

b

ba

a

ba

b

ba

a

ba

ba

d

ddrwo

d

ddrwo

d

ddrwo

d

ddrwo

ddnwo
 

where, rwo stands for the raw word overlap count between 

definitions da and db
 and |dx| gives the length of the definition x 

in words. The multiplier (2) in the numerator takes care of 

scaling the score to 1 in the best case of complete overlap. 
The cosine similarity score is computed by first representing 

each definition in terms of unique words that occur in the 

definitions (vocabulary of the dataset: n), this is often referred to 

as the “bag-of-words” approach since the order of occurrence of 

words is not captured in this type of representation of the data-

points. The resulting definition representation can be viewed as 

a vector where each unique word corresponds to a dimension 

and each definition vector has some magnitude (0 or more) in 

each of these dimensions. Once these definition vectors are 

created the cosine similarity score for each definition pair is 

computed using the following formulation:  
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where, n is the dimension of each of the definition vectors dx. 

 All the above feature types are lexically motivated, in other 

words, any form of syntactic information is not explicitly used. 

The utility of the closed-class words such as articles and 

prepositions (stopwords) in combination to the above lexical 

features was experimented by using each of the feature types 

with and without stopwords. Keeping in mind the short lengths 

of our data-points, a conservative stop-list (list of stopwords) 

consisting only of the following function words: articles (a, an, 

the) and prepositions (of, to, in, for, on, with, as, by, at, from) 

and an auxiliary verb be was used. 

It is important to note that each of the above features is 

symmetric, that is, feat(da,db) = feat(db,da). As a result each of 

them can be represented as a symmetric adjacency matrix W of 

mXm dimensions where m is the number of definitions to be 

grouped. 

2.3. Algorithms 

Different types of unsupervised clustering algorithms to group 

the definitions have been experimented. The inherent data 

sparsity in this task has guided most of the experimental design 

choices made. As specified in section 2.1 majority of the groups 

contain less than 5 definitions. This pattern or property of low 

definition density in clusters is not specific to the current dataset 

but is a property of the task. Thus datasets with larger number of 

words would not change this scenario. It is difficult to learn 

reliable classification models using supervised machine learning 

algorithms when only small amount of training data is available. 

This is so because such models do not generalize well on unseen 

data, in other words, they overfit the training data [5]. Taking 

these issues into consideration supervised machine learning 

algorithms were not experimented with.  

The building-blocks of our experimental design are K-means 

(flat-clustering), Hierarchical clustering and Spectral clustering. 

The following combinations of these three algorithms have been 

explored: 

 

1. K-means [6]. 

2. Spectral clustering (Ng et. al [8]) followed by K-means. 

3. Spectral clustering followed by Hierarchical clustering 
(Ward’s algorithm [7]). 

4. Spectral clustering followed by Spectral clustering 
followed by K-means. 

5. Spectral clustering followed by Spectral clustering 
followed by Hierarchical clustering. 

 

K-means algorithm [6] starts with k random cluster means, 

where k is specified by the user and all the data-points (here 

definitions) are assigned to the closest cluster mean. The



Table 1 Results in terms of clustering error 

Algorithm raw word-
overlap  with 
stopwords 

raw word-
overlap w/o 
stopwords 

normalized 
word-overlap  
with 
stopwords 

normalized 
word-overlap 
w/o 
stopwords 

cosine with 
stopwords 

cosine w/o 
stopwords 

K-means 0.290 0.245 0.305 0.243 0.290 0.258 

NJW-Kmeans  0.316 0.331 0.232 0.201 0.245 0.193 

NJW-Ward 0.311 0.324 0.230 0.198 0.240 0.188 

NJW-NJW-Kmeans  0.284 0.298 0.251 0.214 0.242 0.211 

NJW-NJW-Ward 0.290 0.308 0.253 0.217 0.248 0.211 

 

definition of closeness used here is cosine similarity. Next, each 

of the data-point is re-assigned to a cluster if doing so improves 

the overall similarity score. The cluster mean is recomputed 

every time a new data-point is assigned to that cluster. The re-

assigning process is repeated until no more re-assignments 

occur or 100 times, to avoid local optimums 

 The Ward’s algorithm [7] starts with each data-point 

(definition) in its own cluster and at every step merges a pair of 

clusters that leads to minimal loss in information, which is 

measured by the error sum-of-squares criterion. This process 

yields a taxonomy of clusters.  

 The spectral clustering algorithm proposed by Ng et. al [8] 

first transforms the higher dimensional feature vectors (m) to a 

lower spectral dimension (k) and then clusters the lower 

dimensional data. More specifically, given a symmetric 

similarity/affinity matrix (W) of mXm dimensions, a diagonal 

matrix (D), which is sum of every row of the affinity matrix 

placed along the diagonal, is computed. A Laplacian matrix (L 

= D-1/2W D-1/2) is computed and its eigen-components are 

computed. The eigenvectors corresponding to the top k 

eigenvalues are selected to be represented as columns of a new 

matrix (X) and then the rows of X are normalized to have unit 

length. The rows of this normalized matrix are now clustered as 

one would cluster the original data-points; however, the 

dimension of each of the new vector is k and not m. The top 

eigenvectors correspond to the dimensions of largest variance, 

that is, the dimensions along which the most information is 

present. The lower-ranked vectors are typically viewed as 

containing noise or insignificant amount of information and thus 

discarding these dimensions leads to purer clusters.  

Hence forth the above method will be referred to as NJW. 

As describe above NJW consists of two steps: dimensionality 

reduction and then clustering in the reduced dimensions. We 

experiment with K-means and Ward clustering in the second 

step of the NJW. We have also re-applied NJW in the spectral 

dimension with the intention of investigating if applying NJW in 

the reduced spectral space further adds any value. This 

experimental setup is based on [6]. 

Each of the above algorithms is applied to the adjacency 

matrix created by each of the above described feature set 

separately to compare the effectiveness of each of the feature set 

and the algorithm. The number of clusters were set manually in 

all these experiments. Automating the choice of number of 

clusters will be a part of the future work. 

3. Results and Discussion 

Table 1 presents the results of the five clustering algorithms 

(rows) when used with the six feature types (columns). The 

results are in terms of the clustering error which is a ratio of 

number of misclassified definitions and the total number of 

definitions (383). For the feature type of raw word-overlap the 

spectral clustering algorithm NJW does not improve the 

performance, in fact directly using the K-means algorithm is 

most effective. As described earlier Spectral clustering uses 

Eigen system and thus normalization of the data has a positive 

effect on the clustering quality.  

When using the normalized word-overlap feature it is 

evident that transforming to lower dimensions using spectral 

clustering (NJW) before applying either, flat-clustering (K-

means) or hierarchical clustering (Ward) is useful.  

K-means is known to find locally optimal clustering solution 

while hierarchical clustering strives for globally optimal 

clustering solution the effect of which is reflected in their 

performances. Performing multiple iterations of spectral 

clustering over-applies the dimensionality reduction 

methodology and leads to loss of information and not just noise 

and thus overall does not help.  

The efficacy of the cosine similarity feature type indicates 

that it is useful to represent the definitions in terms of the 

datasets vocabulary and measure the similarity along these 

dimensions instead of simply pooling together the word-overlap 

counts along any of the dimensions (among any words). K-

means assumes that the data to be clustered is normally 

distributed at each cluster. The large reduction in the clustering 

error when using NJW, K-means and cosine instead of simply 

K-means and cosine indicates that the transformation caused by 

NJW makes the data Normal or near-Normal in the lower 

dimensions. 

Overall it is evident that applying spectral clustering and 

thus re-representing the definitions in the reduced space in terms 

of their eigenvectors does help. Pre-processing the definitions to 

remove the stopwords all shows positive effect. 

Evaluating clustering performance is often tricky because 

clustering is a very subjective task and thus any gold standard is 

unlikely to be universally accepted. Also since the gold standard 

was created by a single coder, inter-coder agreement is not 

available. Thus to gain further insight about our above results 

we examine the best case NWC (NJW-Ward + cosine without 

stopwords) in more details. 

The metric used for computing the clustering error reported 

in the above tables penalizes cases where members of originally 

one cluster were split by the clustering algorithm into 2 or more 

pure clusters. Instead, if we measure the performance of the 

clustering algorithm in terms of the impurity of the generated 

clusters then for the best case NWC, the error drops down to 

0.1201 (46/383), where 46 is the number of definitions that 

made an otherwise pure cluster impure, i.e., all the definitions 

that do not belong to the majority group within their cluster. The  
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Figure 2 Purity Histogram for NWC 

 

histogram of purity of clusters is shown in Figure 2. This figure 

shows that 148 clusters were totally pure, i.e., had zero 

misclassified definition, 42 clusters had one misclassified 

definition, 2 clusters had two misclassified definitions and none 

of the clusters had more than two misclassified definition. 
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Figure 3 Cluster-size Histogram 

  

To get a complete picture Figure 3 provides the histogram of 

cluster-size of both, the clustering solution given by the NWC 

and the gold standard. The plot shows that the proposed 

clustering solution by the best case comes quite close to the gold 

standard cluster-size wise too. However NWC seems to be 

struggling with cluster sizes greater than four. Although, for the 

task of clustering definitions the size of a cluster would typical 

not exceed five or six definitions, finding an elegant solution for 

this problem will be a part of the future work. We can also see 

that NWC has confused few (17 definitions) of the single 

element clusters by combining them into larger clusters. This is 

another direction of the future work – to find feature types 

which will be able to capture better discriminating features to 

avoid such groupings.  

We also plan to look at options which might help us enrich 

or expand our terse definitions and thus help us build richer 

definition representation. 

In a related work [4] the LDOCE and WordNet definitions 

are merged based on lexical overlap among two definitions. 

They exploit the taxonomy structure of WordNet for the words 

for which no WordNet definition is available by including 

definitions for synonyms and/or parent nodes. An accuracy of 

90% is achieved on words with exactly two definitions in both 

the resources and an accuracy of 80% is achieved for words 

with five or more definitions. 

4. Conclusions 

This work shows that lexical features when filtered with an 

appropriate stop-list can be effectively used to represent 

dictionary definitions. We also show that the layered approach 

of spectral clustering, when followed by hierarchical clustering 

works better than traditional single phase clustering methods for 

this task. On the whole we show that the task of grouping 

polysemous definitions can be effectively automated using the 

approach described here.  
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