
1

In “Proceedings of the 1993 AIAA Conference on Space Programs and Technologies,” Sept. 21-23, 1993, Huntsville, Alabama.

A HUMAN-MACHINE INTERFACE FOR RECONFIGURABLE SENSOR-BASED
CONTROL SYSTEMS

Matthew W. Gertz, David B. Stewart, and Pradeep K. Khosla
Dept. of Electrical and Computer Engineering

The Robotics Institute at Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

Abstract

The development of software for dynamically reconfig-
urable sensor-based control systems is a complicated and
tedious process, requiring specialization in real-time sys-
tems programming and an amount of time which may not
be available, for instance, in a space laboratory. The total
development time can be reduced by automatically inte-
grating reusable software modules to create applications.
The integration of these modules can be further simplified
by the use of a high-level programming interface which can
integrate modules developed at different sites. We have de-
veloped Onika, an iconically programmed human-machine
interface, to interact with a reconfigurable software frame-
work to create reusable code. Onika presents appropriate
work environments for both application engineers and end-
users. For engineers, icons representing real-time software
modules can be combined to form real-time jobs. For the
end-user, icons representing these jobs are assembled by
the user into applications. Onika verifies that all jobs and
applications are syntactically correct, non-ambiguous, and
complete. They can then be executed from within Onika, or
can be saved as a stand-alone program which can be exe-
cuted independently on the underlying real-time operating
system. Onika can retrieve and use software modules cre-
ated at other sites with modules created locally. While On-
ika has been fully integrated with the Chimera real-time
operating system in order to control several different ro-
botic systems in the Advanced Manipulators Laboratory at
Carnegie Mellon University, it can also function indepen-
dently of Chimera. Onika will be used in connection with
NASA Langley Research Center’s Intravehicular Autono-
mous Robot (IVAR) space manipulator laboratory.

1. Introduction

The development of real-time software forsensor-based
systems is an expensive process, accounting for a signifi-
cant portion of total application costs. This expense can be
reduced by automating the software development proce-
dure. To do this, a user-friendly high-level programming
environment designed for the creation of reusable real-time
software is required. A programming interface of this type
would not only allow for the rapid development of soft-
ware, but would also considerably ease the process of de-
bugging real-time code. This would be especially useful

when the manipulator is operating aboard a shuttle or space
station, where the primary users may not necessarily be
specialists in the field of robotics.

Much of the expense and tedium of software development
is caused by the limitations of textual code. To use a textual
language properly, the programmer must undergo expen-
sive training. The deciphering, debugging, and use of real-
time textual code is particularly time-consuming, espe-
cially when the code is cryptic, non-portable, and uncom-
mented. In the past, researchers have created visual
programming languages (VPLs) to address the problems of
textual coding.1,2,3,4,5,6,7 However, these interfaces have
been, in general, either very high-level and narrow in
scope, or low-level and cryptic. Furthermore, these inter-
faces have not been designed with the specific require-
ments of real-time programming in mind. These
requirements include the need to switch from one job to the
next with minimal time loss, the need to modify the code of
a job while it is executing, and the need to coordinate many
jobs running in parallel.

In this paper, we discuss the development of a multilevel/
iconically-programmed human-machine interface called
Onika, and the software programming framework in which
it resides. Our primary motivations for designing such a
software framework include the following:

• Reconfigurable hardware, such as open-architecture
computer environments (e.g. VMEbus) and
reconfigurable machinery (e.g. RMMS14), require
reconfigurable software in order to take full ad-
vantage of all the capabilities of the hardware.

• Reconfigurable software is useful for supporting
multiple applications on a fixed hardware setup.

• Generic graphical user interfaces and programming
environments for robotics and automation appli-
cations require that the underlying control system
be reconfigurable.9

Other major advantages to designing applications to reuse
reconfigurable software, even for systems which do not
have to be reconfigurable, include the following:

• Reusable software: Any software that is developed
for a reconfigurable system is inherently reusable.
It is therefore not necessary to redevelop every
part of the system when designing a new applica-
tion. Consequently, the development time for ap-
plications is significantly reduced.

Copyright ©1993 by the American Institute of Aeronautics and
Astronautics, Inc. All rights reserved.

2

• Expandability: Existing hardware can be upgraded,
or new hardware or software added to the system,
with reprogramming the application.

• Technology transfer: A module (and hence the tech-
nology implemented within that module) can eas-
ily be transferred to another institution which is
also using the reconfigurable software frame-
work. Technology transfer is thus very straight-
forward, even if different institutions are working
on very different applications or have very differ-
ent system setups.

Onika has several abilities which increase its effectiveness
with respect to other interfaces and programming environ-
ments for real-time sensor-based control systems. Onika
directly connects with the underlying real-time operating
system to coordinate the system’s activities, giving a user a
control capability which has not previously been available
in interfaces for sensor-based systems. Programming can
be done interactively or off-line. Onika gives the user ac-
cess to a library of control modules, which are parallel-ex-
ecuting reusable software modules within a reconfigurable
sensor-based control system. Each control module on the
real-time operating system is represented by a block-form
icon, which can be manipulated by a mouse. Using Onika,
these icons can be combined in a logical way to create jobs
for the system to execute. The interface is able to switch
from one job to the next quickly, in real-time, with minimal
system delays. The user is also able to use Onika to monitor
and modify the real-time performance and parameters of
each routine running on the real-time operating system.
Furthermore, a combination of routines created at one level
of Onika can be saved as a reusable higher-level routine for
others to use. Thus, routines at Onika’s higher levels be-
come more specific, making programming accessible for
naïve users, without diminishing the programming scope
for more knowledgeable users working at Onika’s lower
level. Unlike other interfaces, both levels of users, naïve
and knowledgeable, are presented with an interface appro-
priate for their programming abilities and application re-
quirements.

In section 2, we discuss various HMI/VPL systems which
have been introduced in recent years. In section 3, we dis-
cuss the software framework in which Onika operates. In
section 4, we introduce Onika, a multilevel iconic program-
ming language (IPL) and human machine interface (HMI).
We summarize this paper in section 5.

2. Previous Work

The problems associated with textual programming have
been addressed on several levels in the past.1,7 Researchers
have created interfaces wherein routines for an existing
programming language (such as C) are created by a higher-
level VPL.1,5,6 Interfaces such as these are designed to be
used by programmers with knowledge of the structured
programming language in question. They are best used for
routines of lower- to middle-level rank. Higher-level HMIs

have also been created for naïve users1,2,3,4,7; however, the
scope of any given interface of this type is generally nar-
row. The addition or major modification of routines con-
trollable by the interface is beyond the abilities of its
typical user.

Traditional flowchart methods are often used in both
higher- and lower-level VPLs. Flow charts reduce the com-
plexity of textual code somewhat, but can still be quite
cryptic and do not efficiently use screen space. Occasion-
ally, pictures accompany or are used in place of the text (as
in Pict6 or HI-VISUAL4) within a flowchart, but this does
not help to give syntactic clues for programming. Nassi-
Schneiderman flowcharts, used primarily for lower-level
programming, are more compact than traditional flow-
charts and have an implied syntax. They can be textually
cryptic and difficult to read, however.

There are other VPLs which use pictures and other visual
cues in order to construct the program use non-traditional
flow methods. Proc-BLOX5, a lower-level VPL, allows us-
ers to create Pascal-like code by assembling blocks repre-
senting the textual code primitives in a jigsaw puzzle
fashion. The shapes of the elements preclude the possibility
of assembling syntactically incorrect programs. Other
packages such as Lingraphica™2 and ISHeE3 remove the
text altogether and rely on pictures to determine the mean-
ing of the program. ISHeE also uses the jigsaw puzzle for-
mat to convey syntax. By making the visual representations
more compact, more of the program under development
can be seen on the screen at a time.

3. Details of Software Framework

A multilevel interface requires a multilevel programming
framework in which to operate. Associated with our re-
search into multilevel IPL/HMIs is the development of a
multilevel reconfigurable software framework.8,13 In this
section, we introduce this software framework, and discuss
its various components.

3.1. Overview

The real-time components of our software framework (il-
lustrated in Figure1) are supported by the Chimera 3.0
Real-Time Operating System.11 The user interface and pro-
gramming environment for these real-time components are
implemented within Onika.9

We define acontrol module as a reusable software module
within a reconfigurable sensor-based control system. A
control module executing in the real-time environment is
referred to as atask, and hence we often use the two terms
interchangeably. Control tasks may be eitherperiodic or
aperiodic, and can perform any real-time or non-real-time
function. Periodic tasks block on time signals, whereas
aperiodic tasks block on asynchronous events such as mes-
sages, semaphores, or device interrupts.

A configuration is formed by integrating control modules
from a library to form a specific configuration. Device
drivers and utilities (such as math subroutines) are auto-

3

matically “linked in” based on the needs of each module in
the configuration. A configuration implements functions
such as motion control, world modeling, behavior-based
feedback, multi-agent control, or integration of multiple
subsystems.

A job is a high-level description of the function to be per-
formed by a configuration; e.g.move to point x. When the
post-conditions of one job and the pre-conditions of the
next are satisfied, then a dynamic reconfiguration can be
performed within the system. We use the termaction inter-
changeably with the termjob.

A control subsystem is defined as a collection of jobs which
are executed one at a time, and can be programmed by a
user. Multiple control subsystems can execute in parallel,
and operate independently or cooperatively.

An application is defined as one or more subsystems oper-
ating in parallel. An application may be composed of sub-
systems of other applications, allowing for hierarchical
decomposition of an application.

In the following sections we discuss the basic building
block of our framework, the control module.

3.2. Control Modules

Each control module has zero or moreinput ports, zero or
moreoutput ports, and may have any number ofresource
connections. Input and output ports are used for communi-
cation between tasks in the same subsystem, while resource
connections are used for communication external to the

job P

sensor
interfaceX

configuration
programmer
and editor

job R

Configuration R

raw data out

typed data out

C, math,

libraries

and utility
subroutine

i/o device

raw data in

typed data in

to/fr om other
subsystem

job S
job T

to actuatorZfrom sensorY

raw data in

typed data in

from sensorX

iconic
programming

language

iconic programs (jobs)

graphical interfaces

real-time tasks

subroutine calls

graphical
user interface

driver y driver z

Onika

Subsystem W

user

a
b

cd

e

fh

g

job Q

special purpose
processorF

sensor
interfaceY

actuator
interfaceZ

i/o device
driver x

i/o device
Chimera 3.0

“contr ol tasks”

Figure 1.The reconfigurable software framework for sensor-based
real-time operating systems. Routines at one level are created by
combining modified reusable routines at the adjacent lower-level.

subsystem, such as with the physical environment, other
subsystems, or a user interface.

Each input and output port is a state variable, and not a
message port. Whenever a task executes a cycle, the most
recent data corresponding to the input port variables is ob-
tained. At the end of a cycle, the new data corresponding to
the output port variables is used to update the subsystems’s
state information.

A link or connection (the terms are used interchangeably)
is created by connecting a port of one module to a port on
another module. A configuration can be legal only if every
input port in the system is connected to one, and only one,
output port (see section 4.3.2). An output port may connect
to multiple input ports.

A task does not have to have both input and output ports.
Some tasks receive input from, or send input to, the exter-
nal environment or to other subsystems using the resource
ports. Other tasks may generate data internally (e.g. trajec-
tory generator) and hence have no input ports. Still other
tasks may just gather data (e.g. data logger), and hence
have no output ports.

3.3. Control Module Integration

In order to integrate modules into a configuration, a reliable
method of intertask communication is required. In our soft-
ware framework, astate variable table is used to provide
such capabilities.8 Our mechanism assumes that each con-
trol task is self-contained on a single processor, and that a
control subsystem is contained within a single open-archi-
tecture backplane.

A global state variable table is stored in the shared mem-
ory. The variables in this table are a union of the input and
output port variables of all of the modules which may be
configured into the system. Tasks cannot access this table
directly. Rather, each task has its own local copy of the ta-
ble, called thelocal state variable table.

Within the local table, only the variables actually used by
the task are kept current. At the beginning of each cycle of
a task, the variables which are input ports are transferred
into the local table from the global table. At the end of a
task’s cycle, variables which are output ports are copied
from the local table into the global table. This design en-
sures that data is always transferred as a complete set, since
the global table is locked whenever data is transferred be-
tween global and local tables. More details on the imple-
mentation of the global state variable table can be found in
theChimera 3.0 Program Documentation 11.

3.4. Generic Structure of a Control Module

In order to provide automatic integration of the control
modules, it is necessary that the functionality of the module
is implemented as a few basic components. All of the data
flow, communication, synchronization, and scheduling
should be handled automatically by the underlying operat-
ing system. Our model of a control module provides a ge-

4

neric structure that is applicable to both periodic and
aperiodic real-time tasks.

A control module can have two kinds of input: constant in-
put that needs to be read in only once during its initializa-
tion (in-const), and variable input which must be read in
either at the beginning of each cycle for a periodic task, or
at the start of event processing for aperiodic task (in-var).
Similarly, a task can have output constants (out-const) or
output variables (out-var). Both constants and variables are
transferred through the global state variable table.

Two examples of state variables of theconst type are the
degrees of freedom of a manipulator (NDOF), and its De-
navit-Hartenberg parameters (DH). By changing only the
robot interface module which supplies these values, we can
execute a configuration written for one manipulator on an
entirely different manipulator.

The use ofin-consts andout-consts by the modules creates
a necessary order for initializing tasks within the configu-
ration. Tasks which generateout-consts must be initialized
before any other task that uses that constant as anin-const
is initialized. The rules are discussed in greater deal in sec-
tion 4.3.2.

The code for a control modulexxx is decomposed into sev-
eral subroutine components:xxxInit(), xxxOn(), xxxCycle(),
xxxOff(), xxxKill(), xxxError(), and xxxClear(). Refer to
Figure2 for a diagram of these components, and how they
relate to the state variable table transfers and events in the
system. A more detailed C-language specification for this
control module interface is given in Stewartet al.11

Figure 2.Internal structure of a control module.

xxxInit()

xxxOn()

xxxOff()

xxxCycle()

NOT

OFF

ON

ERROR
spawn

in-vars

in-consts

out-vars

out-consts

on

in-vars

out-vars

out-vars

offxxxOff()

out-vars

kill

xxxClear()

clear

on any error
after task receives

‘on’ signal

on any error
before task

reaches
‘off’ state

block until specified

call specified

copy state variables

event occurs

wakeup or constants into or
out of global state
variable table

subroutine component
of module

Legend:

state of task

kill

xxxKill()

CREATED

xxxError()

if SBS_CONTINUE
returned

if SBS_ERROR
returned

if SBS_OFF
returned

The xxxInit() andxxxOn() components are for a two-step
initialization, while thexxxOff() andxxxKill() routines are
for a two-step termination. The two-step initialization al-
lows the task to first be created, but then remain in anoff
(not executing) state. High-overhead operations, such as
creating the task’s context, allocating memory, initializing
the local state variable table, and initializing resources are
generally performed in the initialization routine. Once the
task is created, it can be turned on (executing) and off
quickly. Every time it is turned on, only a small amount of
initialization is required to place the task into a known in-
ternal state which is consistent with the rest of the system.
The xxxOn() routine can also be used for enabling inter-
rupts and setting up post-conditions for the task set. The
xxxOff() routine is useful for disabling interrupts, placing
final values on the output ports, ensuring that other tasks
will not be adversely affected when the task’s execution is
halted, and to save any internal state or logged data onto
more permanent storage. ThexxxKill() component is used
to terminate a task and free up any resources it had previ-
ously allocated.

ThexxxCycle() component is executed every time the task
receives a wakeup signal. For periodic tasks, the wakeup
signal comes from the operating system timer, while for
aperiodic tasks, the wakeup signal can result from an in-
coming message or other asynchronous signalling mecha-
nism supported by the underlying operating system. Before
thexxxCycle() component is called,in-vars are transferred
from the global state variable table into the local table. Af-
ter the xxxCycle() component finishes, theout-vars are
transferred from the local to the global table.

Until now, we have made no mention of errors which may
during the initialization, execution, or termination of a task.
By default, an error generated during initialization prevents
the creation of the task, and immediately callsxxxKill()
which can free any resources that had been allocated before
the error occurred. If an error occurs after a task is initial-
ized, then thexxxError() routine is called. The purpose of
xxxError() is to either attempt to clear the error, or to per-
form appropriate alternate handling, such as a graceful deg-
radation or shutdown of the system. If for any reason the
task is unable to recover from an error, the task becomes
suspended in the error state, and a message sent to the job
control task that operator intervention is required. After the
problem is fixed, the operator sends a clear signal (from the
user interface), at which timexxxClear() is called. The xxx-
Clear() routine can do any checks to ensure the problem
has indeed been fixed. If everything is fine to proceed, then
the task returns to theoff state, and is ready to receive anon
signal. If the error has not been corrected, then the task re-
mains in theerror state.

3.5. Reusing and Reconfiguring Modules

Our software framework is designed especially to support
reusable and reconfigurable real-time software. The
change in configurations can occur either statically or dy-

5

namically. In the static case, only the task modules required
for a particular configuration are created. In the dynamic
case, the union of all task modules required are created dur-
ing initialization of the system. Tasks necessary for the first
configuration are turned on immediately after initializa-
tion, causing it to run periodically, while the remaining
tasks remain in theoff state. At the instant that we want the
dynamic change in controllers, we send anoff signal to the
tasks not required in the next configuration and anon signal
to those that are required. On the next cycle, the new tasks
automatically update their own local state variable table,
and execute a cycle of their loop, instead of the now-unused
tasks doing so. Assuming theon and off operations are
fairly low overhead, the dynamic reconfiguration can be
performed without any loss of cycles.

For a dynamic reconfiguration which takes longer than a
single cycle, the stability of the system becomes a concern.
In such cases, when the dynamic reconfiguration begins, a
global flag signals to all tasks that a potentially illegal con-
figuration exists. Critical tasks which send signals directly
to hardware or external subsystems (e.g. the robot interface
module) can go into locally stable execution, in which the
module ignores all input variables from other tasks, and in-
stead implements a simple control feedback loop which
maintains the integrity of the system. When the dynamic
reconfiguration is complete, the global flag is reset, and the
critical tasks resume taking input from the state variable ta-
ble.

The software framework described in this section allows
the user to create reusable and reconfigurable real-time
software. However, direct use of the operating system
which supports this framework requires users to be knowl-
edgeable about textual real-time code. For the naïve user, a
novel human-machine interface is required to fully use the
system. In the next section, we discuss Onika, our human-
machine interface for this software framework.

4. Onika

4.1. Onika as an Interface

The purpose of Onika is to provide an appropriate interface
for each level of our programming framework. Each inter-
face shares with the other interfaces the common concept
of building higher-level routines from combinations of
lower-level routines. In theory, there is no limit to the num-
ber of levels of programming which can be created by such
a framework. Although it would be impossible to create an
interface for each potential level, it is possible to use the
same interface for closely allied levels. This is particularly
true at higher levels, where the routines that define an ap-
plication are all goal-oriented. In Onika, we have defined
the following levels of programming: thelower level (also
called thetextual level), the middle level (also called the
control level), and theupper level (also called theapplica-
tion level). Upper level routines are combined into routines
which are also usable in the same upper level programming
environment. This means that no additional high-level in-

terfaces are needed. Onika provides both a robot interface
and programming environment for the middle and upper
levels of programming. It also uses lower level programs to
define middle level routines.

Onika1.1 runs on the Sun4, and interacts via Internet with
the real-time operating system Chimera3.0, which itself
runs on a single-board computer in a VMEbus.8,12,13 Onika
can also retrieve and immediately use both middle and up-
per level routines from any other machine on the Internet,
provided that the remote machine from which the files are
being retrieved is running an appropriate server. Thus, code
developed at different locations can be stored on a distrib-
uted file system and retrieved automatically by any site on
an “as-needed” basis.

The concepts inherent in Onika are independent of
Chimera3.0, and can be used with other systems. For in-
stance, a Macintosh version of Onika is being developed
for the Intravehicular Automation Robot (IVAR) at NASA
Langley Research Center. The IVAR project is intended to
produce a manipulator capable of performing microgravity
experiments in space laboratories with little or no supervi-
sion.

This next sections discuss the interfaces at each level of
Onika in greater detail, including the rules for combining
routines and modifiers into higher-level routines.

4.2. Lower Level Details

Device drivers and sensor interfaces are the routines of the
lower level of the system’s programming framework. Sen-
sor interfaces are created by combining various device
drivers, and manipulating the data which is received from
and sent to those drivers. These framework elements use C
code, which can be generated by using a VPL or other C-
generating program (such as MATLAB), as suggested in
section 4.1. Onika currently does not interact with these
levels in a direct manner. Unlike higher levels, the creation
of routines from these building blocks needs to be done by
a technically oriented user having extensive programming
knowledge and an understanding of real-time operating
systems.

Device drivers and sensor interfaces are combined with
other code to create control modules. It is beyond the scope
of this paper to define the legality of and modifications to
combinations of sensor interfaces and device drivers, and
the interested reader should to refer to Stewartet al.8 The
use of the routines created by the sensor interfaces is dis-
cussed in the following section.

4.3. Middle Level Details

In the middle level interface, upper level routines may be
created by combining certain modified routines called
“tasks” into control block diagram form. Knowledge of
textual coding is not required, but merely a good working
knowledge of control theory.

6

4.3.1. Combining task routines

The basic unit of combination at the middle level is the
task. As mentioned in section 4.1, a task is amodified con-
trol module. The module code by which the tasks process
with their input values is written entirely in text. The tasks
themselves, however, are represented by a single block-
form icon having a certain number of input and output pins.
The mechanism by which the task performs its function is
hidden from the middle level user.

A parameter file is associated with each task’s module.
This parameter file completely describes the task. When
Onika is executed, it loads in all available task parameter
files on the system, as well as certain user-specified remote
file systems listed in Onika’s environmental variables. It
then creates icons on the fly for each task from information
in the file. These icons are presented to the user in an area
known as thetask lexicon. To create a job by combining
tasks, desired tasks are selected on the lexicon, and a copy
is then be placed in the combination area. This combination
area is called thejob canvas. The specific rules for placing
tasks on the canvas are discussed in section 4.3.2.

When a task is placed on the canvas, it is rendered at the
point where the user lets up on the mouse button (as shown

in Figure3). Onika then checks the pins of the new tasks
and determines whether each has a similar variable name to
other pins on the canvas. If so, then these pins are graphi-
cally connected to each other, to illustrate to the user that
these tasks are now connected in the supporting real-time
operating system (see section 3.4).

Onika can be actively connected with the real-time operat-
ing system. In such a case, as each task is dragged to the job
canvas, it is spawned on the supporting RTOS. The user
can toggle the state of activity of the task, can move the
task’s icon around on the canvas without affecting the sys-
tem otherwise, and can delete (and replace) the task. The
user may bring up a panel within which he or she may
change the modifier values specified in the parameter file,
both in the lexicon and on the canvas. Furthermore, a com-
bination of tasks on the canvas can be saved at any point for
later recall.

Figure 3.Tasks placed on the canvas are automatically connected to the
tasks already there.

4.3.2. Task combination rules

Within a task, any state variable can be declared as any of
the following:in-const, out-const, in-var, out-var, in-both,
or out-both. Those of theconst form are constants which
are read or written at the initialization of a task, and never
again accessed by that task. Those of thevar form are read
every task execution cycle, and so the values are assumed
to change. Those of theboth form read or write some initial
value from the state variable table, but the values are as-
sumed to change thereafter. It is possible that one task may
declare a state variable to be constant, while another might
declare it to be a variable. This might lead to certain prob-
lems. It would not make sense to have a task that expects,
for example, a constant input to be connected to a variable
output.To avoid such a possibility, a series of connection
rules have been devised. These include: all types of inputs
may connect with each other (that is, share the same state
variable); no type of output may connect with another, to
avoid race conditions; and inputs requiring initial values
(in-const) may not connect to outputs which do not supply
them (out-var).

Although a task might be considered connectable in the
state variable sense, it still may be “unplaceable” due to
conflict of modules or names. This is because the task
names are used for task identification. Furthermore, run-
ning a module twice concurrently would be redundant and
a waste of system resources. Tasks within the lexicon
which cannot be legally placed on the canvas due to name
or module conflicts are dimmed and made unselectable.

4.3.3. Creation of higher level routines

Before the combination of tasks can have be saved as a job,
there must be exactly one output instance of each state vari-
able used in the configuration. As mentioned in section
4.3.2, this is ensure that each module can receive meaning-
ful input.

When the user saves a configuration as a job for high-level
users, Onika must determine whether or not the job routine
to be created will require modifiers or not. In order to do
this, Onika checks the configurations for tasks which re-
quire user input (such as the end location of a trajectory). If
a task requiring user input is found, then any values it will
need in the future as an upper-level job will be determined
from the modifier icon which follows its icon. A job which
requires a modifier is referred to as anaction requiring an
object, whereas a job which requires no modifiers is simply
anaction. The modifier of a job is referred to as anobject.

Once a job routine has been created, it is available for use
in the upper level interface. The use of job routines in the
upper level is the subject of the next section.

4.4. Upper Level Details

Similar to the middle level interface, the routines which
may be used to create upper level applications are dis-
played to a user in one window, and assembled for later ex-
ecution in another. Modifying icons (objects) are displayed

7

in the same window as the available routines. Certain of
these icons may have been retrieved from remote file sys-
tems, if such file systems are specified in Onika’s environ-
mental variables. This provides an easy mechanism for
modifying any given routine. Jobs (actions) andobjects are
combined into a serial goal-oriented application at this
level. The application can be saved at any time for later re-
call or modification. During execution, the task configura-
tions associated with the jobs in the application are loaded
into Onika and Chimera. The tasks are spawned and acti-
vated. As each job is completed, the system reconfigures
into the next job.

Programmers at this level need not know anything about
textual programming, controls, or how the controlled ma-
chinery operates.

4.4.1. Combining job routines

The basic unit of combination at the upper level interface is
a job. A job is created at the middle level by combining
tasks together (see section 4.3.3. on page 6). This function-
ality is hidden from the upper-level user, however. A job
may or may not require a modifier, depending on how it
was defined at the middle level. Jobs which require modi-
fiers are referred to asactions requiring an object, whereas
jobs which do not require modifiers are referred to simply
asactions. An action requiring an object icon must be fol-
lowed by exactly oneobject icon.

An object icon could be created for any state variable from
the global state variable table. A preference file defines the
types ofobjects which Onika will recognize.Objects can
be created at both the middle and upper levels. The user
supplies both the object type and its value(s).

All icons are presented to the user in ajob dictionary. Each
icon’s picture is framed in a structure which has a left and
right edge of a certain shape and color. These are indicators
as to which type of icon can sit next to another. Onika will
not allow non-interlocking icons to be placed next to each
other.

All objects have certain values associated with them, which
can be changed by the programmer. These can be viewed
and changed, both in the dictionary and in the application
workspace.

4.4.2. Icon combination rules

Applications are assembled from the icons displayed in the
job dictionary. This assembly is done within anapplication
workspace. Icons are inserted from the dictionary into the
application. If its edges match those of its potential neigh-
bors, a new icon can be inserted between two icons. If the
icon matches its left neighbor but not its right, a space is in-
serted between it and its right neighbor. The proper bridg-
ing icon can be inserted later into this gap (Figure4).
(Certain of the icons shown in Figure4 have been designed
with the Intravehicular Autonomous Robot (IVAR) being
designed at NASA Langley in mind.) This process contin-
ues until the application is completed to the user’s satisfac-

tion. Icons may be inserted anywhere into an application,
provided that they interlock properly with their potential
left neighbor.

Conditional branches, parallel branches, and other poten-
tial icons will introduce their own syntax needs. These con-
structs have not yet been introduced into Onika in any
form.

Applications created by combining jobs and modifiers can
have icons assigned to them and be used in other higher-
level applications. Whereas “incomplete” applications (i.e.
those with some object gaps unfilled) cannot be executed
on a system, they can be iconified and used in other appli-
cations. “Incomplete” applications can be implemented as
actions requiring an object, provided that any gaps within
the incomplete application refer to the same type ofobject
consistently.

5. Summary

Despite the fact the programming of sensor-based control
systems readily lends itself to a multilevel programming
approach, there has been surprisingly little research done in
the area of multilevel interfaces for such systems. Until the
use of multilevel sensor-based systems becomes wide-
spread, and the various levels of the system are equipped
with programming and control interfaces appropriate to the
abilities of their potential programmers, the use of sensor-
based robots will continue to be narrow in focus and diffi-
cult to implement. The framework and interface presented
in this paper constitute one step in the direction of achiev-
ing an completely integrated sensor-based system which
will expand the usefulness of robots in astronautics and
aeronautics.

Acknowledgments

The research in this paper is supported, in part, by Sandia
National Laboratories, NASA, and the Dept. of Electrical
and Computer Engineering and The Robotics Institute at
Carnegie Mellon University. Partial funding for Matthew
W. Gertz is provided by NASA Langley Research Center

Figure 4.The icon just inserted into the application did not match
with the icon following it in the application flow. A space was
inserted for anobject icon.

8

through a GSRP fellowship. Partial funding for David B.
Stewart is provided by the Natural Sciences and Engineer-
ing Research Council of Canada (NSERC) through a grad-
uate fellowship.

References

[1] Myers, B. A. “Taxonomies of Visual Programming and
Program Visualization,”Journal of Visual Languages
and Computing, 1990 (1), pp. 97-123.

[2] Leifer, L., Van der Loos, M., and Lees, D. “Visual Lan-
guage Programming: for robot command-control in
unstructured environments,” Proceedings of the Fifth
International Conference on Advanced Robotics: Ro-
bots in Unstructured Environments, June 19-22, 1991,
pp. 31-36, Pisa, Italy.

[3] Mussio, P., Pietrogrande, M., Protti, M., Colombo, F.,
Finadri, M., and Gentini, P. “Visual Programming in a
Visual Environment for Liver Simulation Studies,”
1990 IEEE Workshop on Visual Languages, Oct. 4-6,
1990, pp. 29-35, Skokie, Illinois.

[4] Ichikawa, T. and Hirakawa, H. “Visual Programming –
Toward Realization of User-Friendly Programming
Environments,” Proceedings 2nd Fall Joint Computer
Conference, 1987, pp. 129-137.

[5] Glinert, E. P. “Out of Flatland: Towards 3-D Visual Pro-
gramming,” Proceedings 2nd Fall Joint Computer
Conference, 1987, pp. 292-299.

[6] Glinert, E. P. and Tanimoto, S. L. “Pict: An Interactive
Graphical Programming Environment,”Computer,
November 1984, pp. 7-25.

[7] Chang, S. K. “Visual Languages: A Tutorial and Sur-
vey,” IEEE Software, January 1987, pp. 29-39.

[8] Stewart, D. B., Volpe, R. A., and Khosla, P. K. “Integra-
tion of software modules for reconfigurable sensor-
based control systems,” in Proceedings of 1992 IEEE/
RSJ International Conference on Intelligent Robots
and Systems (IROS ‘92), Raleigh, North Carolina, July
1992.

[9] Gertz, M.W., Stewart, D. B., and Khosla, P. K. “An
Iconic Language for Sensor-Based Robots,” in Pro-
ceedings of SOAR Conference, August 4-6, 1992,
Houston, Texas.

[10]Gertz, M.W. “The Onika User’s Manual,” (in progress)
Department of Electrical and Computer Engineering,
Carnegie Mellon University.

[11]Stewart, D. B. and Khosla, P. K. Chimera 3.0 Real-
Time Programming Environment, Program Documen-
tation, Dept. of Elec. and Comp. Engineering and The
Robotics Institute, Carnegie Mellon University, Pitts-
burgh, PA 15213 (e-mailchimera@cmu.edu for a
copy).

[12]Stewart,D. B., Schmitz, D. E., and Khosla, P. K. “The
Chimera II real-time operating system for advanced

sensor-based robotic applications,”IEEE Transactions
on Systems, Man, and Cybernetics, vol. 22, no. 6, pp.
1282-1295, November/December 1992.

[13]Stewart, D. B., Volpe, R. A., and Khosla, P. K. “Design
of Dynamically Reconfigurable Real-Time Software
using Port-Based Objects,” Technical Report CMU-
RI-TR-93-11, Dept. of Elec. and Comp. Engineering
and The Robotics Institute, Carnegie Mellon Universi-
ty, Pittsburgh, PA 15213.

[14]Schmitz, D.E., Khosla, P.K., and Kanade, T. “The
CMU reconfigurable modular manipulator system,” in
Proceedings of the International Symposium and Ex-
position and Exposition on Robots (designated 19th

ISIR), Sydney, Australia, pp. 473-488, November
1988.

