
Easily Programmable Shared Objects For Peer-To-Peer
Distributed Applications

John Huebner
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213 USA

jh6p@cs.cmu.edu
http://www.cs.cmu.edu/~jh6p

Brad A. Myers
Human Computer Interaction Institute

Carnegie Mellon University
Pittsburgh, PA 15213 USA

+1 412-268-5150
bam+@cs.cmu.edu

http://www.cs.cmu.edu/~bam

ABSTRACT
This paper presents our experiences in implementing
PERSON, a toolkit for adapting single user applications
into multi-machine multi-user applications. This is
achieved by providing a way to share objects in a peer-to-
peer model using a programming model that emphasizes
values rather than functions and ties the values together
with constraints. This encourages a modular and
declarative style of program design.

Keywords
Toolkits, Distributed Applications, Amulet, CSCW,
Constraints

INTRODUCTION
Programming a multi-user, distributed application is
significantly harder than writing an application that
executes on a single machine for a single user [11]. If not
using a groupware toolkit, the programmer has to
explicitly create, open, and close sockets. Once the sockets
are open, the programmer often has to deal with
converting local data structures into byte streams to be sent
over the network. This is called marshalling the data. On
the receiving end, the programmer will have to unmarshall
data.

PERSON, which stands for PeeR-to-Peer Shared Object
Network toolkit, is able to convert constraint-based single-
user applications to multi-user applications with only a few
lines of code. It uses a peer to peer networking model to
simplify application design. Users can join and leave at
any time in any order without waiting for a moderator.
There is no master server. The freedom from central
authority is useful for a spontaneous gathering, however,
PERSON also supports a client/server relationships by
allowing one host to become the central hub through
which all messages pass. When a participant drops out,

the system cleans up automatically. Sharing is achieved by
distributing copies of the important objects in the
application, one per machine, and using cross-machine
equality constraints to keep the important values of the
objects the same on all machines.

PERSON uses an optimistic consistency strategy, of
conflict detection rather than conflict avoidance, to allow
reads and writes to be executed immediately. Conflicts
detected using Lamport’s logical clocks[6] to detect stale
data. A deterministic algorithm is used to determine the
final state after stale data is received.

The process of contacting a new participant, and getting
all of the current versions of the objects to them is handled
transparently by PERSON. The object name space is
shared across a group of hosts. The programmer need not
manage multiple copies of objects, or send updates since
this is handled by PERSON.

Amulet
PERSON is written in the Amulet user interface toolkit [8]
in C++. Amulet has structured graphics, which is a
drawing model that requires every image on the screen
have an object associated with it. This allows the toolkit to
take over many routine maintenance tasks such as
refreshing the screen. Amulet objects have lists of value
pairs called slots. A slot has a name and can hold any type
of value. Amulet is designed so that programmer’s can
specify the relationships between values using arbitrary
constraints. Most of a program in Amulet is defined by
the values of the object slots. With this approach, there is
little need for callback methods.

To the Amulet toolkit, we added a shared object system
that allows the programmer to network an application
simply by specifying which objects and which slots in
those objects need to be shared. For example, one way to
get a start button to become invisible when the game starts
would be to write a constraint that makes the start button
invisible when the ball becomes visible. Instead of
needing a remote procedure call to tell the remote player to
begin, the programmer can just make the ball visible.

2

PERSON will propagate this change to the remote players,
where the constraints on those machines will cause their
start buttons to disappear.

Since we already had a large body of programs written in
Amulet, we were able to convert some of them to be
distributed, and observe the difficulties. The largest
difficulty resulted when the variables that needed to be
shared were in global variables of built in types rather than
in the slots of objects. Conversion was notably easier
when the original application had been programmed to
have Save and Open commands, because the list of slots to
save could be reused.

Peer-to-Peer
There are two major design approaches for distributed
applications: peer-to-peer and client/server. In the peer-to-
peer model, all communicating hosts share equal
responsibility for maintaining network services. In the
client/server model, central servers provide services to the
client. Client/sever is the dominant model for most
toolkits today. There are social consequences to any
network architecture. One consequence of client/server is
that the central authority, in charge of the server, has a
great deal of control over how, and when, the system is
used.

Although the benefits of client/server are widely known,
the maintenance of a central server can sometimes be a
burden. The end user may not have access to a machine
with high availability and an unchanging address. If such
a machine is available, the users may need to request
permission to run their software on it. In addition,
client/server lends itself to designs where the server user
must make decisions that strongly affect how the client
users may use the system. This is useful for hierarchical
organizations, but inappropriate for a group of peers
collaborating or playing together.

In the strict client/server design, objects are stored
separately from the host that uses them. For example,
CORBA stores objects in one location and does remote
procedure calls on the methods [9].

A peer-to-peer model enables designs where each user is
responsible for their local resources and views. For many
programming tasks, such a cooperative authoring, it makes
more sense for the authors to manage communications
themselves with all members as peers. Peer-to-peer is also
a natural model for designing games, where, each player is
often equal to the others.

In PERSON, responsibility for shared state is shared
equally among the peers. Once an object is shared, a copy
of all shared objects on each local machine which is
viewing the object. All machines are equally responsible
for storing or updating that object. In contrast, many peer-
to-peer systems, such as Microsoft or Apple local file
sharing, are constructed as distributed client-server

systems, in which each peer accesses remote resources as a
client and serves its own resources for others.

Although shared objects are stored on each machine,
PERSON still allows the programmer to connect the hosts
in whatever way he sees fit. By programming one host to
always wait for the other hosts to connect first, and
requiring the other hosts to connect to a known address,
the programmer could create a client/server network
topology. However, the objects would still be shared
between the server and the client, rather than the server
having full control over the objects. Since there is no need
for a central server, the programmer can write one
application instead of two, which simplifies the problem of
maintaining consistent state on each application.

In order to allow existing Amulet programs to be quickly
and easily converted to multi-user distributed applications,
we wanted to ensure the freedom of a programmer to write
a program without any concern for how information is
sent. To meet this goal, PERSON hides both send and
receive messages, as well as the connection process.
PERSON also supports manipulating arbitrary types of
data so that values can be sent across networks and among
different types of platforms (Windows, Macintosh, and
Unix). The programmer only needs to call one procedure
for each peer added and one for each object shared. The
rest is managed by the system. A programmer who is
concerned about performance can concentrate on
minimizing the amount of shared data, rather than
designing network protocols.

The next section discusses related work. The section after
that highlights the important features of our system. This
is followed by an example illustrating how a single
machine pong game was converted into a distributed
application running on multiple machines. The sections
following that will review the details of the
implementation, beginning at the lowest level and
continuing to the type of applications that can be written
with our toolkit.

Constraints
Amulet programs are declarative in nature and rely heavily
on constraints to maintain the proper relationships
between values. This declarative nature hides the value
propagation mechanism, which allows PERSON to include
network propagation transparently. For example, The ball
in the pong game is constrained to be invisible if and only
if the start button is visible. The start button is networked.
Thus when one user presses the start button, it becomes
invisible, and the local ball becomes visible. Because the
start button is networked, the remote start button also
becomes invisible and triggers the same constraint on the
remote machine.

Even relatively complex cases are handled adequately. For
example, consider the case with the start button and ball

3

above. As shown in figure 2, when the start button on
machine A (labeled Button A) is made invisible, then the
update will be sent to the start button on machine B
(labeled Button B) and the constraint will update the ball
on A (labeled Ball A).

If the network update of the Ball B arrives before the
network update of Button B, then the constraint will
simply re-set the same value, and propagation will stop.

If the update to Button B triggers the constraint before the
network update to Ball B arrives, then the constraint will
trigger an update from Ball B to Ball A. This will result in
both Ball A and Ball B being updated by the network.
Since the values will be the same, no constraints will be
triggered, and the propagation will stop because it is
prohibited from traveling back across the share it came in
on.
Topology

The network topology is an arbitrary, undirected, graph,
where each machine is only connected to the other
machines that it names explicitly in a call to the Add
method.

A star topology could be created if users agreed to all
connect to one central machine that waited with Wait
calls. This would approximate client/server.

The more interesting topology that we allow is chains. In
a chain, each machine connects to the next. Even loops
are permitted.

Under the current implementation, leaves of the graph may
come and go, but nodes that connect two or more other
nodes could cause a partition in the network if they
dropped out. Each node only relays changes to the
immediately adjacent nodes.

Conflict resolution
The current system has simple equality constraints that
guarantee that the value chosen by all hosts will be the
same, and will be a value sent by one of the hosts.

Although this does not prevent one host from overriding
another’s changes, it does prevent corrupted data.

Inconsistencies may not matter and people may mediate
their own actions, as noted in early GroupKit work, [5].
That paper also notes that if visible feedback of conflicts is
presented, then people are able to resolve the conflict. Our
policy ensures that the result converges to some host’s
input. If the local machine did not win, the user will
perceive the presence of the other users and act to
coordinate with (or over-rule) them.

RELATED WORK
One issue with multi-platform distributed applications is
the marshaling and unmarshalling of data to support
varying data storage designs such as byte ordering.
GroupKit avoids marshalling data into byte streams by
requiring the programmer to use Tcl/Tk, a language where
all types are represented as character [10]. VisualOblique
[2] and Programmer’s Playground [4] both provide
abstractions that transparently transport data from one host
to another, but both require that the application be written
in from scratch in a new language. In contrast, we had
written applications in amulet before the addition of
network capacity and concentrated on converting these
programs rather than writing new ones.

Another important issue in distributed Applications is the
design of the naming services to allow applications to find
the remote resources they need. For systems that share
values rather than remote procedures, this takes the form
of the data name space used in expressions and
assignments. VisualOblique uses top level windows,
which it calls forms, as collections of widgets as well as
the basic unit of distribution. Values are stored as
properties of widgets in form instances. The server keeps
an array of handles to instances of forms, forming a
hierarchical name space.

Programmer’s Playground allows the programmer to
package code into modules, which are components with
public data that can be accessed by other modules, called
published interfaces. Programmer’s Playground allows
programmers to connect modules using a graphical user
interface. Two modules are connected by sharing elements
from the public interfaces of each module. The
programmer can specify callback functions for each public
data structure. A connection manager module enforces
access privileges.

PERSON allows grouping objects into sets, called network
groups, which are only visible to hosts who are members of
that group. Within network groups, our namespace

One of the most difficult challenges of distributed shared
data systems is the maintenance of consistency with
respect to cause and effect when changes affect distant
data. Bharat & Hudson were able to achieve a concurrency
in all but read operations in their Doppler distributed

Machine A Machine B

Button A

Ball A

Constraint Object
Shared over Network Machine

Button B

Ball B

Figure 1: Overlapping Constraints and Links

4

constraint system, without sacrificing any causal
consistency. To achieve this, they built an elaborate
infrastructure into Doppler that tracked state changes with
vector clocks, in a data structure that kept copies of
previous states for reference, [3]. However, Doppler still
required locking data during reads, which requires
messages to make a round trip between hosts before a read
can proceed.

There are also attempts to create high-level programming
abstractions for client/server systems. Tools such as Java’s
Remote Method Invocation [12] and CORBA [9] support
abstractions that hide the byte stream behind local stub
(client side) or skeleton (server side) proxy objects that

convert to and from local data structures. These
frameworks introduce as much complexity as well as
hiding it, however. The setup for these frameworks often
involves two or more objects and several method calls on
the client side, and the server can be as complex. The
main improvement is that these tools can be used for a
variety of objects. Furthermore, the programmer still has
to invent a protocol of method invocations and or messages
to pass back and forth.

Microsoft’s DirectX gaming toolkit, uses a Lobby server
for establishing connections. Even for peer-to-peer
messaging [7] requires a lobby server to establish a
connection. GroupKit uses a Registrar to connect its
clients [11].

EXAMPLE
In a sample program, a Pong Game was converted from
single machine to networked by adding a few lines of code.
First the programmer specifies how the objects are to be
shared and then shares the objects. Other hosts may be
added before or after objects have been shared as shown
below:

Am_Network.Share(paddle1,”pad1”);
Am_Network.Add(hostname)

Am_Network.Share(paddle2,”pad2”);
Am_Network.Share(ball,”netball”);

The hostname is just a string which can be entered by the
user as either a machine name (e.g.: www.cs.cmu.edu) or
its dotted decimal form, (e.g.: 128.2.209.79). The Add
method can appear anywhere in a program. The human
readable Internet address format has become widely used
with the spread of the World Wide Web which uses it as
part of the Universal Resource Locators. Even Microsoft
has added IP addressing as an optional part of its file-
sharing IDs.

When paddle1 is shared, it is registered with the low level
as an object to share across machines.

When the value of a slot in an object changes, the new
values of the object’s slots are sent to the other machines
that are sharing that object. Whole objects are not sent
during these updates. Amulet has a predefined slot called
Am_SLOTS_TO_SAVE, which is a list that can be added
to any object to indicate the slots on that object that should
be stored when the object is saved to a file. The list
usually includes properties that change from object to
object such as color or position information. There are
many slots that are omitted such as the object’s the line
thickness, or border color, which are never changed within
that particular application and can get their values from
the parent object. PERSON uses the
Am_SLOTS_TO_SAVE list to determine which parts of
an object’s state need to be saved to disk. Thus, if the
program was written with a “Save” command, there is no
need to specify Am_SLOTS_TO_SAVE. The network
system will send the slots already specified in
Am_SLOTS_TO_SAVE. However, since Pong does not
normally save games, these lists had to be added. The
following code is added:
ball.Add(Am_SLOTS_TO_SAVE, Am_Value_List()
 .Add(X_VELOCITY)
 .Add(Y_VELOCITY)
 .Add(Am_VISIBLE)
)
IMPLEMENTATION
The following sections detail the design used by PERSON
and the lessons learned. First the underlying Connection
layer that supports the network abstractions in the toolkit
is described. This is followed by a description of how
different values are sent across the network. The next
section explains how lists and other composite types can be
easily constructed using high-level functions. The Object
section presents the sending and maintenance of objects.
The section after that explains how the objects are kept
consistent using demons which trigger in response to
changes in values. Finally, here is a brief discussion about
the network topology and our conflict resolution strategy.

Connection Layer
The Am_Network.Add method used in the example,
relies on an underlying connection service which we also

Figure 2: Pong-A sample networked application

5

wrote. The connection service handles the establishment
and maintenance of the connections between all the
participating machines. A socket is opened for each
connection and maintained as long as the machines need
to communicate. Since each connection between two hosts
will have a separate socket, there is no cross-talk and data
can come in from multiple hosts simultaneously without
difficulty.

To establish a connection with a remote machine,
Am_Network.Add calls the static method
Am_Connection::Open, which returns a connection.
There are two ways to call Open. If it is called with a
hostname string, it will try to establish a connection with
the application on the machine with that hostname, and
fall back to listening for incoming connections from any
host if that fails. If it is called without any parameters, it
will immediately begin to listen for any incoming
connection. This has the convenient result that if both
sides call Open with the other’s address, a connection will
be established regardless of who calls Open first.

The passive form of Open can be used to create a server
like behavior where the application will wait for unknown
incoming connections.

Sending Values
PERSON supports a strong but flexible type system, where
all variables can be stored in a generic union type:
Am_Value, which has an attribute that can be used to
determine the type of data that it contains. This allows us
to have an Am_Value_List type that can store different
types of data in each position of the list, and allows us to
have object slots that can store any data type.

Before a new data type may be sent or received, its type is
registered. We register all of the built in types such as
char, bool, short, int, long, float, double, and string as well
as the composite types Am_Value_List and Am_Object.
In most cases this will be all that the programmer will
need, because new values of any type can be added to an
object or list dynamically. If the programmer wishes to
send a new type, he may write a marshaller and register it.
To write a new marshaller for a composite type, the
programmer must use the connection’s Send and Receive
methods to send the primitive types that make up the
composite type. This is how the Am_Value_List and
Am_Object marshallers are written. For example, the
programmer could use this technique to implement
Complex Numbers by sending a pair of floats. A
marshaller for the Complex Number type would extract the
real and imaginary components from the custom data
structure and send them, in order, by using:

my_connection.Send(my_real_float);
my_connection.Send(my_imag_float);

The unmarshaller would then receive the basic types using
my_real_float=my_connection.Receive();

my_imag_float=my_connection.Receive();
A type is registered with a single method, which has three
parameters: the type code that is identifies the type, and
the functions to marshal and unmarshall that type. These
are stored in association lists. Since the two functions are
registered together in the same call as the type
information, every registered type is assured both a
marshaller and an unmarshaller that are consistent.

Only the marshallers for built-in types use the sockets
layer. The Am_Connection::Handle_Input
method, called from the main loop, checks sockets for
incoming data and calls the marshallers. This is the only
method, besides marshallers, in Am_Connection that
uses socket calls to perform its duties. Marshallers for
composite types use the Send and Receive services.

Once a connection is established, the marshaller is able to
send any value supported by the system via the same Send
method, and receive any supported value using Receive
method. The Send method sends the type code across the
network, then calls the appropriate function pointer for
sending that type.

At the receiving side, when a new value is received, the
type is used to find the appropriate the unmarshaller
function, using another association list. This function is
called to build the correct value from the network stream.

Once a new variable is received it is put onto a queue for
the connection that it came in on and the callback function
that is registered for that connection is called to process
the variable

The callback function may use Receive to get the value
off the queue. The default marshallers for integers use the
BSD network order functions. We wrote similar functions
for float and double, which assume IEEE format, since no
network order functions were implemented for floating
point types. Strings are sent as lengths followed by the
character streams.

For example, if a program called Send with a four byte
integer as a parameter, the Send method would detect that
the type was 32 bit integer and send the type-code over the
network to signal the arrival of a new integer. It would
then call the marshaller registered for 32-bit integers.
This marshaller would use the BSD function htonl to
convert the integer to network byte order and then send the
reordered four bytes over the socket. On the receiving end,
the incoming data would trigger the handler for socket
input, Am_Connection::Handle_Input, which
would detect the type-code for a 4 byte integer, and call the
unmarshaller for 4 byte integers. This unmarshaller would
read in the integer and use the BSD function ntohl to
convert the network byte order to host byte order. The
newly received integer value would then be wrapped in an
Am_Value union type and placed on the queue to be used
by the callback function registered with that connection

6

 Callback functions are responsible for popping the value
off the connection’s queue and acting upon it. The
Am_Network layer’s callback function does nothing but
pop the object off of the queue, since the real action
happens as a result of constraints that depend on the values
of the object’s attributes.

Lists (an example of a composite type)
Types that could contain other types, such as Lists and
objects, required special attention to handle recursion such
as lists within lists, or objects within objects. We also
want to prevent the system from blocking while additional
data was on its way. In addition, both objects and lists
needed to contain items of arbitrary type. To implement
this we overrode the user-defined receiver callback
function so that we could re-use the receiving system. The
new list simply stores the handler for the parent list, along
with the partially constructed parent list on a queue in the
Connection. The unmarshaller constructs the child list
and returns control to its parent’s receiver callback
function as its last action. The parent list handler then
takes the newly generated child list from the queue, and
inserts the child list into a slot in the parent list.
Construction of the parent list continues where it left off.
This supports arbitrary levels of recursion.

Objects
The Am_SLOTS_TO_SAVE list contains an ordered
series of slot keys. This list must be in the same order on
each machine that shares the object. PERSON does not
depend on the slot keys being the same, which is
important, since users may request slot keys dynamically
to add new slots. These dynamically allocated slots may
be different on different machines.
Application Level Semantics

PERSON uses network groups to determine which
machines share a group of objects. A default group,
Am_Network, is provided. A network group is a

collection of machines that share a set of objects. When a
program wants to start communicating with another

program, it must add the internet address of the other
program to one of its network group using the
Network_Group.Add method.

The Add method takes a string argument as discussed in
the example. The address can be entered in by the user,
allowing these programs to be run even when there is no
dedicated server, unlike the server required in GroupKit,
VisualOblique, DirectPlay, and others. So long as the
participants know the address of the machine of one other
participant, they are able to join the group. There is no
need to designate one user as the server user.

If the programmer wishes to wait for a connection without
specifying a machine name, he may call
Am_Network.Wait. This has the same affect as
calling Add without an address, but is less confusing to
read.

One potential use for network groups is in the division of
labor as shown in figure #2. Network groups would allow
a team of users on separate machines to divide a
workspace into parts, and have group A share the objects
they are working on which are distinct from the objects
that group B are working on. A small moderator group C
could share all the objects.

 It is necessary to Share an object to each group with
which the programmer wishes to share the object. When
the programmer calls Share on an object, it remains
shared until the programmer calls Unshare.

The Share function is a method of the network group
rather than the object so that objects need not be modified
in any way. Share takes an object as a parameter. For
example, the command to share the object paddle1 is:
Am_Network.Share(paddle1,”pad1”);

The arbitrary string in the above example serves to
uniquely identify the object across all participating peers.
There is no required format, but it must be unique across
all machines in the network group. When an object is
shared, it is registered in an association list so that it can
be referred to later. Both sides require the same registered
object for the system to keep a shared object consistent.
When an object is received, the slots specified in
Am_SLOTS_TO_SAVE are overwritten with data from
the network.
Synchronize objects by using demons

When an object is shared, a reference to the object is stored
and a demon is set on each of the slots listed in the
Am_SLOTS_TO_SAVE list. If one of the slots in an
object’s Am_SLOTS_TO_SAVE list contains another
object, the network demon is set on the contained object as
well and so on recursively.

When the value of a shared object’s slot changes, its
demon is put into an execution queue. If multiple changes

 C Network Group
Shared Object
Application

A B

C

Figure 3: Moderated Parallel Work.

7

are made to the slots of that object, the demon waits in the
queue until some other operation is performed such as
requesting the value of one of the slots of the object,
operating on a different object, or reaching the end of the
event loop. At that time, the demon activates and sends
the object to each of the participants in turn.

Before an object is received, it should be Shared. Once
the object is shared on both sides, all subsequent references
to that name will refer to the same object, regardless of
which side sent the update. This way the system knows
what to do with the new information. For example, it
knows what constraints should be alerted of changes in
slot values. If the programmer wants to be able to
dynamically create objects on a remote screen, they
program also needs to know that these new objects need to
be part of the screen. In our design, this could be done by
creating a group on both sides and adding the group to the
desired window. Then objects could be added and
removed from the group and appear on the screen as they
would be expected to do.

When a shared object is received, a new slot
called Am_NET_IN_PROGRESS is added which contains
the address of the connection that sent the update. The
network demons check for the presence of this slot and do
not send updates to connections named in the
Am_NET_IN_PROGRESS slot of the object being
updated. This prevents loops involving an incoming
update from triggering an update back to the host that sent
the original update. This slot is deleted once the object is
completely constructed and placed on the connection
queue.

FUTURE WORK
At the time of the writing of this paper, we have
implemented the marshallers for all basic types as well as
Strings, Am_Value_Lists and Objects. The establishment
of connections and sending and receiving supported types
are complete for the Am_Network_Group.

One way we hope to increase performance is by sending
partial updates. Currently all slots in the
Am_SLOTS_TO_SAVE list are sent every time the object
is changed. In the future we may implement sending only
the changed slots with their slot key and analyze the
performance benefits.

In the future we plan to add more robust networking in the
form of a new network group type that is fully connected,
called Am_Fully_Connected_Network_Group .
This new network group would ensure that all participants
in a group see the same members in that group. The new
group, which will be called, will demand that each node
send updates directly to all the other nodes in its group.
This design would require each machine to pass along the
list of all members of that group so that each member

could directly communicate with the others. This would
provide fault tolerance for node failures and increased
availability. For example, if host A connected to host B
and machine B connected to machine C, machine B could
drop out and leave machine A connected to machine C.

This is illustrated in figure 4, where Step 1 shows the
initially unconnected nodes. Step 2 shows A connecting to
B. Step 3 Shows B Connecting to C. In step 4, the current
Am_Network_Group simply completes the connection
between B and C, whereas
Am_Fully_Connected_Network_Group would
establish an additional connection between C and A. In
step five, B looses its network connection. In step six, A
and C are isolated under the current design, but still have a
working connection in the fully connected design

We would also like to expand the types of objects that are
supported to include automatic sharing of objects created
from objects that are already shared. Other enhancements
would include supporting the deletion of shared objects,
either by simply unsharing them or providing some
mechanism for safely deleting remote objects. We would
like to be able to add slots to the Am_SLOTS_TO_SAVE
list while an object is shared. We would also like to
explore the implications of sharing visible windows
directly rather than their parts as well as supporting
updates to lists where list members are added or deleted.
Also applies to objects who have new sub-objects set in a
shared slot.

1.

2.

3.

4.

5.

6.

 Established Connection A Machine
Opening Connection Failure

A CB

A CB

A CB

A CB A CB

A C A C

A CB

A CB

A CB

A CB A CB

Current Design Fully Connected Design

Figure 4: Advantages of a Fully Connected Design

8

.Other directions that we might take PERSON include
sending command objects to support network undo as a
concurrency control mechanism, as GINA [1] does, or
making our naming scheme hierarchical.

Conclusion
Our experiences support the evidence presented by
VisualOblique and Programmer’s Playground that the
declarative programming style provides an excellent
method for abstracting the complexities of designing
distributed multi-user applications. In addition, we also
demonstrated the usefulness of constraints in a distributed
setting. Unlike VisualOblique which had a large number
of callbacks, our system used constraints (Reference
spaghetti code paper?). We simplified the naming process,
while supporting information hiding through the use of
network groups. Our session establishment process is
basic, but capitalizes on the recent public familiarity with
internet addresses because of the proliferation of the world
wide web.

The largest problem we are experiencing is poor
performance. We found that the choice of which slots to
send was crucial to acceptable performance. In an early
version of the pong game, we simply shared the position
slots of the ball. This resulted in updates arriving a few
seconds late, even on a our local LAN, which caused
synchronization problems. When we shared the velocity of
the ball rather than the position, the game became
playable.

ACKNOWLEDGMENTS
This research was partially sponsored by NCCOSC under
Contract No. N66001-94-C-6037, Arpa Order No. B326.
The views and conclusions contained in this document are
those of the authors and should not be interpreted as
representing the official policies, either expressed or
implied, of the U.S. Government.

REFERENCES
1. Berlage, T. and Genau, A., “A Framework for Shared
Applications with a Replicated Architecture,” in
Proceedings of the ACM SIGGRAPH Symposium on User
Interface Software and Technology, 1993, pp. 249-257.

2. Bharat, K. and Brown, M.H. “Building Distributed,
Multi-User Applications by Direct Manipulation,” in
Proceedings UIST'94: ACM SIGGRAPH Symposium on
User Interface Software and Technology. 1994. Marina del
Rey, CA: pp. 71-81.

3. Bharat, K. and Hudson, S.E. “Supporting Distributed,
Concurrent, One-Way Constraints in User Interface
Applications” in Proceedings UIST'95: ACM SIGGRAPH
Symposium on User Interface Software and Technology.
1995, pp. 121-132

4. Goldman, K.J., et al., “The Programmer's Playground:
I/O Abstraction for User Configurable Distributed
Applications.” IEEE Transactions on Software
Engineering, 1995. 21(9): pp. 735-746.
http;//www.cs.wustl.edu/cs/playground/papers.html.

5. Greenberg, S. and Marwood, D., “Real Time Groupware
as a Distributed System: Concurrency Control and its
Effect on the Interface,” in Proceedings of ACM CSCW'94
Conference on Computer-Supported Cooperative Work,
1994, pp. 207-217.

6. Lamport, L. “Time, Clocks, and the Ordering of Events
in a Distributed System.” Communications of the ACM,
1978. 21 (7): pp. 558-56

7. Microsoft, “DirectX Online Help.” 1997.
www.microsoft.com.

8. Myers, B.A., et al., “The Amulet Environment: New
Models for Effective User Interface Software
Development.” IEEE Transactions on Software
Engineering, 1997. 23(6): pp. 347-365.

9. OMG, “CORBA 2.2 Specification.” 1998. OMG
Technical Document formal/98-02-01

http://www.omg.org/corba/corbaiiop.htm.

10. Roseman, M. “Tcl/Tk as a basis for groupware,” in
Tcl/Tk Workshop. 1993.

11. Roseman, M. and Greenberg, S., “Building Real Time
Groupware with GroupKit, A Groupware Toolkit.” ACM
Transactions on Computer Human Interaction, 1996. 3(1):
pp. 66-106.

12. Sun, “Java RMI reference.” www.sun.com

