
C H i 9 6 A P R I L 1 3 - 1 8 , t 9 9 6

Reusable Hierarchical Command Objects

Brad A. Myers
Human Computer Interaction Institute

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
bam@cs.cmu.edu

http://www.cs.cmu.edu/~bam

David S. Kosbie
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052

dkosbie@microsoft.com

ABSTRACT
The Amulet user interface development environment uses
hierarchical command objects to support the creation of
highly-interactive graphical user interfaces. When input
arrives or a widget is operated by the user, instead of invok-
ing a call-back procedure as in most other toolkits, Amulet
allocates a command object and calls its DO method. Un-
like previous uses of command objects, Amulet organizes
the commands into a hierarchy, so that low-level operations
like dragging or selection invoke low-level commands,
which in turn might invoke widget-level commands, which
invoke high-level, application-specific commands, and so
on. The top-level commands correspond to semantic ac-
tions of the program. The result is better modularization
because different levels of the user interface are independ-
ent, and better code reuse because the lower-level com-
mands, and even many high-level commands such as cut,
copy, paste, text edit, and change-color, can be reused from
the library. Furthermore, the commands in Amulet support
a new form of Undo, where the user can select any previous
operation and selectively undo it, repeat it on the same
objects, or repeat it on new objects. In addition, operations
like scrolling and selections can be undone or repeated,
which can be very useful. Thus, the command objects in
Amulet make it easier for developers by providing more
reusable components, while at the same time providing new
capabilities for users.

KEYWORDS: Amulet, User Interface Development En-
vironment, Toolkits, Command Objects, Undo, Redo.

INTRODUCTION
One of the primary and oldest software engineering prin-
ciples is to use a "layered architecture," where each layer
"is a useful subset of the system" [9]. It would seem that
user interface software would naturally decompose into
these layers. For example, deleting a file in the finder
might decompose into a delete operation, a drag-icon
operation, and a low-level object-follows-mouse operation.

Permission to make digital/hard copies of all or part of this material for
personal or classroom use is granted without fee provided that the copies
are not made or distributed for profit or commercial advantage, the copy-
fight notice, the title of the publication and its date appear, and notice is
given that copyright is by permission of the ACM, Inc. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires specific
permission and/or fee.
CHI 96 Vancouver, BC Canada
© 1996 ACM 0-89791-777-4/96/04..$3.50

Unfortunately, today's toolkits and user interface environ-
ments do not support layered software design well, espe-
cially for the handling of the users' inputs. Typically, the
window manager sends the hardware-level mouse and
keyboard events, which the application code directly hand-
les. When using widgets like buttons and menus, the
programmer does not have to deal with the low-level
events, but programmers still find that the "call-back
procedures" invoked by the widgets often become an un-
structured and unlayered maze of code. Furthermore, the
widgets' implementations are not layered: they directly
handle the hardware events. Other toolkits have tried to
increase the modularity and reuse by providing a single
layer. For example, Garnet [6] provides Interactors to
handle low-level input, Gina [1] and MacApp [12] provide
a single "command" layer, Chiton-1 [10] has the "Artist"
layer, and the Macintosh provides the "Apple Events"
layer. In all of these systems, the result is that program-
mers find it difficult to modularize their implementation,
because the code must be "factored" into exactly two
layers. Since most of the behavior is implemented in
application-specific code, there is less reuse of code.

To address these problems, Amulet provides hierarchical
command objects, where each application-level operation is
typically implemented using a number of layers of com-
mand objects. This is based on the PhD research on
"hierarchical events" by the second author [3, 4, 5]. In-
stead of invoking a call-back procedure, all interaction
techniques and widgets allocate a command object and call
its DO method. The DO method will take some action, store
any data needed for UNDO, and then invoke the DO method
of a higher-level command. For example, when the user
selects a menu item to delete a graphical object, the mouse
events are first passed to a general-purpose "Choice-
Interactor" object [6] which can handle any kind of selec-
tion. The DO method in the command object associated
with that Interactor calls the command object associated
with the menu, which knows how to update the feedback to
show which menu item is selected. This command object
in turn calls the higher-level Cut command, which removes
the object from the window and stores it in the invisible
clipboard, as well as in the command object to support
undo. Another use for hierarchical commands supports
modal dialog boxes. The widgets of a dialog box typically
should not cause any effect until the OK button is selected.
Amulet groups all the commands from the dialog boxes as
children of the dialog box's high-level command.

260

ii

A P R I L 1 3 - 1 8 , 1996 C~4~ g 6

The hierarchical nature of Amulet 's commands promotes
reuse, since the various layers of Amulet provide libraries
of commands that can be used by applications, usually
without change. For example, the basic low-level text field
editing, mouse-based selection, and mouse-based moving
and growing of objects are supported by built-in com-
mands. These command objects also support undoing of
the operations. Higher-level commands, such as cut, copy,
paste, delete, object creation, object property changing
(such as changing a color or line-style), are also supplied.
Unlike some systems like MacApp, commands in Amulet
are used for all application-specific behaviors, including
directly manipulating objects. These custom behaviors can
often be achieved by simply linking a new command as the
parent of an existing command, and then the system will
perform (and undo) both. The custom command does not
have to repeat any of the code in the lower-level com-
mands.

In addition to increasing the modularity and reuse of code,
Amulet 's command objects also support a powerful undo
mechanism. One of the most difficult tasks when program-
ming an interactive application is providing undo for every
operation. Thus, while most commercial applications
provide Undo, very few research ones do. Because sup-
porting user interface researchers is an important goal of
Amulet, the undo mechanism is easy-to-use, flexible and
entirely replaceable. So far, we have developed three dif-
ferent undo mechanisms. One is a Macintosh-like single
undo, and another supports conventional multiple undo,
where the user can undo all operations in sequence. The
third form is an innovative selective undo mechanism that
allows the user to select any previous operation and undo it,
as in Gina [1]. Unlike Gina, Amulet also allows the user to
repeat any previous operation, and to repeat previous
operation on a different set of objects. This allows the user
to express with a single command, "change the color of
these objects to be the same as the color that I set that
obj ect to.' '

This new undo mechanism also allows the user to easily
undo or repeat supporting operations like selections and
scrolling. It is common that setting up a complex selection
will take a number of steps. The user might accidently
clear the selection with a single click in the wrong place. In
other systems, the user then needs to start over, but in
Amulet, the user can simply undo the last incorrect selec-
tion action. Undoing and repeating scrolling is useful when
the user wants to repeatedly switch among two or more
specific locations in a document. By combining this fea-
ture with Amulet 's general-purpose facility that allows any
command to be marked and executed with a single
keystroke, the user can easily set up "bookmarks" in any
application, and even in scrollable file lists.

Another innovation in Amulet's undo mechanism is that
when a command operates on multiple objects, users can
undo the command on a subset of the objects. For example,
if the user selects a number of objects and then deletes them
with a single command, the command can be expanded in
the undo dialog box and the user can specifically undo the
delete of a single object and leave the rest deleted.

The hierarchical command objects in Amulet also support a
number of other important aspects of UI development:

® Enabling: A standard field of the command objects con-
trols enabling and disabling of commands (and whether
the associated widget is grayed out).

® Help: Another field supplies a short help string that can
be used for the "help line" in Microsoft Windows or for
the "balloon help" on the Macintosh. There is also a
pointer that can be used when longer help is needed,
which will typically bring up the help dialog box.

® External Control: The command objects also allow a
program to control another program as if it was the user
(a program can easily "push the buttons" of another
without requiring any changes in the target application).
Since the command objects have a simple, fixed protocol,
a program simply sets the VALUE slot of the desired
command object, and calls its DO method.

, Macros and Programming by Demonstrat ion: In the
future, command objects will be used to create a flexible
macro facility (by having the recorder save the com-
mands and call the DO methods) [5]. Since this will be
supported at the system level, applications will not have
to invent their own independent macro mechanisms.

® Analyzing User Interfaces: We expect the command
objects to be useful for transcribing and analyzing the
user's actions, since the hierarchical decomposition of
the commands seems to map closely to users' task
decomposition.

RELATED WORK
The Amulet system draws much inspiration from the Gar-
net system [7]. In particular, the low-level input event han-
dling in Amulet uses Interactor objects based on the design
from Garnet [6]. However, Garnet did not support any
form of command objects, undo, or hierarchical layers for
behaviors.

Using command objects to support undo was introduced in
MacApp [12] and has been used in many systems including
InterViews [11] and Gina [1]. All of these use a similar
single-level command architecture. Katie introduced the
idea of hierarchical events and explored some implemen-
tation issues [3, 4, 5]. Katie also proposed mechanisms for
using hierarchical events for scripting and undo. Amulet is
the first system to fully explore hierarchical command ob-
jects as a way to support large-scale applications,
modularity, reuse, and undo.

There is a long history of research into various new undo
mechanisms, and Amulet is specifically designed to allow
new mechanisms to be explored. Berlage [1] has a good
survey of previous undo mechanisms. The selective undo
mechanism described here is closest to the Gina mechanism
[1], but adds the ability to repeat previous commands, even

on new objects. Furthermore, Gina did not support undoing
parts of commands or undoing selections and scrolling.

COMMAND OBJECTS
A command object is defined for each operation in the sys-
tem. Many command objects are built into the system, and

261

O H | 9 6 APRIL 13 -18 , 1 9 9 6

others are created by application programmers. For ex-
ample, there are built-in command objects for dragging
graphical objects, changing objects' colors, and copying
objects. Typically, each menu item and widget has an as-
sociated command object. Because command objects can
be hierarchical, composite objects like menus and
menubars can have a separate command object for each
item (e.g., a separate command for cut, copy and paste).
Alternatively, there might be a single command for an en-
tire menu where the VALUE of the command is determined
by the menu choice. For example, in a menu for picking a
font, the change-font command can be attached to the menu
itself and each menu item can simply be a font value.

Command objects can be attached to widgets either by writ-
ing code or by using an interactive tool like an Interface
Builder, which might display a menu of built-in and
programmer-defined commands. The command object as-
sociated with a widget can even be computed by a
constraint, which is a function that recomputes the value
whenever needed. This makes it easy to support "menubar
sharing" where the global menubar items change based on
which window or sub-window is active.

Slots of Command Objects
Instance variables of Amulet objects, called slots, can be
dynamically added and removed from any object. Slots
that are not set locally are inherited from prototypes.
Methods are implemented as function pointers stored in
slots. Command objects in Amulet have a number of
default slots and methods. The LABEL slot of a command
object holds a string or object that will typically be dis-
played in the widget. For example, menus, buttons and text
input fields use the value of the LABEL slot as their label.
Because Amulet allows slots to contain any type of value,
the LABEL slot can contain a graphical object instead of a
string. This allows any picture to be a widget's label, not
just bitmaps or strings as in most other toolkits. Keeping
the label with the command object rather than with the
widget ensures that the same operation consistently uses the
same name. Instead of a regular value, the LABEL slot can
contain a constraint that calculates the value. This is very
useful when the label should change. For example, im-
plementing a cycle button that alternates between " t u r n
g r i d ON" and " t u r n g r i d OFF" is trivial.

The ACTIVE slot of a command object controls whether
the associated widget, Interactor, or menu item should be
enabled or not (grayed out). Typically, the ACTIVE slot
contains a constraint. For example, the C u t command
object's ACTIVE slot contains a constraint that returns
false when no objects are selected. The V I S I B L E slot of a
command object can be used to control widgets, dialog
boxes and windows that appear and disappear. If the
V I S I B L E slot is true, the associated graphical object is
visible, and if false, then it is invisible. Using the
V I S I B L E slot of the attached command object to control
pop-up dialogs provides a nice, uniform interface.

be computed by a constraint. This makes it easy, for ex-
ample, to change the string from telling what the command
does to telling why it is not available based on whether the
ACTIVE slot is true or false.

Since Amulet allows a program to dynamically add slots to
objects and since a slot can hold any type of data, command
objects typically store their current and previous states as
slot values. Four standard slots are defined, but custom
command objects can add other slots as necessary. The
standard slots are the VALUE slot for the current value, the
OLD_VALUE slot for the previous value, the
OBJECTMODIFIED slot for the object or list of objects
modified by this command, and the OLD_OWNER slot for
the widget or Interactor that invoked the command. By
using these standard slots for holding the data of the com-
mand, the standard undo mechanisms can provide default
ways of checking and displaying the commands, as
described below. These slots also form the interface be-
tween lower-level and higher-level command objects in the
hierarchy. For example, the tow-level Interactor which
moves objects is used in the scroll bar widget to let the user
drag the indicator. When the user drags the indicator, the
DO method in the command in the Interactor sets its VALUE
to the current position. The scroll bar command's DO
method then uses this value to compute the appropriate per-
cent value, which is then set into its own VALUE slot.

Methods in Command Objects
Amulet calls the command's DO method when the com-
mand should be invoked. The various kinds of undo
mechanisms require additional methods in each command,
as described below. The standard single and multiple undo
require two methods (for undo and undo-the-undo), and the
selective undo mechanism requires six methods. In some
situations, even for custom commands, it may not be neces-
sary to use a Do method at all. Instead, constraints can be
used. For example, the default change-property command
stores the current value of the property in the VALUE slot of
the command, and often a constraint can be put into objects
to get the current value of this slot. Then, the DO method
can be NULL (empty), and the UNDO method will be the
default, which simply swaps the values in the VALUE and
OLDVALUE slots of the command. For commands like
cut or delete-file, however, both DO and the various UNDO
methods are needed.

Command Object Hierarchies
Command objects in Amulet use four different hierarchies
(see Figures 1 and 2). All Amulet objects, including com-
mands, are in a prototype-instance hierarchy. This is used
to control the inheritance of default values for slots and
methods, and corresponds to the class hierarchy in C++. In
Figure 1, the command in item 1 is an instance of the Cut
command, and inherits a number of methods and slots from
it. Other methods and slots might have local, application-
specific values. The Cut command, in turn, is an instance
of the root Command object.

Command objects can also contain HELP and
SHORT_HELP slots to support the help-line and full help
text for the command. The help string in a command can

Most objects in Amulet also participate in a part-owner
hierarchy. This corresponds to the grouping mechanism in
other toolkits. Graphical objects are typically part of

262

APRIL t 3 - ~ 8 , 1996 C~4~ 9~

dition to the parent's DO method (specifically, the child's
runs before the parent' s).

"Cut"

"CoOy"

Input from the
use;< starts

here

~ey:
Part-Owner (points to owner)

Instance of (points to prototype)

..... ~::i::::ii~ili!iii!i~i~:i::~:~:: Implementation Parent

Figure 1:
Three of the hierarchies that command objects use.

groups, which are part of a window, which are part of the
screen. Non-graphical objects can also be added as parts.
This supports structural inheritance because all parts of an
object are copied when an object is copied. In Figure 1, the
menu widget contains various rectangle and string graphi-
cal objects as parts, as well as a Choice-Interactor object,
the command object for the widget, and the command ob-
jects for the various menu items. When a copy or instance
is made of the menu object, Amulet also copies all of these
parts. Programs can safely store local values into the com-
mand objects since a unique command object will be al-
located for each menu and menu item.

The other two hierarchies are specific to command objects,
and are not used by other kinds of Amulet objects. The
first one supports lower-level commands executing the
higher-level commands. For example, in a menu, the low-
level command associated with a Choice-Interactor deals
with the interim feedback that shows which menu item the
mouse is over. When the user releases the mouse over a
menu item, the Choice-Interactor's command turns off the
interim feedback, and then calls the DO method of the ap-
propriate command associated with that item. If desired,
the menu's command object would be invoked next. We
call this the "implementation hierarchy," since all the
commands work together to implement the operation.

The implementation hierarchy is quite different from the
prototype-instance inheritance hierarchy, since in the
prototype-instance hierarchy, an instance's DO method
replaces the parent's DO method. In the implementation
hierarchy, however, the child's DO method is run in ad-

Amulet uses the IMPLEMENTATION_PARENT as follows:
when an input event arrives, Amulet finds the Interactor
object to handle it. Then, that Interactor's command
object's DO method is invoked, followed by its
IMPLEMENTATION_PARENT command's DO method. In
pseudo-code:

cmd = current_interactor.coMMAND;
do {

cmd. DO_Method () ;
undo_handler. Register Command (cmd) ;
cmd = cmd. IMPLEMENTATION_PARENT;
}

while (cmd. Valid());

Of course, the standard widgets set the IMPLEMEN-
TATION_PARENT slots of internal commands automati-
cally, so the programmer is only responsible for higher-
level parts of this hierarchy. For custom widgets and be-
haviors on application-specific objects, programmers will
typically use the lower-level commands from the library
and attach their own higher-level commands as the
IMPLEMENTATIONPARENTs.

Originally, we thought that the part-owner hierarchy would
serve as the implementation hierarchy as well, since in
most cases commands in parts would call the commands in
the owners. For instance, the command in the Move-
Interactor in a scroll bar calls the command in the scroll
bar, and the scroll bar is the Move-Interactor's owner.
However, there are a number of situations where the part-
owner hierarchy does not match the required implemen-
tation hierarchy. For example, a single Choice-Interactor is
attached to an entire menu widget, whereas there may be
command objects associated with each individual menu
item (see Figure 1). In this case, the Choice-Interactor's
command object dynamically computes its implementation
hierarchy parent based on where the user points. Another
example is the selection handles widget, that allows graphi-
cal objects to be selected, moved, and grown, and displays
the standard square handles around the objects selected.
Since this single widget performs multiple actions, it con-
tains a number of Interactors as parts (each with its own
low-level commands), and the widget also contains mul-
tiple high-level semantic commands such as "become
selected" and "move ." The part-owner hierarchy is insuf-
ficient to match these up.

Our original design for the implementation hierarchy re-
quired that programmers call the correct methods as part of
their DO and UNDO code, but the programmers using
Amulet found it difficult to know what code was supposed
to be called when. Therefore, the current design uses a
declarative approach where the IMPLEMENTATION
PARENT slot in each command object is set with the parent
object. Now, the application's DO and UNDO methods can
contain arbitrary code, or even be empty. This seems to be
much more intuitive.

By contrast, the programming model ilatroduced in Katie
[4] provides for the automatic determination of parent in-

formation in events by using a nondeterministic parsing

!ii ~i I
i! iii~

• 4 ~

<i ii!;!il ~

!~ i~p~i~!ii~! ~

2 6 3

C~"~] 9 6 APRIL 1 3 - t 8 , 1 9 9 6

scheme operating on a declarative specification of events
accepted by each event handler.

The final hierarchy used by command objects is for situa-
tions where multiple widgets are used to construct a single
operation, such as with dialog boxes. So far, every com-
mand has been either a top-level command (i.e., like
"Cut") that will show up in the undo menu, or else the
IMPLEMENTATION_CHILD of a top-level command, l
We found that these two options were not sufficient for
every case, since all commands on the implementation
hierarchy are executed at the same time. In particular,
dialog boxes are often used to execute a single command,
but the dialog box itself is composed of many widgets each
of which has its own command. In Figure 2, the Change-
Font command should n o t be executed when the font-size
widget's commands are executed, but only when the OK or
Apply buttons of the dialog box are hit. Thus, the Change-
Font command cannot be the IMPLEMEN-

TATION_PARENT of the font-size widget. However, we
still would like the font-size command to be associated with
the Change-Font command for later undoing or transcrip-
tion. Therefore, commands can have their DEFERRED_
EXECUTION_PARENT slot 2 set with the top level com-
mand that will eventually be executed. Unlike the
IMPLEMENTATION_PARENT command, the DE-

FERRED_EXECUTION_PARENT command is not ex-

ecuted when the child's is. Tools that help programmers
build dialog boxes in Amulet, like Interface Builders, will
set the DEFERRED_EXECUTION_PARENT slots ap-
propriately, so we do not expect that most programmers
will directly need to deal with this hierarchy.

\

'ent

Figure 2:
The Change-Font command is the IMPLEMENTATION_PARENT
of the OK and APPLY commands so it will be executed automati-
cally when they are executed, but it is the DEFERRED_EXECU-
TION_PARENT of the other commands so it will not be executed
when they are executed, but so the commands will still be linked
to the Change Font command.

UNDO AND REPEAT MECHANISMS

User Interface

The command objects themselves have no user interface,
since they are used as an execution framework. The
general undo mechanism supports a variety of user inter-
faces, and any Amulet application can supply a custom user
interface to the undo mechanisms. This section presents
the default user interface for the three undo mechanisms,
which we have used to verify that the various options can
be presented in an understandable way.

At the top of the Edit pull-down menu in applications is the
usual "Undo" option, which undoes the last command. In
the Macintosh-like single undo mechanism, this menu item
changes to "Redo" after an undo has been performed,
which will undo the undo. The usual keyboard accelerator
keys can be used for the menu items.

In the multi-level undo mechanism, there are two undo
menu items: "Undo" which undoes the last operation that
has not been undone, and "Redo" which undoes the pre-
vious Undo. The "Undo" option is always available un-
less the user has undone all the operations back to the initial

1The IMPLEMENTATION_CHILDREN of a command C are all the
commands whose IMPLEMENTATION_PARENT is C.

2Better suggestions for the name would be appreciated!

state. The "Redo" option is only available if the previous
operation was an Undo, since this undo model does not
support trees of commands, just a linear list.

With the selective undo mechanism, there are three undo
menu items in the Edit menu: "Undo," "Redo" or
"Repeat," and "Selective Undo/Redo/Repeat...".
"Undo" and "Redo" operate the same as for the multi-
level undo mechanism. "Repeat" is a quick way to selec-
tively repeat the previous command. "Repeat" shares the
same menu item as "Redo" to save space, as in Microsoft
Word version 6. The final option brings up the dialog box
for selective undo shown in Figure 3.

The undo dialog box lists all the commands, and has but-
tons for the various undo and repeat actions. The dialog
box is not modal, and if it is left visible, the user can see
each new command added to the top of the list. The com-
mands are described by their type, the name or a picture of
the object modified (if any), and the value of the command
(such as the resulting color for a change-color command).
If the names of the object is not sufficiently meaningful, the
object associated with a command can be made to flash.
The user can easily undo or repeat the command to see if it
is the desired operation. If the selected command cannot be
undone or repeated, the appropriate action buttons are
grayed out. This would typically happen if the objects the
command affects are no longer valid, for example if the
objects have been deleted.

264

APRIL 1 3 - 1 8 , 1996 C~"'~| 96

color. Another use would be to mark the final command
which selects a set of objects so that various operations can
be applied to them without having to laboriously re-select
them or place them into a group. Eventually, marking will
be augmented by a full macro facility.

Implementation of Undo
Amulet is designed to be flexible to support user interface
researchers. In particular, the undo mechanism is com-
pletely replaceable. An undo-handler object is attached to
each window, and Amulet calls a standard method in it to
process each command executed. Programmers can use
one of the three undo-handlers supplied in the library, or
they can write their own. Amulet simply requires that each
undo-handler support the method REGISTER_COMMAND
which takes a command object, and saves it for later un-
doing.

Figure 3:
The dialog box currently used for selective undo, redo and repeat.
Command 11 has been marked with the F9 accelerator key.

The meaning of selectively undoing a command has been
adopted from Gina [11: the affected values of the objects
are returned to the state just before the command was ex-
ecuted. If a command turns an object from blue to yellow,
selectively undoing the command will make it blue, no
matter what its current color is. Similarly, selectively
repeating the command will turn the object yellow again.
Selectively repeating a command on new objects will do
the same operation to the new objects. In this case, the new
objects would turn yellow. The selective operations also
generate a new command object which is put at the top of
the command list, and this new command can then be un-
done using the normal mechanisms. The name of the new
command is prefixed with "Undo" or "Repeat," as shown
by commands 18 and 21 in Figure 3.

Selective repeating of some commands might mean dif-
ferent things. For example, we decided that repeating a
" m o v e " command should put the object in the same place
as the original move. However, it might alternatively mean
to move by the same relative distance. User testing will be
required to see which meaning is more often desired, or if
users would prefer to have a choice of both options.

The check boxes at the right of the dialog box in Figure 3
control whether scrolling and selections should be queued
for undoing. If so, they are added to the command list like
regular commands.

The E x p a n d button in the dialog box expands an operation
that affects multiple objects into a set of commands, so they
can individually be undone or repeated. The selected com-
mand can be marked and given a user-defined name and
keyboard accelerator that will selectively perform the com-
mand again on the same object or the currently-selected
objects. This can be used, for example, to create "book-
marks" for scrolling to specific places in a document, or to
create a command to set any object to a particular custom

The undo-handler's REGISTERCOMMAND method checks
to see if a command has an IMPLEMENTATION_PARENT
or DEFERREDEXECUTION_PARENT, and if not, then it
makes a copy of the command and all of its children. If a
command does have an IMPLEMENTATIONPARENT or
DEFERRED_EXECUTION_PARENT, the parent command
will eventually be executed, and it will then be queued for
undo along with its parent, so there is no need for the undo-
handler to queue it.

When a single command is undone or repeated, all of its
IMPLEMENTATION_CHILDREN commands have to be
undone or repeated also, since they all participated in the
operation of the command. Consider a widget to change an
object's color in a graphics editor. When the user clicks on
it, the DO method of the command in the widget changes
the widget to show the current color, and the DO method of
the application's Change-Color command (which is the
IMPLEMENTATION_PARENT of the widget's command)
changes the color of the selected objects. If this command
is undone, then both the widget and the selected objects
should return to their previous states. Therefore, the UNDO
method in the command object in the widget and the UNDO
method in the application command should be executed.
This clearly shows the advantages of the hierarchical com-
mands, since in other toolkits, the undo method for the
application has to know which widget it was part of and
how to reset the widget. In Amulet, however, the applica-
tion command can be exclusively concerned with updating
the application's data structures, and the child command for
the widget will update the widget.

It is important that the UNDO methods be executed in the
same order as the DO methods (from child to parent) since
often the higher-level commands compute their values from
the values of lower-level commands. For example, since
the widget's command's DO and UNDO methods will al-
ways be executed first, the methods in the application's
Change-Color command do not need to store an old value
since they can simply access the current value of the
widget's command object.

We have found that the DEFERREDEXECUTION_
CHILDREN of a command do not need to be undone when

265

CH~ 9~ A P R I L 1 3 - 1 8 , 1 9 9 6

a command is undone. For example, undoing the font set-
ting command should usually not reset the various widgets
in the font dialog box. If necessary, an undo method is free
to call the undo methods of its D E F E R R E D

EXECUTION_CHILDREN, and some future undo
mechanisms might even allow the D E F E R R E D EXE-

C U T I O N _ C H i L D R E N commands to be individually un-
done by the user.

Some commands are not undoable (like Save File) but
should still be queued on the undo list to show that they
were executed. Other commands are not normally queued
on the undo list at all (like scrolling and selection). Com-
mands that are not undoable but should still be queued can
simply leave their UNDO_METHOD as empty (NULL). The
undo-handlers grey-out commands without an undo
method. Commands that are not normally queued for undo
are so marked, but they still have UNDO_METHODs, so the
user can dynamically decide whether they should be
queued for undo, for example by using the check boxes in
Figure 3.

When an command object can no longer be repeated or
undone, it is destroyed. The single undo mechanism
destroys the old command object whenever a new com-
mand is executed. The multiple command mechanism cur-
rently supports unlimited undo, so command objects are
only destroyed if they are undone, and then a new com-
mand is executed, since at that point, redo is no longer
available.

Implementation of Selective Undo and Repeat
Implementing selective undo and repeat is not much harder
than implementing regular undo. All the required infor-
mation is already stored in the command object. The major
new complication is that for selective undo or repeat, the
affected object's current values must be loaded into the
command object, in case the selective undo command itself
is undone. To facilitate this, the undo mechanism first
makes a copy of the command object to be undone or
repeated before calling the selective undo or repeat method.
Therefore, the methods are free to reload the OLD_VALUE
slot from the current object without affecting the original
command. For example, the method that implements all
the undo and repeat operations for property changing com-
mands looks like (in pseudo-code):

/ / undo is true when undoing and false when repeating.
/ ~on_new is true when applying this to the new object new_obj.
void property_repeat_undo (Am_Object cmd,

heel undo, bool on_new,
Am_Object new_obj) {

if (on_new) {
cmd. OBJECT_MODIFIED = new obj;
object : new_obj;
}

else object = cmd. OBJECT_MODIFIED ;
cur value = object.property slot;
if (undo) new_value = cmd. OLD VALUE;
else new value = cmd.VALUE; //repeat
o b j e c t .property_slot = new v a l u e ; / / S e t it
//now swap old and new values in command
cmd. VALUE= new_value;
cmd. OLD_VALUE = cur_value;

}

If the command affects a set of objects, then the
OBJECT_MODIFIED slot simply contains a list of objects,
and the OLDVALUE and VALUE slots contain a list of the
old and new values. This makes it easy to support the
breaking apart of these commands into individual com-
mands, if the user requests that the command be expanded
using the undo dialog box.

Methods in the command object determine if the command
can be selectively undone or repeated. These typically
check the affected objects to see if they are still valid (but
some commands, like deletion, do the opposite and check if
the objects are invalid).

STATUS AND FUTURE WORK
The command and undo mechanisms described above have
recently been incorporated into the Amulet system, and are
available for general use} Our early impressions are that it
is not difficult to construct applications using the hierar-
chical command architecture, supporting selective undo is
only slightly harder than regular undo, and both are
facilitated by the hierarchical commands. In the future, we
hope to gather some data about end user's feelings about
the selective undo mechanisms: Is the meaning of selective
undo and repeat clear? Can users pick the correct com-
mand from the dialog box? Is undoing and repeating of
selections and scrolling useful and easy enough to do?

Currently, the undo mechanism only allows the user to
select the top-level command for undoing and repeating,
and this automatically undoes or repeats all the children
commands. It would be interesting to explore whether it is
useful for users to be able to undo only the children com-
mands, for example, to re-enter a dialog box or other multi-
step action and finish it differently. Given the ease of
creating new undo mechanisms in Amulet, it becomes at-
tractive to explore many other forms of Undo. For ex-
ample, what if the previously undone operations were not
flushed when new operations were entered, but instead the
system supported multiple paths of execution with the pos-
sibilities of skipping around? Then the command history
might become a complex tree. Combined with the book-
mark facility, this might allow "what i f" explorations,
where the user can try different sequences of actions, and
then use the one that works best (even if it wasn't the last
one tried).

A number of researchers have explored undo in the context
of multi-user applications, and the selective undo model
described here seems ideal for this. The interface could
easily allow commands like "Undo my last action" versus
"Undo the last action" by simply marking each command
with a user ID.

Another important direction for future work is to support
scripting and programming by demonstration [8] using the

3The complete Amulet system is available for free by anonymous FTP,
including the command and undo model described here. See
h t t p : / /www. c s . cmu. e d u / - a m u l e t or contact the first author for
more information.

266

co

int
co

(le
inl
(5,
"C I
"C

at
m~
wi
wl
in
aF
to

pl

Ti
ar
at
ti~
w

al

th
e~

fc

A
u

sl

d
b
e~

£

t(
n
a

c

s

I
r

c

t
r

t
I
I

t
1

, i , i

APRIL 1 3 - 1 8 , 1996 C H ~ 9 6

command objects so users can aggregate several actions
into a single new command. Scripts can be record the
command objects at any level: at the low level input events
(left button down at (45,30), move to (54,31)), at the
intermediate command level (move file_object_461 to
(54,31)), or at a higher semantic command level (move_file
"commands_paper" from folder "submitted" to folder
"CHI96"). Different uses of scripts may require recording
at any of these levels and having the semantic level will
make scripting more useful than previous systems [5]. It
will be interesting to explore how to let the user choose
which level is desired. Having scripting at the toolkit level,
instead of using a different scripting mechanism for every
application, will allow users to transfer their knowledge and
to create more elaborate programs that use multiple ap-
plications.

Transcripts of the multi-level commands may be useful for
analysis. The time spent scrolling, selecting, using help,
aborting commands, and undoing, can be clearly differen-
tiated from productive work, and it might be possible to
write programs to filter the transcript to look for problem
areas. Also, it appears that the command hierarchy matches
the NGOMSL method decomposition [2] so model-based
evaluation of Amulet interfaces may be possible even be-
fore testing with any subjects.

Another direction for future work is to extend the selective
undo mechanism to text editing. The main problem for
selectively undoing and repeating will be where in the
document a command refers, given that the text may have
been substantially edited since the command was first ex-
ecuted.

CONCLUSIONS

The hierarchical command objects in Amulet make it easier
to build interactive applications, because low-level com-
mands can be reused from the library without change, and
application-specific properties can be easily expressed with
constraints and methods in high-level commands. At the
same time, the command objects enable a very flexible
Undo mechanism that supports selective undoing and
repeating of previous actions, and new undo mechanisms
can be easily added. We are very excited about the poten-
tial of Amulet's command objects as a foundation for future
research and for general user interface development.

ACKNOWLEDGEMENTS
For help with this paper, we would like to thank Alan Fer-
rency, Rich McDaniel, Brad Vander Zanden, John Pane,
and Bernita Myers. The Amulet system is being developed
by Brad Myers, Rich McDaniel, Alan Ferrency, Andy
Mickish, and Alex Klimovitski.

This research was partially sponsored by NCCOSC under
Contract No. N66001-94-C-6037, Arpa Order No. B326,
and partially by NSF under grant number IRI-9319969.
The views and conclusions contained in this document are
those of the authors and should not be interpreted as
representing the official policies, either expressed or im-
plied, of the U.S. Government.

REFERENCES

1. Thomas Berlage. "A Selective Undo Mechanism for
Graphical User Interfaces Based on Command Objects".
A CM Transactions on Computer Human Interaction 1
(Sept. 1994), 269-294.

2. Michael D. Byrne, Scott D. Wood, Piyawadee
Sukaviriya, James D. Foley and David E. Kieras. Automat-
ing Interface Evaluation. Human Factors in Computing
Systems, Proceedings SIGCHI'94, Boston, MA, April,
1994, pp. 232-237.

3. David S. Kosbie and Brad A. Myers. A System-Wide
Macro Facility Based on Aggregate Events: A Proposal.
In Allen Cypher, Ed., Watch What I Do: Programming by
Demonstration, MIT Press, Cambridge, MA, 1993, pp.
433-444.

4. David Kosbie. Hierarchical Event Histories in Graphi-
cal User Interfaces. Ph.D. Th., Computer Science Depart-
ment, Carnegie Mellon University, 1996. In progress.

5. David S. Kosbie and Brad A. Myers. Extending Pro-
gramming B)~ Demonstration With Hierarchical Event His-
tories. In Brad Blumenthal, Juri Gornostaev and Claus Un-
ger, Ed., Human-Computer Interaction: 4th International
Conference EWHCI'94, Lecture Notes in Computer
Science, Vol. 876, Springer-Verlag, Berlin, 1994, pp.
128-139.

6. Brad A. Myers. "A New Model for Handling Input".
ACM Transactions on Information Systems 8, 3 (July
1990), 289-320.

7. Brad A. Myers, Dario A. Giuse, Roger B. Dannenberg,
Brad Vander Zanden, David S. Kosbie, Edward Pervin,
Andrew Mickish, and Philippe Marchal. "Garnet: Com-
prehensive Support for Graphical, Highly-Interactive User
Interfaces". IEEE Computer 23, 11 (Nov. 1990), 71-85.

8. Brad A. Myers. "Demonstrational Interfaces: A Step
Beyond Direct Manipulation". IEEE Computer 25, 8
(August 1992), 61-73.

9. David L. Parnas. "Designing Software for Ease of Ex-
tension and Constraction". IEEE Transactions on Software
Engineering SE-5, 2 (March 1979), 128-138.

10. R. Taylor, K. Nies, G. Bolcer, C. MacFarlane, and
K. Anderson. "Chiron-l: A Software Architecture for User
Interface Development, Maintenance, and Run-Time Sup-
port". A CM Transactions on Computer Human Interaction
2 (June 1995), 105-144.

11. John M. Vlissides and Mark A. Linton. "Unidraw: A
Framework for Building Domain-Specific Graphical
Editors". A CM Transactions on Information Systems 8, 3
(July 1990), 204-236.

12. David Wilson. Programming with MacApp. Addison-
Wesley Publishing Company, Reading, MA, 1990.

267

