
Easily Adding Sound Output to Interfaces
Brad A. Myers and Kenneth A. Strickland

Human Computer Interaction Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
bam@cs.cmu.edu

http://www.cs.cmu.edu/~bam

ABSTRACT

Adding sound output to interfaces is a very difficult task
with today’s toolkits, even though there are many situations
in which it would be useful and effective. We have
designed an architecture that makes it very easy to add
sound output to an interface. Any interaction behavior,
animation, or command can be augmented with sounds to
occur at the beginning or end, or for the duration.
Parameters of the sound, such as the speed or volume can
be easily tied to properties of the data using constraints.
Two different sound objects are currently supplied: one for
playing recorded sounds, and the other for text-to-speech.
The text-to-speech sound object can be used to quickly
build various kinds of screen readers. Easy-to-use
mechanisms give the programmer complete control over
interrupting and pre-empting when multiple sounds are
played at the same time. Because sound output can be
added to an existing application with as little as a single
extra line of code, we expect that this new mechanism will
make it easy for researchers and developers to investigate
the use of sound in a wide variety of applications.

Keywords: sound, auditory output, earcons, text-to-speech,
toolkits, multimodal interfaces, Amulet, Andalusite.

INTRODUCTION

In the introduction to the 1989 special issue of Human-
Computer Interaction on non-speech audio [5], Buxton
claims that many of the logistical problems in exploring the
use of audio signals have been overcome. Indeed, today’s
PC’s and Macintoshes contain sophisticated support for
sound to support multimedia games and the world-wide-
web. However, one significant barrier still remains: the
programming interface to sound output is still quite
awkward and low-level, and requires the programmer to
deal with issues of timing, buffering, and multi-processing.
In particular, existing toolkits do not provide any support
for integrating audio output with direct manipulation user
interfaces, and there has been little research on architectural
mechanisms which would make this integration easier.

We have developed a system that provides high-level
support to make it very easy to integrate sounds into direct
manipulation user interfaces. Sounds can be easily
synchronized with graphical and user actions, such as
animations, clicking the mouse buttons, and dragging
objects. The timing of the sounds, the temporal scheduling
of sounds to control overlapping, interrupting and
sequencing, and the coordination of foreground and
background sounds are all easily handled, often with a
single line of code.

There are many potential benefits for using sound in
interfaces [2, 5, 7]. Expert game players do better when
sound is turned on, showing that it provides strategically
critical information [5]. Sound provides an extra channel
that can be used to help present complex information [3]. It
provides complementary information to the graphics to
provide feedback for what you are doing, for notification,
for beeps on errors, or for awareness of what the system and
other people are doing. Sound also enables monitoring of
background processes while performing a foreground task.
For example, an experiment showed that when sound is
used in addition to graphics to show the mode of a palette,
users make fewer errors [4]. In multi-user applications,
sound provides very helpful feedback about what the other
users are doing, and can help with awareness [8]. We rely
on sound for information in our everyday lives [7]. Even
with computers, the whine of the disk drive tells us whether

Easily Adding Sound Output to Interfaces - 2 - **Submitted for Publication**

they are operating as expected. As a final motivation,
sound is crucial for people with visual difficulties [6].

Our new sound system is called Andalusite,
which is a kind of yellow-green gemstone.
Andalusite stands for Amulet’s New
Development Augments the Look-and-feel
Using Sounds Including Text-to-speech and Effects.
Important contributions of Andalusite include:

x A design for a high-level, extensible object-oriented
interface to sounds, where properties of the sounds can
be computed using constraints.

x A design for a machine-independent specification of
which sounds should be interrupted and pre-empted by
any newly played sound, that provides machine-
independence by playing something reasonable no
matter how many channels of sound are supported by
the hardware.

x An architecture for connecting sounds to interactive
behaviors and animations, that makes it particularly
easy to augment actions of a direct manipulation user
interface with sounds.

Amulet [13] is a C++ toolkit that runs on X/11, Windows
95, Windows NT, and the Macintosh. One of the important
goals of Amulet is to enable sophisticated features to be
provided to end users without requiring much coding by
designers. By providing better modularity for the software
for the user interface, Amulet achieves increased reuse and
decreased code size, and makes it easier for researchers and
developers to create applications. For example, in Amulet,
the interactive behavior of objects can be defined
completely independently from their graphical look by
attaching “Interactor” objects to the graphics. Command
objects [12] encapsulate the complete information about
operations and support undo. Animations for objects can
be added with a single line of code by attaching an
animation constraint [14] to various properties. The
animation constraint detects changes to the value of the slot
to which it is attached, and causes the slot to instead take on
a series of values interpolated between the original and new
values. We have followed this philosophy in our new
support for sound output. The goal is to make simple
sound output extremely easy for a programmer to add to an
interface. This is achieved by allowing the sounds to be
defined independently from the actions that start and stop
the sound, and to provide the high-level mechanisms that
synchronize sounds with other interface actions.

The Andalusite research is specifically directed at
augmenting graphical user interfaces with sound output.
We are not addressing sound input such as speech
recognition, although that would be an interesting addition
to the Amulet repertoire. This paper presents an overview
of the related work, and then the low-level and high level
interfaces to the Andalusite sound system, along with some
example applications.

RELATED WORK

Most research work on auditory user interfaces has
concentrated on investigating new uses of sound and on
how sounds can be constructed from components. There
has been very little prior work on how to integrate sounds
with other modalities.

Conversational VoiceNotes [15] addressed sound-only user
interfaces, such as for telephones. It uses a context-free
grammar for specifying the output which matches the
grammar needed for parsing the speech input. This was
needed to handle the complex auditory messages composed
of generated speech and recorded sounds. Grammars do
not match well with direct manipulation user interfaces,
however.

Mercator [6] aims to allow blind users to work with
graphical interfaces. The first version identified problems
with X/11 and the Xt toolkit for integrating sound, which
were fixed in later versions of X. An important goal of
Andalusite is to make Mercator-like interfaces significantly
easier to build.

ENO [1] concentrated on describing the various acoustic
properties of sounds, to make it easier to generate them, as
opposed to our system which concentrates on making it
easy to integrate the sounds with the rest of the interface,
and to control the timing and coordination of sounds with
animations and interactions. A sound object with ENO’s
features would be an excellent addition to our system.

The Earcons [2] work first investigated the different
parameters of sounds that can be meaningfully interpreted
by people, and then applied these to create different sounds
that represented different features of an interface. Using
Earcons in palettes was shown to reduce users’ errors [4].
Andalusite aims to make interfaces using Earcons easier to
build.

ScriptX [10] is a programming language designed
specifically for multimedia. It has built-in primitives like
“clocks” for controlling animations and for playing sounds.
However, to coordinate animations and sounds together
requires the programmer to construct a complex hierarchy
of clock objects, and to write a set of callback methods for
the clocks. The Andalusite mechanism requires much less
work from the programmers.

Macromedia’s Director has sophisticated support for sound,
both in its interactive score editor and in the Lingo
language. There are features for starting, stopping and
looping sounds, triggered by various events. However, the
designer must still deal with how to synchronize and
sequence sounds, and there is no built-in support for
interrupting, pre-empting or computing parameters of
sounds based on the properties of other objects.

Easily Adding Sound Output to Interfaces - 3 - **Submitted for Publication**

OVERVIEW

The Andalusite architecture supports any kind of sound
output: speech output, either recorded or text-to-speech,
music, and non-speech audio cues: beeps, buzzes, and other
sound effects. Since it is built into the Amulet toolkit, the
interface to programmers is machine-independent and runs
on X/11, Windows and Macintosh.1 Code written using
auditory output can be written once and will run on multiple
platforms.

Currently there are two kinds of sounds supported: playing
of recorded sounds, and text-to-speech. The playing of
recorded sounds can be modified by speed and loudness.
The text-to-speech uses a platform specific library, such as
PlainTalk on the Macintosh, and is parameterized by what
string to say, as well as by the loudness, voice and other
parameters. In the future, we plan to add more
sophisticated control for generating sounds dynamically,
similar to the techniques provided by ENO [1].

Multiple channels of audio are supported, up to the limit
available on the hardware. The Macintosh, though
theoretically able to handle an arbitrary number of sound
channels, tends to make the best use of CPU load and
memory with four channels or less, so Andalusite defaults
to four channels of stereo support on Macintosh. Similar
considerations apply to Windows machines using DirectX
5.0. Since Unix machines generally have no hardware
support for sound, we expect them only to have one
channel.

When a new sound is requested, it normally plays in
addition to other sounds already playing. To prevent this,
the programmer can explicitly stop specific sounds or all
sounds, or else specify that the new sound should interrupt
a previous sound. When there are no more tracks available
and a new sound is started, a pre-empting scheme is used to
decide which sound should stop playing. Normally, the
pre-empted sound is resumed when the newer sound is
finished. The following sections describe the interface to
sounds in more detail.

PROGRAMMER INTERFACE

There are two interfaces to the Andalusite sound system, as
shown in Figure 1. The low level interface hides the details
of the machine-specific sound system and provides basic
capabilities to load and play sounds. It also provides a
sophisticated system for dealing with interrupting and pre-
empting sounds, to make it easier for programmers to deal
with scheduling. The high-level interface supports
synchronizing sounds with behaviors and animations.

1 At the time of this writing, only the Macintosh implementation of
Andalusite is fully debugged. The Windows version is almost complete,
and the Unix version has not been started yet.

Machine-Dependent Sound System

Andalucite Low-Level

Andalucite High-Level

Application Programs

Figure 1. The Andalusite architecture for supporting sound.

Low-Level Interface
Sound Objects

The low-level part of the Andalusite interface provides
Sound Objects which contain a number of parameters.
Amulet uses a prototype-instance object system [13] in
which parameters of objects are represented as instance
variables which can be local or inherited. The advantage to
the programmer is that any parameters that are not relevant
or needed can be easily left at their default values.
Therefore, although many aspects of the sounds can be
controlled, the simplest (and most typical) interface is to
ignore most or all of the parameters.

The Am_Load_Sound routine takes a filename describing
a sound file and returns a sound object. Another version of
Am_Load_Sound takes a resource ID, and is specifically
for the Macintosh where sounds are stored in the resource
fork of an application. A similar function,
Am_Load_Text_To_Speech_ Sound returns a sound
object which will take an ASCII string and read it aloud.

Playing Sounds

Once the programmer has a sound object, it can be played
explicitly using Am_Play_Sound . Other routines are
Am_Stop_Sound to stop playing a particular sound, and
Am_Stop_All_Sounds . The simplest way to play a
sound is therefore just to add the single line of code to the
program:

Am_Play_Sound(Am_Load_Sound("sndfile.wav"));

The Am_Play_Sound routine returns immediately after
starting the sound. Am_Play_Sound_And_Wait will
wait for the sound to finish, but is rarely appropriate.
Usually, it is better for the rest of the interface to not be
delayed by the sound playing.

Basic Parameters of Sounds

Most objects in Amulet are controlled primarily through
their slots, without the use of methods. Similarly, the sound
object contains a variety of slots which control its behavior.
This allows a declarative specification of the behavior of
the sound objects, without the need to write new methods.
The specific slots of a sound object depend on its type.
Figure 2 summarizes the slots of sound objects.

Easily Adding Sound Output to Interfaces - 4 - **Submitted for Publication**

Slot Default
Value

Comments

Volume 1.0

Balance 0.0 Negative numbers cause it to be
louder on the left.

Speed 1.0 Controls speed of playback.

Repeat_Count 1 Number of times to play sound

Next_Sound null Link for sequences of sounds

Interrupt_List (self) Will interrupt (stop) any sounds
on this list if they are playing
when this sound starts

Pre_empt_If_
Needed_List

(self) Will pre-empt any sounds on this
list if there are no free channels.

Currently_
Playing

false Read-only; true when this
sound is playing

Text "" String for Text_To_Speech sound
to read

Voice 1 Which voice style to use for
Text_To_Speech sound

Figure 2: The slots of sound objects. Most programmers
will not need to set these parameters, and can just use the
default values.

All sound objects have a Volume slot, as well as a
Balance slot to control stereo playback. Balance
ranges from –1.0 to 1.0 with 0.0 being the default, centered
sound. The Speed slot controls the playback speed for
recorded sounds.

The Currently_Playing slot is a read-only slot which
can be queried to see if the sound is still playing. This slot
is seldom needed by programmers since the scheduling
mechanisms are usually sufficient.

The Text_To_Speech sound object adds an extra slot
called Text for the string to read. Normally this slot is
computed using a constraint, as described below. The
Voice slot can be used to control which of a small set of
pre-defined voices the speech is read with.

Sequencing

To control the sequence of sounds, each sound can have a
Repeat_Count to determine how many times the sound
plays. The default is one time. A special “Infinity ”
value means to play repeatedly until explicitly stopped.

A sound object can be linked to another sound object using
the Next_Sound slot, and the next sound will play when
this sound is finished. If the sound has a Repeat_Count ,
then the next sound is played after all the repetitions. The
Am_Stop_Sound command has an extra optional
parameter that controls whether the next sound should be
played when a sound is stopped. This is useful for sounds
which have a repeat count of Infinity to control
whether to just stop (the default) or whether to go on to the
sound in the Next_Sound slot.

We plan to have more sophisticated mechanisms for
complex sequences, as described below in the Future Work
section.

Computing Parameters with Constraints

In Amulet, any slot of an object instead of containing a
regular value like an integer or a string, can contain a
constraint, which is an expression that calculates the value
[13]. Constraints are automatically re-evaluated whenever
anything changes that the expression depends on.
Constraints can be arbitrary C++ code, and a large library
of pre-defined constraints is available. This makes it very
easy to have the values of objects depend on aspects of the
application’s data.

As an example of how constraints are very useful for sound
objects, here is a constraint to compute the pitch of a sound
(which would be controlled by the Speed slot) based on
the size of an object, as described in SonicFinder [7]:

// define a constraint to get the speed from the size
float speed_from_size_constraint(self) {

Am_Object ref_obj = Get_Obj_Over(self);
int size = ref_obj.Get(Size);
if (size > 1000) return 0.5; //slower
else if (size > 500) return 1.0;
else return 2.0; //faster

}
// put this constraint into the Speed slot
my_sound.Set(Speed, speed_from_size_constraint);

Whenever a different object is selected (so Get_Obj_Ove r
returns a different value), or if the object changes Size ,
then the constraint will be re-evaluated, and the Speed of
the sound will change.

Amulet introduced the idea of an animation constraint [14]
which detects changes to the value of the slot to which it is
attached. When the value is set, the animation constraint
restores the original value, and causes the slot to take on a
series of values interpolated between the original and new
values. Animation constraints were created to animate the
position and color slots of graphical objects, but because
they are a general mechanism, they can be used for any slot
of any type. For example, an animation constraint can be
put into the Volume slot of a sound to cause the sound to
fade in and out. If the volume was 1 and the slot was set
with 0, then the animation constraint would cause it to fade
from 1 to 0 over a period of time picked by the
programmer:

my_sound.Set(Volume, 1.0);
my_sound.Set(Repeat_Count, Infinity);
anim = Animator.Create();
anim.Set(Duration, 500); // milleseconds
my_sound.Set(Volume, anim);
Am_Play_Sound(my_sound); //starts playing
// instead of jumping to 0, will fade from 1 to 0 over ½ second
my_sound.Set(Volume, 0.0);

Constraints could also be used in the Repeat_Count and
Next_Sound slots to compute a sequence of sounds.

Easily Adding Sound Output to Interfaces - 5 - **Submitted for Publication**

Interrupting

The Macintosh and Windows platforms have hardware that
supports playing multiple sounds at the same time. When a
new sound starts playing, sometimes the programmer might
want to make sure that specific other sounds immediately
stop. For example, if a screen reader sound object is
reading a string from the screen, and the user moves the
cursor to a different string, the reader should be interrupted
and start reading the new string instead of the old one. In
other situations, the new sound should play along with the
old sound. For example, if the old sound is a background
song and the new sound is a foreground explosion, you
would want them both to be playing, if possible.

By default, if a sound is re-started while it is already
playing, then it is stopped first. If a different sound starts
while a sound is playing, then by default they both play in
parallel. This seems like the most likely general-purpose
behavior for sounds in direct manipulation interfaces and
games.

When the programmer wants more control, the
Interrupt_List slot of the sound object can be set
with a list of other sound objects. Then, whenever a sound
starts playing, all of the sound objects in its
Interrupt_List are stopped. The default value of this
slot is a list containing just the sound object itself, which
achieves the default behavior where a sound always
interrupts itself. If the programmer wanted multiple copies
of the same sound to be playable at once (for example so
that multiple explosions could be heard at the same time),
then the Interrupt_List can simply be set to the
empty list,. Then, no sounds would be interrupted when the
new sound starts playing.

Adding a specific sound to the Interrupt_List might
be useful when the programmer wants to make sure some
sounds are not played together. For example, a “dying”
sound for a character might be specified to interrupt that
character’s “walking” sound. Putting the special value
Interrupts_Everything into the Interrupt_
List signals that this sound should cause all other sounds
to stop.

Pre-empting

Another important issue is what to do when there are not
enough channels to play all the desired sounds at the same
time. We want to provide machine-independence in a
convenient way for the programmer. Therefore, we do not
want the programmer to have to inquire about the number
of channels and adjust the program code accordingly for
different platforms. Instead, we provide a declarative
specification that can be used to control what sounds will be
pre-empted if necessary.

The Pre_empt_If_Needed_List can contain a list of
sound objects that will be pre-empted if the current sound
needs to play and there are not any available channels. The

sound objects in this list are tested in order to see if they are
playing. This represents a priority scheme, so that the first
item on the list would get pre-empted first. As an example,
an explosion sound might specify that it pre-empts the
background music sound object. Any sounds that are pre-
empted are pushed onto a pending queue, and are resumed
when the new sound is finished. This will allow the
background music to be continuously playing when there is
no other sound pre-empting it. If there are no channels free,
and no sound on the Pre_empt_If_Needed_ List is
currently playing, then Andalusite pre-empts the oldest
sound that is currently playing and plays the new sound
instead. As a special feature, the programmer can add a
special value, called Dont_Pre_empt , to the end of the
Pre_empt_If_ Needed_List which overrides this
behavior, and instead skips playing the new sound. For
example, if the new sound is just for feedback and is not
important, it might be marked so as not to pre-empt any
other sounds by putting the Dont_Pre_empt value as the
only value in the Pre_empt_If_Needed_List .

To provide additional convenience for the programmer, the
objects in the Pre_empt_If_Needed_List and the
Interrupt_List can be the prototypes for a set of
sounds. In Amulet’s prototype-instance object system, any
object can serve as a prototype from which to create a set of
instances. If the programmer makes instances of any of the
objects in the Pre_empt_If_Needed_List or the
Interrupt_List , then those instances will be treated as
if they were in the lists. This is a handy way to concisely
specify many useful behaviors. For example, if the
programmer has various explosion sounds, and wants to
make sure that only one explosion is played at a time, then
all the sound objects for the explosions could be created
from a prototype explosion sound object, and then that
prototype could be set into all the sounds’
Interrupt_List .

As a more complex example, suppose that an application
has background music, sounds from the actions of various
other users, and a foreground sound from one particular
user’s actions. The programmer might want to make sure
that if there is only one channel, the foreground sound
plays, if there are two channels, the foreground and one
other user’s sound plays, and if there are three or more
channels, that the foreground and background sounds play,
and as many of the other users’ sounds as will fit. This can
be specified by making prototypes for each type of sound
(foreground , background and other_users), and
then creating all the sounds as instances of those prototypes.
The values for the Pre_empt_If_Needed_Lists in
the prototypes would be as follows:

Easily Adding Sound Output to Interfaces - 6 - **Submitted for Publication**

Prototype Value in slot
Pre_empt_If_Needed_List

foreground: foreground, background,
other_users

background: (left as the default value)

other_users other_users, background,
Dont_Pre_empt

High-Level Interface

Although the Andalusite low-level sound interface provides
a lot of power and flexibility, the interesting contributions
are in the high-level capabilities that support synchronizing
the sounds with animations and interactive behaviors.

The typical way that sounds are used in games and systems
such as SonicFinder [7] is that a sound is played in response
to the user’s action with the mouse and keyboard. For
example, clicking on an object might start an animation and
a sound, or moving the mouse might trigger sounds based
on where the mouse is located.

To facilitate specifying these kinds of behaviors, Andalusite
allows a sound object to be attached to the beginning,
duration, or end of any animation or interaction.
Animations are supported by animator constraint objects
(introduced above) which are can be attached to graphical
objects to cause them to be animated. Interactive behaviors
are implemented by attaching “Interactor” objects to
graphics. For example, a Move_Grow_Interactor
will move or grow an object with the mouse. The Interactor
begins operating when the mouse button is pressed on the
object, moves the object while the button is held down, and
then stops when the button is released.2

We extended the Animation objects and Interactor objects
to support sounds by adding three new slots: Sound_At_
Start , Interim_Sound, and Sound_At_Stop . If a
sound object is put into the Sound_At_Start slot of an
Animation or Interactor, then whenever it starts, the sound
is played. If a sound is put into the Interim_Sound slot,
then it is played while the Interactor or Animation is
operating. The interim sound starts at the end of the start
sound (if any) by being linked using the first empty
Next_Sound slot of the start sound chain (that is, if the
start sound has a next sound, then the interim sound is put
as the next sound of the last sound in the list). Note that it
would not work to start playing the interim sound at the first
mouse movement after the start sound, since the mouse
might not move at all in which case the interim sound
would not start, or conversely the mouse might move
immediately, and the interim sound would interrupt or play

2 Interactors have many parameters for controlling the behavior such as
the specific buttons that start and stop, gridding, the form of feedback, the
maximum and minimum sizes, etc. [13].

in parallel with the start sound. Therefore, the
Next_Sound chain is used to schedule the interim sound
for whenever the start sound completes.

If there is no start sound, then the interim sound is started
immediately when the animation or Interactor starts. When
the animation or Interactor is finished, then the interim
sound and start sound (if any) are stopped, and the
Sound_At_Stop sound is played.

There are various options for how the Interim_Sound
might be played:

x Repeated continuously: Normally, the Interim_
Sound will have a Repeat_Count of Infinity ,
so that the sound will play continuously throughout the
interaction. The Animation or Interactor object will
then explicitly stop the sound when the behavior is
finished.

x Restarted at each interim event: While an Interactor
is running, its “Interim_Do ” method is called
repeatedly. If the Interim_Sound has a
Repeat_Count that is not Infinity , then each
time the Interim_Do method is called, the sound is
checked to see if it is playing. If the sound is already
playing and it has itself in the Interrupt_List ,
then the sound is started over each time the Interim_Do
method is called. This would be useful, for example,
for an Interactor in a menu that made a sound as the
mouse moved from item to item. If the user moves
quickly, you would still want as much of the sound to
play as possible for each menu item, but you would
want to hear each sound begin. Similarly, for an
Interactor serving as a screen reader, it should interrupt
the previous reading of any items as the mouse moves
over a new item. Another use for this would be to
make a clicking sound with each key stroke in a Text-
Edit-Interactor.

x Playing continuously while there are interim events:
If the sound is already playing and it does not have
itself in the Interrupt_List , then the new sound is
simply not started, and the old sound is allowed to
continue. This is useful for situations where you want
the sound to play continuously while the mouse is
actively moving around, but to stop when the mouse is
still. For example, if you want a truck sound to play
continuously when the mouse is being used to move a
graphical object, then the truck sound can have its
Repeat_Count as 1 (the default) and its
Interrupt_List as empty. Then, while the mouse
was moving, the truck sound would play, but if the
mouse stopped, then the sound would stop also. When
the mouse started moving again, the sound would
resume. If the Interrupt_List was the default,
which is a list containing the sound object itself, then
the sound would start over each time the mouse moved,
which might sound odd.

Easily Adding Sound Output to Interfaces - 7 - **Submitted for Publication**

Conveniently, in a Move-Grow Interactor, the
Interim_Do method is called for every incremental
mouse movement while the object is being modified. In a
Choice-Interactor for selecting objects, which is used for
menus and for the screen reader, the Interim_Do method is
only called whenever the mouse moves to a different object.
This makes it easy to have a sound each time the mouse
cursor moves to a different item. Text-Edit-Interactors call
the Interim_Do method on every keystroke.

These options for the interim sound can also be useful for
animations. In an animation, the Interim_Do method is
called every so many clock ticks, with the interval specified
as a parameter of the animation [14]. This provides an easy
way to play a sound at a regular interval, and also supports
synchronizing sounds with the interim increments of an
animation. For example, if a graphical analog clock hand
was animated every second, then a “tick” sound could be
set as the Interim_Sound for the animation and it would
be called each time the hand moved. As a special feature,
the special animator that bounces objects plays its
Sound_At_Stop when the object bounces (even though
the animation does not stop). Figure 3 shows an example.

Boink

Figure 3. When the animation on the eye icon hits the wall,
it plays the “boink” sound which is in its
Sound_At_Stop slot.

Finally, a sound can be attached to a command object.
Rather than using a “call-back procedure” as in other
toolkits, Amulet allocates a “command object” and calls its
“Do” method [14]. Amulet’s commands also provide slots
and methods to handle undo, selective undo and repeat, and
enabling and disabling the command (graying it out).
Command objects promote re-use because commands for
such high-level behaviors as move-object, create-object,
change-property, become-selected, cut, copy, paste,
duplicate, quit, to-top and bottom, group and ungroup, undo
and redo, and drag-and-drop are supplied in a library and
can often be used by applications without change. For
Andalusite, command objects were augmented to have a
Sound_At_Stop slot. It contains a sound, it is played
when the command’s “Do” method is called. For example,
the built in Cut command might be augmented with a
scissors sound, and then whenever Cut is invoked, either
through a menu or accelerator key, the sound will be
played.

Synchronizing Animations To Sounds

The previous mechanisms handle the normal case where
sounds should be synchronized with interactive behaviors
and animations in an interface. The other common case is
for an animation to be synchronized to the duration of a
sound. For example, a small loop of pictures might be
cycled during a short song. To make this very easy to
specify, the Animation_At_Start slot of a sound can
contain an animation object which is started when the sound
starts playing. The Interim_Animation slot can
contain an animation to run for the duration of the sound,
and the Animation_At_End slot can contain an
animation to play after the sound is over. As a simple
example, if icon_anim is an animation constraint object
attached to an icon, then the following will cause the icon to
animate as long as the sound plays:

music = Am_Load_Sound(“music.wav”);
music.Set(Interim_Animation, icon_anim);

EXAMPLE APPLICATIONS

Providing these high-level mechanisms to connect sounds
with graphical user interfaces makes a wide variety of uses
of sounds very easy to implement, often with a single line
of code. For example, the following code attaches the
scissors sound to the Cut command:

CutCmd.Set(Sound_At_Stop,Am_Load_Sound(“scis.snd”);

In a typical game, there is a background sound, which is
started when the game starts and is played in an infinite
loop. This can be easily specified as:

Am_Object background =
Am_Load_Sound(“background.wav”);

background.Set(Repeat_Count, Infinity);
Am_Play_Sound(background);

Suppose there is a picture that when animated should play a
song. This could be specified as:

Am_Object dancer =
Am_Load_Bitmap(“Dancing_rabbit.gif”)

Am_Object dancer_animation =
Am_Animation.Create();

Am_Object music =
Am_Load_Sound(“dancing_music.wav”);

music.Set(Repeat_Count, Infinity);
//play the song during the animation
dancer_animation.Set(Interim_Sound, music);
//make the image slot of the dancer be animated
dancer.Set(Image, dancer_animation);

As another example, in Bröderbund’s KidPix and
SonicFinder [7] dragging objects makes a scratching noise,
and there is a noise like a screech of brakes when the
movement stops. SonicFinder has the additional property
that the pitch of the sound depends on the size of the object.
This can be easily specified with a constraint:

Easily Adding Sound Output to Interfaces - 8 - **Submitted for Publication**

Am_Object mover =
Am_Move_Grow_Interactor.Create();

Am_Object drag_sound =
Am_Load_Sound(“dragging.wav”);

drag_sound.Set(Interrupt_List, NULL);
mover.Set(Interim_Sound, drag_sound);
Am_Object screech_sound =

Am_Load_Sound(“screech.wav”);
screech_sound.Set(Speed,

get_pitch_from_obj_formula);
mover.Set(Sound_At_Stop, screech_sound);

In Windows 95, sounds can be associated with particular
events, like menus opening, or the user selecting a menu
item. This is a special-purpose mechanism that only works
for the system’s menus. Also, there is apparently no event
when the user moves from one menu item to another, so no
sounds can be associated with this. In contrast, sounds can
be added to any widget in any application using Andalusite
since all the behaviors in all widgets are implemented using
Interactors. The various sound slots of the Interactors used
to implement the widgets can simply be set with the desired
sounds. Sounds can be associated with the start and end of
behaviors, as in Windows, but also with the interim changes
as the mouse moves around. For example, the following
causes a click each time the mouse moves to a different
menu item:
inter = Am_Menu.Get(Interactor);
inter.Set(Interim_Sound,Am_Load_Sound(“click.snd”));

The generated sounds can be based on “semantic”
properties of the data and interface, and not just the
graphical presentation, as required by Mercator [6] since all
the properties are represented as slots of the data objects,
and constraints can be written to compute the properties of
the sounds based on the properties of the data objects.

We created a mouse-based “screen reader” Interactor with
just a few lines of code (see Figure 4). It is a
Choice_Interactor that is specified to be always
running. It selects any object in any window anywhere on
the screen. We also specified that it does not consume any
events, but just processes the events and then passes them
on to other Interactors (see the Amulet manual [11] for a
full description of the parameters and capabilities of
Interactors). Thus, the screen reader sees every object the
mouse moves over, but allows all the usual behaviors to
also operate. The Interim_Sound of the screen reader
Interactor was set with a Text_To_Speech sound object
with the Repeat_Count left at its default value of one,
and its Interrupt_List left at its default value of itself,
so the sound would be started over each time the Interactor
moved to a new object. We put a constraint into the Text
slot of the sound object that retrieves the name of the object
that the mouse is over. If the object is a string, it reads the
string. If it is a menu item, it reads the menu item. For
graphical objects, a short description is generated using a
very simple algorithm based on one property and the type
(e.g., “blue rectangle”). A more sophisticated algorithm for
generating descriptions, such as used in ENO [1] would be
very appropriate and easy to incorporate. If we wanted a

screen reader that used the TAB key to move from one
object to the next reading each label, then the same sound
object and constraint could be used, but a
One_Shot_Interactor triggered on TAB would be
used instead of a Choice_Interactor , and its action
would be to move the focus to the next object to be read.

To Bottom

Hello ! Red Rectangle

Figure 4. A simulation of what the screen reader Interactor
would say as the cursor is moved over various objects. The
screen reader is just a Choice_Interactor with a
Text_To_Speech sound object as its
Interim_Sound , and a constraint that calculates the
appropriate words to say.

As a small additional feature, a constraint might be put into
the Text_To_Speech sound object’s Voice slot, to
choose a different voice if it was reading a menu item that
was grayed out. Other properties of the interface could
similarly be signaled by changes in the voice parameters.

IMPLEMENTATION

The Andalusite sound system was added to Amulet without
significant changes to the low-level Amulet architecture.
Amulet already had a built-in facility for animations [14]
that deals with time-based phenomenon. The animations
can operate in the background driven by timers. The sound
system uses the same low-level timer mechanism. Each
timer can have a different time-out that determines when it
wants the next tick. The way the timers are implemented is
that Amulet’s main event loop was modified to include a

Easily Adding Sound Output to Interfaces - 9 - **Submitted for Publication**

scheduler, which uses a priority queue choose which timer’s
time-out is coming next. The main event loop blocks
waiting for input events, but when timers are pending, this
block is modified to have a time-out of the time until the
next timer needs a tick. Whenever the main event loop
unblocks, it checks to see an input event arrived, and if any
of the timers need a tick. When a timer needs a tick, a call-
back method in the timer is called. Timers can be marked
as repeated or once-only, and if repeated, then the timer is
put back into the scheduling queue.

The Andalusite sound system uses a special timer to handle
the scheduling of all the sounds. It is currently scheduled to
wake up every 50 milliseconds when there are sounds to be
played. This interval was picked to be long enough not to
unduly affect the performance, but short enough not to
cause noticeable gaps in the sounds.

One important problem with playing sound files using
today’s window managers is that the programmer is
responsible for keeping the buffers full. You cannot just
ship the entire sound file to the hardware, especially for
long sounds (which might be many thousands of bytes).
Instead, the program needs to send a small amount, and
then schedule a process to send the next buffer-full at the
right time. Andalusite handles this for the programmer
using its timer call-back. Every time it wakes up, the timer
checks all currently playing sounds to see if they need their
buffers refilled. The timer also checks to see if any sounds
have finished, and if so, it decrements the Repeat_Count
of that sound. If the count is zero, then the timer causes the
Next_Sound to play, if any. If there is no next sound,
then the timer checks the pending queue for other sounds to
resume playing.

The sound objects are started, stopped, paused, and
resumed using type-specific methods of the sound objects:

x Play_Sound_Method , to start the sound playing,
based on the values of the slots of the sound object.

x Stop_Sound_Method , to stop the sound
immediately, and clean up any resources.

x Pause_Sound_Method , to cause the sound to pause
in a way that can be resumed at the current point.

x Resume_Sound_Method , to cause the sound to
pick up where it was paused.

We have implemented these methods for the two kinds of
sound objects Andalusite currently supports: playing
recorded sounds and text-to-speech. New kinds of sounds
can be easily integrated with the general sound mechanism
by just writing these four methods for the new kind of
sound.

STATUS AND FUTURE WORK

The Andalusite sound system is working in the Macintosh
version of Amulet, and mostly implemented for the PC
version. We have added sounds to some existing Amulet
games and applications.

For the future, we plan to finish the implementations on the
PC and Unix. We want to expand the number and types of
applications that use sound. We particularly want to
explore using sounds to “visualize” data, along the lines of
Bly [3]. We will also be creating new kinds of sound
objects like playing MIDI files, and more capabilities for
composing sounds from the components like pitch, rhythm,
timbre, register, dynamics, etc. We would like to create a
variety of applications that use “Earcons” [2] and provide a
“clip-sound” library that can be used by applications. We
would also like to connect the Andalusite sound system
with other new features in Amulet, such as the multi-user
support [9], to investigate the use of sounds to support
collaboration, as recommended by Gaver [8].

Another interesting future direction is to support more
complex compositions of sounds, for example into bars and
measures, which would be necessary to create longer and
more sophisticated musical pieces.

CONCLUSIONS

The Andalusite sound mechanism in Amulet makes it very
easy to add sounds to graphical and direct manipulation
user interfaces. Andalusite also makes it easy to create
games that use sounds. The architecture provides a
machine-independent interface for sounds where most
aspects of synchronization, timing, and scheduling can be
declaratively specified. The result is that sounds can be
easily combined and attached to existing objects,
animations and behaviors. Properties of sounds can be
computed with constraints based on values of data objects,
or they can be calculated using animation constraints to
achieve time-based variations of the parameters. We hope
that by providing this significantly simpler interface to the
programmer, that there will be much more exploration of
how sounds can be used, so sounds in interfaces will be
much more popular and effective in a wide variety of future
interfaces.

ACKNOWLEDGMENTS

For help with this paper, we would like to thank Rob
Miller, Rich McDaniel and Brad Vander Zanden.

This research was partially sponsored by NCCOSC under
Contract No. N66001-94-C-6037, Arpa Order No. B326.
The views and conclusions contained in this document are
those of the authors and should not be interpreted as
representing the official policies, either expressed or
implied, of the U.S. Government.

Easily Adding Sound Output to Interfaces - 10 - **Submitted for Publication**

REFERENCES

1. Beaudouin-Lafon, M. and Gaver, W.W. “ENO:
Synthesizing Structured Sound Spaces,” in Proceedings
UIST'94: ACM SIGGRAPH Symposium on User Interface
Software and Technology. 1994. Marina del Rey, CA: pp.
49-57.

2. Blattner, M., Sumikawa, D.A., and Greenberg, R.M.,
“Earcons and Icons: Their Structure and Common Design
Principles.” Human-Computer Interaction, 1989. 4(1): pp.
11-44.

3. Bly, S. “Presenting Information In Sound,” in
Proceedings Human Factors in Computer Systems. 1982.
Gaithersburg, MD: pp. 371-375.

4. Brewster, S.A. “Using Earcons to Improve the Usability
of Tool Palettes,” in Adjunct Proceedings SIGCHI'98:
Conference Summary: Human Factors in Computing
Systems. 1998. Los Angeles, CA: pp. 297-298.

5. Buxton, W., “Introduction to This Special Issue on
Nonspeech Audio.” Human-Computer Interaction, 1989.
4(1): pp. 1-9.

6. Edwards, W.K. and Mynatt, E.D. “An Architecture for
Transforming Graphical Interfaces,” in Proceedings
UIST'94: ACM SIGGRAPH Symposium on User Interface
Software and Technology. 1994. Marina del Rey, CA: pp.
39-47.

7. Gaver, W.W., “The SonicFinder: An Interface That Uses
Auditory Icons.” Human-Computer Interaction, 1989. 4(1):
pp. 67-94.

8. Gaver, W.W., Smith, R.B., and O'Shea, T. “Effective
Sounds in Complex Systems: The ARKOLA Simulation,”
in Proceedings SIGCHI'91: Human Factors in Computing
Systems. 1991. New Orleans, LA: pp. 85-90.

9. Huebner, J. and Myers, B.A. “Easily Programminable
Shared Objects For Peer-To-Peer Distributed
Applications,” in Submitted for Publication. 1998.

10. Kaleida Labs, I., ScriptX Architecture and Components
Guide, Version 1.0. 1994, Mountain View, CA:

11. Myers, B.A., et al., The Amulet V3.0 Reference
Manual. Carnegie Mellon University Computer Science
Department, CMU-CS-95-166-R2, 1997,

12. Myers, B.A. and Kosbie, D. “Reusable Hierarchical
Command Objects,” in Proceedings CHI'96: Human
Factors in Computing Systems. 1996. Vancouver, BC,
Canada: pp. 260-267.

13. Myers, B.A., et al., “The Amulet Environment: New
Models for Effective User Interface Software
Development.” IEEE Transactions on Software
Engineering, 1997. 23(6): pp. 347-365.

14. Myers, B.A., et al. “Easily Adding Animations to
Interfaces Using Constraints,” in Proceedings UIST'96:
ACM SIGGRAPH Symposium on User Interface Software
and Technology. 1996. Seattle, WA: pp. 119-128.
http://www.cs.cmu.edu/~amulet.

15. Stifelman, L. “A Tool to Support Speech and Non-
Speech Audio Feedback Generation in Audio Interfaces,”
in Proceedings UIST'95: Eighth Annual Symposium on
User Interface Software and Technology. 1995. pp. 171-
179.

