
c© 2012 by Amir Nayyeri. All rights reserved.



COMBINATORIAL OPTIMIZATION ON EMBEDDED CURVES

BY

AMIR NAYYERI

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2012

Urbana, Illinois

Doctoral Committee:

Professor Jeff Erickson, Chair
Professor David Forsyth
Associate Professor Sariel Har-Peled
Professor Tamal Dey, The Ohio State University



Abstract

We describe several algorithms for classifying, comparing and optimizing curves

on surfaces. We give algorithms to compute the minimum member of a given

homology class, particularly computing the maximum flow and minimum cuts,

in surface embedded graphs. We describe approximation algorithms to compute

certain similarity measures for embedded curves on a surface. Finally, we present

algorithms to solve computational problems for compactly presented curves.

We describe the first algorithms to compute the shortest representative of a

Z2-homology class. Given a directed graph embedded on a surface of genus g

with b boundary cycles, we can compute the shortest single cycle Z2-homologous

to a given even subgraph in 2O(g+b)n log n time. As a consequence we obtain an

algorithm to compute the shortest directed non-separating cycle in 2O(g)n log n time,

which improves the previous best algorithm by a factor of O(
p

n) if the genus is

a constant. Further, we can compute the shortest even subgraph in a given Z2-

homology class if the input graph is undirected in the same asymptotic running

time. As a consequence, we obtain the first near linear time algorithm to compute

minimum (s, t)-cuts in surface embedded graphs of constant genus. We also prove

that computing the shortest even subgraph in a Z2-homology class is in general

NP-hard, which explains the exponential dependence on g.

We also consider the corresponding optimization problem under Z-homology.

Given an integer circulation Φ in a directed graph embedded on a surface of genus

g, we describe algorithms to compute the minimum cost circulation that is Z-
homologous to Φ in O(g8n log2 n log2 C) time if the capacities are integers whose

sum is C or in gO(g)n3/2 time for arbitrary capacities. In particular, our algorithm

improves the best known algorithm for computing the maximum (s, t)-flow on

surface embedded graph after 20 years. The previous best algorithm, except for

planar graphs, follow from general maximum flow algorithms for sparse graphs.

Next, we consider two closely related similarity measures of curves on piecewise

linear surfaces embedded in IR3, called homotopy height and homotopic Frechét dis-

tance. These similarity measures capture the longest curve that appears and the

longest length that any point travels in the best morph between two given curves, re-

spectively. We describe the first polynomial-time O(log n)-approximation algorithms

for both problems. Prior to our work no algorithms were known for the homotopy

height problem. For the homotopic Frechét distance, algorithms were known only

ii



for curves on Euclidean plane with polygonal obstacles. Surprisingly, it is not even

known if deciding if either the homotopy height or the homotopic Frechét distance

is smaller that a given value is in NP.

Finally, we consider normal curves on abstract triangulated surfaces. A curve

is normal if it intersects any triangle in a finite set of arcs, each crossing between

two different edges of the triangle. Given a triangulated surface of complexity

n and a curve that crosses the triangulation X times, we can build another cell

decomposition of the input surface of complexity O(n), in O(min(X , n2 log X )) time,

whose 1-skeleton contains the input curve. We emphasize the the cell decomposition

algorithm takes polynomial time even if X is exponential. The main ingredient of our

cell decomposing algorithm is a technique to trace a curve in a triangulated surface.

We apply our abstract tracing strategy to solve well-known problems about normal

curves including computing the number of components, computing the number

of isotopy classes and computing the algebraic intersection number between two

curves. Our normal-coordinate algorithms are competitive with and conceptually

simpler than earlier algorithms.

iii



To Sorayya, Hossein, Ghazal and Parisa

iv



Acknowledgements

First, I would offer my sincerest gratitude to my advisor, Jeff Erickson, for the true

research spirit that he showed me with patience. Without his guidance, his constant

support and his confidence in my research abilities I would never be able to finish

this journey. I have been extremely lucky to have the chance to work under his

supervision, I owe most of my abilities as a researcher to his method of advising.

The research presented in this thesis is a result of collaboration with Erin

Chambers, Jeff Erickson, Sariel Har-peled, Mohammad Salavatipour and Anastasios

Sidiropoulos. My other collaborators are Kyle Fox and Yury Makarychev. Working

with such smart and energetic people was a unique chance that I have had in my

professional life. I would like to specially thank my former adviser, Tarek Abdelzaher,

for all I have learned from him, and for his understanding and support when I

decided to switch my research area.

My research has been supported by NSF grant CCF 09-15519. Also, part of

the research has been done while I was visiting Toyota Technological Institute in

Chicago. I would like to thank both.

Thanks to the fellows in theory group, students and faculty, for all supports

that I received in every single steps, for all helpful discussions and for being so

friendly. I would like to thank Chandra Chekuri, Alina Ene, Nitish Koula, Nirman

Kumar, Sungjin Im, Hemanta Maji, Benjamin Moseley, Manoj Prabhakaran, Benjamin

Raichel, and Daniel Schreiber. I also would like to express my gratitude toward

professors who accepted to serve as my thesis committee members, Tamal Dey,

David Forsyth and Sariel Har-peled as well as Leo Guibas.

Thanks to all my friends that supported me from the first moment I entered

United States, in particular, Ali Farhadi for giving me the first ride in this country

and for being such a special friend. Thanks to all people that played soccer with me;

without playing soccer I would never be able to solve a research problem. I would

like to thank my best roommate ever, Behrouz Touri, for all he taught me and for

being so patient for three years! I have learned a lot from Hossein Ahmadi and Reza

Zamani, both academic and non-academic.

I wish to thank my mother, Sorayya, for being so devoted, dedicated and

concerned about my future, my father, Hossein, for being extremely patient and

supportive and my sister, Ghazal, for being so kind and energetic. Without their

sincere support I would not be able to make this journey.

v



Last but certainly not the least, Parisa has been the greatest source of inspiration

and support in the last couple of years. She has proven to me that life is a beautiful

journey and has given me love and energy to continue.

vi



Table of Contents

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 New results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Auxiliary directed graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Graph embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6 Homotopy and isotopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.7 Chains, circulations, and flows . . . . . . . . . . . . . . . . . . . . . . . . 12
2.8 Homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.9 Piecewise linear surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.10 Curve similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.10.1 Frechét distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.10.2 Homotopic Frechét distance and homotopy height . . . . . . . 14
2.10.3 Discrete problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Chapter 3 Z2-homologous cycles . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1 Related results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.1 Equivalent cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.2 Shortest non-trivial cycles . . . . . . . . . . . . . . . . . . . . . . 19
3.1.3 Flows in sparse graphs . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.4 Flows and cuts in planar graphs . . . . . . . . . . . . . . . . . . . 20
3.1.5 Generalizations of planar cuts . . . . . . . . . . . . . . . . . . . . 21

3.2 Undirected minimum cut and directed non-separating cycle . . . . . . 22
3.3 Forest-cotree construction and greedy system of arcs . . . . . . . . . . 23
3.4 Homology signatures and homology test . . . . . . . . . . . . . . . . . . 24

3.4.1 Z-homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.2 Z2-homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5 Minimum homologous subgraph and the Z2-homology cover . . . . . 27
3.5.1 The Z2-homology cover . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5.2 Computing Z2-minimal cycles . . . . . . . . . . . . . . . . . . . . 29
3.5.3 Computing Z2-minimal even subgraphs . . . . . . . . . . . . . . 31

3.6 NP-hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Chapter 4 Flows and Z-homology . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Homology flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.2 Homologous feasible flows . . . . . . . . . . . . . . . . . . . . . . 36

vii



4.2.3 Shortest paths with negative edges . . . . . . . . . . . . . . . . . 37
4.2.4 Basic flows and optimization . . . . . . . . . . . . . . . . . . . . 38

4.3 Cohomology cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.1 Homology-invariant values . . . . . . . . . . . . . . . . . . . . . . 41
4.3.2 Minimum-cost homologous circulation . . . . . . . . . . . . . . 42

Chapter 5 Homotopic Frechét distance . . . . . . . . . . . . . . . . . . . . . 46
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2 Related results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.3 Motivation and overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.3.1 Why are these measures interesting? . . . . . . . . . . . . . . . . 47
5.3.2 Overview of the algorithms . . . . . . . . . . . . . . . . . . . . . 47

5.4 Geodesic paths, an overview . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.5 Homotopy height . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.5.1 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.5.2 The discrete algorithm . . . . . . . . . . . . . . . . . . . . . . . . 50
5.5.3 The continuous algorithm . . . . . . . . . . . . . . . . . . . . . . 52

5.5.3.1 Homotopy height if edges are short . . . . . . . . . . 53
5.5.3.2 Breaking the disk into strips, pockets and chunks . . 54

5.5.3.2.1 Analysis . . . . . . . . . . . . . . . . . . . . . . 54
5.5.3.3 Homotopy height if there are long edges . . . . . . . 55
5.5.3.4 The result . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.6 Homotopic Frechét distance . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.6.1 Approximating the regular Frechét distance . . . . . . . . . . . 57

5.6.1.1 The continuous case . . . . . . . . . . . . . . . . . . . . 57
5.6.2 The discrete case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.6.3 Without mountains . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.6.4 With mountains, a decision procedure . . . . . . . . . . . . . . . 59

5.6.4.1 On the left and right geodesics . . . . . . . . . . . . . 60
5.6.4.2 The decision algorithm . . . . . . . . . . . . . . . . . . 62

5.6.5 A strongly polynomial approximation algorithm . . . . . . . . . 63
5.6.5.1 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . 64
5.6.5.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.6.5.3 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . 65

Chapter 6 Tracing compressed curves . . . . . . . . . . . . . . . . . . . . . . 67
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.2 Related results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.3.1 Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.3.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.3.3 Computational assumptions . . . . . . . . . . . . . . . . . . . . . 70

6.4 Normal coordinates vs. street complex . . . . . . . . . . . . . . . . . . . 71
6.4.1 Normal curves, normal isotopy, and normal coordinates . . . . 71
6.4.2 Ports, blocks, junctions, and streets . . . . . . . . . . . . . . . . . 72
6.4.3 Reduced curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.5 Tracing connected normal curves . . . . . . . . . . . . . . . . . . . . . . 75
6.5.1 Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.5.2 Phases and spirals . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.5.3 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.6 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.6.1 Abstract tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.6.2 Tracing reduced curves . . . . . . . . . . . . . . . . . . . . . . . . 81

6.7 Untracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

viii



6.7.1 Untracing from history . . . . . . . . . . . . . . . . . . . . . . . . 83
6.7.2 Untracing without history . . . . . . . . . . . . . . . . . . . . . . 84
6.7.3 Abstract untracing . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.8 Normal coordinate algorithms . . . . . . . . . . . . . . . . . . . . . . . . 87
6.8.1 One component . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.8.2 Forward and reverse indexing . . . . . . . . . . . . . . . . . . . . 88
6.8.3 Normal isotopy classes . . . . . . . . . . . . . . . . . . . . . . . . 89
6.8.4 Isotopy classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.8.5 Algebraic intersection numbers . . . . . . . . . . . . . . . . . . . 91

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

ix



Chapter 1

Introduction

Curves have been the subject of study in many different branches of mathematics,

particularly in geometry and topology, because of their own interesting nature and

as a way toward understanding their containing spaces. Computational problems

about curves show up in different branches of computer science including computer

graphics, computer vision, machine learning, and biological computing

The curves in any space can be classified by equivalence relations. Perhaps the

most natural equivalence relation is homotopy, where two curves are equivalent

(homotopic) if one can be continuously deformed to the other within the space.

Homotopy classes compose the set of the fundamental group of the underlying space,

which is extensively used to study and classify spaces. In particular, the isomorphism

of the fundamental groups of two spaces is a necessary (but not sufficient) condition

for their homeomorphism [108], and this conditions leads to simple proofs of many

important theorems, including the fundamental theorem of algebra, the Brouwer

fixed point theorem, the Borsuk-Ulam theorem and the existence of non-trivial

knots [108]. Further, the fact that any group is isomorphic to the fundamental

group of some topological space [108] enlightens an intimate relation between the

study of embedded curves and abstract algebra.

Another relation that Poincaré [153] defined between curves is homology.

Roughly, two families of cycles are homologous if one can be transformed into

the other, using a continuous transformation that allows cycles to split and rejoin

at intersection points. Poincaré studied homology with the immediate objective of

generalizing a duality observed by Betti and finding a completely general version of

Euler’s formula [180]. The first order homology group of a surface is, in fact, the

abelianization of the fundamental group. Thus, homology as a relation is coarser

than homotopy, meaning that any pair of homotopic curves are also homologous

but not the other way around. However, homology groups still provide an accurate

classification of surfaces with interesting mathematical implications such as Brouwer

fixed point theorem and the invariance of dimension [108]). On the other hand,

because homology groups are abelian, homology spaces are essentially vector spaces,

which makes them much easier to deal with. Since homology groups provide valu-

able information about the underlying space and it is easier to compute with them,

they have found a wide range of applications including curve and surface recon-

struction [63], image data analysis [32], coverage in sensor networks [176], shape

1



description [50]. See [58,68,92,191] for more extensive surveys of applications.

We can think of any equivalence relation as a crude similarity measure, in which

two curves are at distance 0 if they are equivalent and distance∞ if they are not.

More refined similarity measures can be defined by considering the geometry of

the underlying space. Measures of similarity like Hausdorff distance, earth mover

distance and the Frechét distance have found several applications in computer

science [120, 123, 148, 178]. For embedded curves on a surface, and particulary

for homotopic curves, a natural measure of similarity is the minimum “cost” of a

deformation of one curve to the other. Different costs of deformation has been

considered in the literature [19,40,69,187].
Different algorithms are required to classify or compare curves in different

representations. Curves can be combinatorially presented as walks in the primal

or dual cell complex of the underlying surface, or equivalently by recording the

sequence of triangles they intersect [45,47,75]. However, this simple method can be

far from being efficient. More compact methods include weighted train tracks [11,

12], Dehn-Thurston coordinates (with respect to a fixed pants decomposition of

the surface) [55, 82], compressed intersection sequence [166, 179] and normal

coordinates [4,163].
Normal coordinates were originally invented by Haken and Kneser [102,127]

to study problem about embedded surfaces in three manifolds. Because of their

compactness they are used to build polynomial size certificates for several problems;

examples are recognizing a trivial knot [4,107], recognizing a three-sphere [169]
and recognizing string graphs [164]. On the other hand, the compressed presenta-

tion of curves make their algorithmic problems more challenging; therefore, most of

the algorithmic results about compressed curves use highly non trivial techniques

like grammar based compression and word equations [163–165,179].

1.1 History

One of the oldest algorithms in this area is Dehn’s algorithm [54] to test whether

two given curves on a surface are homotopic, and specifically whether a curve can

be continuously contracted (it is null-homotopic). There are essentially two main

approaches to attack this problem. Building an appropriate covering space was

originally suggested by Schwartz, and further developed by Poincaré [154] and

Dehn [53]. On the other hand, Dehn observed that any contractible cycle can be

contracted through a set of local greedy moves. For a fixed surface Dehn’s algorithm

running time is linear in the complexity of the input curves, with a constant that

depends on the genus of the surface [13].
Several authors have considered the following problem. Given a surface of

complexity n and one embedded curve (resp. two embedded curves) with total

complexity `, decide wether it is null-homotopic (resp. they are homotopic). Dey

and Schipper [62,168] describe an algorithm that tests the contractibility in O(n+

2



` log g), observing that only a small portion of the universal cover is required to

be investigated. Later Dey and Guha [59] reconsidered Dehn’s method of greedy

contracting to obtain the first truly linear (O(n+ `)) time algorithm. Later, Lazarus

and Rivaud [131] reported a subtle flaw in their algorithm and describe another

linear time algorithm that constructs a small portion of a certain covering space.

Very recently, Erickson and Whittlesey [80] recast and simplify Lazarus and Rivaud’s

algorithm using the language of small cancelation theory [91] to avoid searching

any covering space.

Testing if two polygonal paths on the plane minus points are homotopic is

particularly interesting to many applications including circuit routing [136], motion

planning [96] and map simplification [9, 25]. Cabello et al. [30] describe an

O(n log n) time algorithm for this Euclidean version of the problem, and they proved

their running time is asymptotically optimal.

As a generalization to the classical shortest path problems (either geometric

or graph theoretic), many authors have considered the problem of computing the

shortest curve in a given homotopy class. Hershberger and Snoeyink [110] first

used the covering space concept to compute the shortest path (under two different

metrics) homotopic to a given path, in a boundary triangulated piecewise linear sur-

face of genus 0. Borrowing ideas from the decision algorithm of Cabello et al. [30],
Efrat et al. [70] and Bespamyatnikh [10] describe algorithms for Euclidean plane

minus a finite set of points.

Colin de Verdière and Lazarus [48,49] describe an algorithm to find the shortest

simple cycle homotopic to a given simple cycle in a surface embedded graph. Their

algorithm runs in polynomial time with respect to the complexity of the surface and

the input curve. Colin de Verdière and Erickson [46] give algorithms to compute

the shortest path (resp. cycle) homotopic to an arbitrary path (resp. cycle) of length

k in O(gnk) (resp. O(gnk log(nk))) time.

Testing whether two given cycles are homologous or not is essentially equivalent

to solving a system of linear equations; more precisely to check whether it has a

valid solution. Erickson and Whittlesey [79] describe an algorithm to compute the

homology class of any cycle in constant time per edge, after O(gn) preprocessing

time. However, the optimization problem of finding the shortest cycle in a given

homology class is more difficult. An argument of Chambers et al. [35] implies

that finding the shortest cycle (either simple or not) in a given homology class in a

surface graph is NP-hard; Chen and Friedman [42,43] proved that the corresponding

problem in simplicial complexes is NP-hard to approximate within any constant

factor. In this thesis we prove that computing the minimum element of a Z2-

homology class is NP-hard, yet fixed parameter tractable on surfaces. On the positive

side, we describe an efficient algorithm to compute the minimum element of a

Z-homology class in a given surface. Dunfield and Hirani [66] show that computing

the minimum element of a Z-homology class is NP-hard in general.

Computing shortest cycles in an equivalence class (homotopy or homology)

is intimately related to other well known problems like computing the minimum

3



cut [39], computing the minimum non-separating cycle, computing the minimum

non-contractible cycle [76,183], computing a tight system of loops and computing

a short cut graph [79]. See Chapter 3 for more explanation.

Given two homotopic cycles, one can consider infinitely many homotopies

to transform one to the other. However, depending on the application different

homotopies may have different costs [19, 40, 187]; it is natural to ask how to

find an optimal homotopy with respect to a given cost function. Brightwell and

Winkler [19] and Chambers and Letscher [40] define the homotopy height to be

the longest curve within the homotopy. Surprisingly, almost nothing is known about

the homotopy height problem beside the fact that it can be solved in polynomial

space for unweighted graphs.

The problem of finding the minimum cost homotopy is closely related to the

homotopic Frechét distance problem. Frechét distance has been used to compare

different objects in a various range of applications, including dynamic time warp-

ing [120], time series matching in databases [123], melody comparing in music

information retrieval [173], map-matching of vehicle tracking [18,190] and moving

object analysis [20,21].
Chambers et al. [36] observed that, although Frechét distance is natural for Eu-

clidean ambient spaces it ignores important features of more general ambient spaces.

As an alternative, they suggested the homotopic Frechét distance as a measure of

simularity for curves; the homotopic Frechét distance and the classic Frechét dis-

tance are identical in Euclidean ambient spaces. The homotopic Frechét distance of

two curves f and g is intuitively defined as follows. Imagine that a person and a

dog are simultaneously moving on f and g with no backward step. Then, the homo-

topic Frechét distance is the shortest possible leash that they need to be connected

during the entire move. The leash should be always embedded on the surface and

it only deforms continuously. More formally, the leash is a curve in the surface

that deforms continuously as the man and dog move. Similar to the homotopy

height problem, we only know few trivial facts about the complexity of computing

homotopic Frechét distance in general. Chambers et al. [36] described polynomial

time algorithms for curves in the Eculidean plane with polygonal punctures. In this

thesis we provide the first O(log n) approximation algorithms for both homotopy

height and homotopic Frechét distance in arbitrary discrete and piecewise linear

surfaces embedded in IR3.

Classification problems can be asked about curves (or surfaces) presented com-

pactly in normal coordinates. Schaefer et al. [163,166,179] consider several algorith-

mic questions about normal curves, such as computing the number of components

of a curve, deciding whether two given curves are isotopic, and computing algebraic

and geometric intersection numbers of pairs of curves. Classical algorithms for these

problems require explicit traversal or crossing sequences as input. By connecting

normal coordinates with grammar-based text compression [132,133,141,161] and

word equations [65, 152, 159, 160], Schaefer et al. developed algorithms whose

running times are polynomial in the bit complexity of the normal coordinate vector,

4



which they call the normal complexity of the curve. These algorithms rely on a com-

plex algorithm of Plandowski and Rytter [152] to compute compressed solutions of

word equations. We are unaware of any precise time analysis, but as Plandowski and

Rytter’s algorithm uses a nested sequence of quadratic- and cubic-time reductions, its

running time is quite high. Štefankovic [179] described simpler algorithms for some

of these problems in time linear in the normal complexity, or O(n log(X/n)) time,

by reducing them to an elegant algorithm of Robson and Deikert [159,160] to solve

word equations with a certain special structure. Some of the problems considered

by Schaefer et al. can also be solved in polynomial time using the polynomial-time

orbit-counting algorithm of Agol, Hass, and Thurston [4]. Dynnikov and Wiest [67]
later developed a special case of the orbit-counting algorithm to reconstruct braids

from their planar curve diagrams; Dehornoy et al. [56] refer to this variant as the

transmission-relaxation method.

1.2 New results

In this thesis we consider several computational problems about embedded curves

on surfaces. We mostly focus on problems that are related to classification of curves

and measuring their similarity. In Chapter 2 we briefly overview some required

background.

In Chapter 3 we concentrate on the problem of finding the minimum element of

a Z2-homology class; the results in this chapter are joint work with Erin Chambers

and Jeff Erickson [39,77]. The elements of Z2-homology classes are even subgraphs

(or equivalently, collections of cycles). An even subgraph is null-homologous if it

is the boundary of a subset of faces; two even subgraphs are homologous of their

union is null-homologous.

Since Z2-homology groups are vector spaces, each homology class can be rep-

resented by a bit vector, called its homology signature, whose length is linear in

the genus of the graph. This bit vector is dependent to the choice of the basis of

the homology vector space. The basis can be represented by a set of paths, called

a system of arcs, whose removal leaves a topological disc. Let [H] denote the

signature of the even subgraph H, with respect to a certain basis. Then [H] encodes

the parity of the number of times that H crosses the paths of the homology basis.

To compute the shortest even subgraph homologous to H, we observe that such an

even subgraph can be decomposed to a set of simple cycles each as short as possible

in its homology class, and whose sum of signatures is [H]. To this end, we compute

the shortest cycle in every homology class and then use a dynamic programming to

merge them.

The high level idea of our algorithm to compute the shortest cycle in a given

homology class is as follows. Assume that we know a vertex v of the graph that is

on the cycle that we are looking for. Now, we want to compute a cycle through v

that has a certain signature and it is as short as possible. We build a new larger

5



space that encodes both the destination and the signature of paths. Each vertex in

the covering space is a pair composed of a vertex of the graph and a signature (bit

vector) (u,δ). Cycles that contain v with signature δ are projections of paths in

the covering space from (v, 0) to (v,δ), thus the problem is reduced to computing

shortest paths in a larger space. Fortunately, we can prove that the larger space

is not too large, and we can speedup our algorithm using fast multiple source

shortest path finders [27, 125]. Overall, our algorithm runs in 2O(g)n log n time.

In an earlier result [39] we described an gO(g)n log n algorithm to solve the same

problem; Italiano et al. [114] recently improved the running time of our algorithm

to gO(g)n log log n.

Given a graph embedded on a surface and two vertices s and t, we prove that

the minimum (s, t)-cut is dual to shortest even subgraph in a certain Z2-homology

class. We immediately a near linear time algorithm to compute the minimum cut

in an undirected surface embedded graph of constant genus. On the other hand,

the minimum non-separating cycle is the shortest cycle that is not null-homologous.

Since our algorithm finds the shortest directed cycle in every homology class, in

particular, it finds the shortest directed non-separating cycle.

The running time of our algorithm depends exponentially on the genus of the

graph. We show that this exponential dependency is necessary by proving that

computing the minimum Z2-homologous even subgraph is NP-hard.

In Chapter 4 we consider the maximum flow problem for surface embedded

graphs; the results in this chapter are joint work with Erin Chambers and Jeff

Erickson [37,38]. The maximum flow problem is the linear programming dual of

the minimum cut problem; however, our solution requires significantly different

techniques. To solve the maximum flow problem, we observe that homology can

be used to partition the space of all flows in a surface embedded graph. A flow is

feasible (with respect to a capacity function on the edges) if it does not oversaturate

any edge of the graph. We say that a homology class is feasible if it contains a

feasible flow. We describe a canonical way to represent each homology class by

computing what we call a flow homology basis, which resembles a system of arcs.

Generalizing a technique used in planar maximum flow algorithms [186], we obtain

an oracle to compute a feasible flow within a given flow homology class if one exists

or recognize that the given homology class is not feasible. We use the membership

separation oracle to obtain a O(g8n log2 n log2 C) time algorithm if the inputs are

integers whose sum is at most C , and a gO(g)n3/2 time algorithm in general to

compute the maximum flow on a surface embedded graph of genus g.

In Chapter 5 we describe efficient O(log n)-approximation algorithms for two

closely related problems, namely the homotopy height and the homotopic Frechét dis-

tance; the results in this chapter are joint work with Sariel Har-Peled, Mohammad

Salavatipour and Anastasios Sidiropoulos [103]. Both of our algorithms work with

the assumption that the input curves are on the boundary of a triangulated disk.

Our algorithm to compute the homotopy height exploits a simple divide an conquer

strategy. Roughly speaking, we find a short intermediate path that splits the disk into

6



two smaller disks with roughly equal complexity; we then solve the problem within

each subdisk recursively. The paths we find at each level of recursion are longer

than the paths found in the previous level by at most a constant times the actual

homotopy height; the length of the first splitting path is at most a constant times

the actual homotopy height; and the recursion tree has O(log n) levels. Thus the

length of the longest path computed by our algorithm is a O(log n)-approximation

of homotopy height.

We use our homotopy height algorithm as an ingredient for an approximation

algorithm for the homotopic Frechét distance problem. At high level our algorithm

performs a search over possible values for the homotopic Frechét distance. To

determine whether our current guess is too small or too large, we classify regions

of the disk that are far from both curves as obstacles. Using a greedy algorithm,

we compute a subset of the disk that avoid all obstacles, such that the homotopic

Frechét distance within that subset is a constant-factor approximation of the true

homotopic Frechét distance. We then combine a constant factor approximation

algorithm of regular Frechét distance and our O(log n) approximation algorithm

for the homotopy height to obtain a leash sequence whose longest leash is O(log n)
times longer than the homotopic Frechét distance.

The O(log n) factor shows up in the homotopic Frechét distance algorithm only

because it uses the homotopy height as a subroutine. Thus, any constant factor

approximation algorithm for the homotopy height problem implies a constant factor

approximation algorithm for the homotopic Frechét distance.

Finally, in Chapter 6 we propose an efficient strategy to compute with curves

represented by normal coordinates; the results in this chapter are joint work with

Jeff Erickson [78]. Instead of using complex compression techniques to avoid

unpacking the crossing sequence of the input curve, our algorithms modify the

underlying cellular decomposition of the surface so that the curve has a small explicit

description with respect to the new decomposition. Specifically, given the normal

coordinates of a curve γ on a triangulated surface with n edges, we compute a new

cellular decomposition of the surface with complexity O(n), called a street complex,

such that γ is a simple path or cycle in the 1-skeleton. See Section 6.4 for the formal

definition and Figure 6.2 for an example.

At a high level, our algorithm simply traces the curve, continuously updating

the street complex to reflect the portion of the curve traced so far. A naïve imple-

mentation of our tracing strategy runs in O(X ) time, where X is the total number of

edge crossings; each time the curve enters a triangle by crossing an edge, we can

easily determine in O(1) time which of the other two edges of the triangle to cross

next. We describe a tracing algorithm that runs in O(n2 log X ) time, an exponential

improvement over the naïve algorithm for any fixed surface triangulation.

Our new algorithm relies on two simple ideas. First, we observe that for typical

curves, most of the decisions made by the brute-force tracing algorithm are redun-

dant. If a curve enters a triangle ∆ between two older elementary segments that

leave ∆ through the same edge, the new elementary segment must also leave ∆

7



through that edge; see Figure 1.1. The street complex allows us to skip these

redundant decisions automatically.

① ② ③

Figure 1.1. Tracing three segments of a curve through a triangle. Tracing the third segment does not
require any decisions.

Second, even with redundant decisions filtered out, the naïve algorithm may

repeat the same series of crossings many times when the input curve contains

a spiral [67, 146, 165, 167]. Our algorithm detects spirals as they occur, quickly

determines the depth of the spiral (the number of repetitions), and then skips ahead

to the first crossing after the spiral. As a consequence of our tracing algorithm,

we obtain efficient algorithms for several problems about normal curves such as

computing the number of components of a curve, deciding whether two given curves

are isotopic, and computing algebraic and geometric intersection numbers of pairs of

curves. Classical algorithms for these problems require explicit traversal or crossing

sequences as input.

8



Chapter 2

Background

In this chapter, we review several fundamental definitions, which are necessary

throughout the thesis, related to surfaces and surface embedded graphs. For more

comprehensive treatments, we refer the interested reader to Gross and Tucker [100]
and Mohar and Thomassen [143] for topological graph theory, and to Hatcher [108]
and Stillwell [180] for topology.

2.1 Graphs

Let G = (V, E) be a directed graph. A directed (u, v)-walk in G is an alternating

sequence of vertices and directed edges W = (u = w0, e1, w1, e2, · · · , ek, wk = v),
where ei = wi−1→wi for all 1 ≤ i ≤ k. A (u, v)-walk is closed if u = v, a path if

it has no repeated vertices, and a cycle if it is a path with u = v its only repeated

vertex. Let W1 be a (u, v)-walk and W2 be a (v, w)-walk; their concatenation W1 ·W2

is defined as the concatenation of their corresponding vertex sequences.

A cut (S, T) in G is a partition of vertices into two disjoint subsets S and T ;

(S, T ) is an (s , t )-cut if and only if s ∈ S and t ∈ T , for any two vertices s and t.

A spanning tree T of a connected graph G = (V, E) is a maximal subgraph of G

that contains no cycles.

2.2 Surfaces

A surface Σ (or a 2-manifold) is a topological space where every point has a

neighborhood homeomorphic to either a 2-dimensional Euclidean plane or a closed

half-plane. The union of all the points in the space that are homeomorphic to a

half-plane is called the boundary of Σ and it is denoted by ∂Σ. The boundary of a

surface is homeomorphic to the union of a finite set of disjoint circles. A surface is

non-orientable if it contains a subspace homeomorphic to the Möbius band, and it

is orientable otherwise.

A path in a surface Σ is a continuous function σ : [0,1]→ Σ. A loop is a path

whose endpoints p(0) and p(1) coincide; we refer to this common endpoint as the

basepoint of the loop. An arc is a path whose endpoints lie on the boundary of Σ.

A cycle is a continuous function γ: S1→ Σ. We refer to any union of paths, loops,

arcs, and cycles as curves; indeed a curve may be disconnected. We will usually

9



not distinguish between a path/cycle and its image in Σ. A curve is simple if the

function that defines it is injective, except for the basepoint in the case of loops. The

reversal p of a path p is defined by setting p(t) = p(1− t). The concatenation p ·q
of two paths p and q with p(1) = q(0) is the path created by setting (p ·q)(t) = p(2t)
for all t ≤ 1/2 and (p · q)(t) = q(2t − 1) for all t ≥ 1/2.

A simple arc is properly embedded if it intersects ∂Σ only at its endpoints;

similarly, a simple cycle is properly embedded if it avoids ∂Σ entirely. A properly

embedded curve is a finite collection of disjoint, properly embedded arcs and cycles.

We emphasize that curves may have multiple components.

A cycle γ is separating if Σ\γ is not connected. The genus of a surface Σ is the

maximum number of disjoint cycles whose removal leaves Σ connected.

2.3 Auxiliary directed graph

For an undirected graph G = (V, E), for the sake of argument we define an auxiliary

directed graph ~G = (V, ~E) by conceptually replacing each undirected edge with a

pair of antisymmetric directed edges. Following Borradaile and Klein [16] we refer

to the directed edges as darts. We emphasize that the darts are really conceptual

directed edges that do not change the embedding of G, and we do not introduce

any new faces. Let ~e = u→ v be a dart that leaves u and enters v. We call u and v

the tail and the head of ~e, respectively. The reversal of ~e, denoted by v→u, is the

dart that leaves v and enters u. The definition of darts can be extended to cover

graphs with loops and parallel edges, where different darts correspond to different

parallel edges and a dart and its reversal are identical if and only if they correspond

to a loop.

2.4 Graph embedding

An embedding of a graph G = (V, E) on a surface Σ is composed of a mapping from

V to distinct points of Σ and a collection of mappings from E to paths in Σ that

are disjoint except at common endpoints. A face of an embedding is a maximal

connected subset that avoids the image of V and E. An embedding is cellular if its

faces are homeomorphic to open discs. In any cellular embedding, each connected

component of a the boundary of Σ as well as the boundary of each face of the

embedding is covered by a closed walk of G. Any cellularly embedded graph can be

presented by a rotation system, which is a permutation π of the darts, where π(~e)
is the dart that appears after ~e in the counterclockwise ordering of darts leaving

tail(~e).
Suppose G is a n-vertex graph cellularly embedded on a surface Σ of genus g

with b boundaries. According to Euler’s formula |V | − |E|+ |F | = 2− 2g − b if Σ
is orientable and |V | − |E|+ |F | = 2− g − b if Σ is non-orientable. In either case,

Euler’s formula implies that there are O(n+ g + b) edges and faces if G is simple.

10



Given a cellular embedding of G, every dart separates two (possibly equal) faces of

G, called the left shore and the right shore. We use f ↑ f ′ to denote a dart whose

left shore is f and whose right shore is f ′; thus, rev( f ↑ f ′) = f ′↑ f .

Two paths in a combinatorial surface cross if no continuous infinitesimal per-

turbation makes them disjoint; if such a perturbation exists, then the paths are

non-crossing. We say that a cycle γ is non-self-crossing if no two sub-paths of γ

cross, weakly simple if γ is non-self-crossing and traverses each edge at most once,

and (strictly) simple if γ visits each vertex at most once.

Cutting a surface along a cycle or an arc modifies both the surface and the

embedded graph. Let G be a graph embedded on a surface Σ and γ be any cycle

G, we define a new embedded graph G Qγ and a new surface Σ Qγ by taking the

topological closure of Σ\γ as the new underlying surface; the new embedded graph

contains two copies of each vertex and edge of γ both on the border of its boundary.

2.5 Duality

Let G = (V, E) be a graph embedded on a surface Σ of genus g with no boundary,

and let F be the set of faces in the embedding. The dual graph G∗ is defined as an

embedded graph on Σ that has a vertex f ∗ for each face f ∈ F . There is an edge

v→u in G if and only if v∗↑u∗ is an edge in G∗.

f g

u

v

u*

v*

f* g*

Figure 2.1. Graph duality. One edge u→v and its dual (u→v)∗ = f ∗↑g∗ are emphasized.

The tree-cotree decomposition (T, C , L) of G is composed three disjoint sets:

T is a spanning tree of G, C∗ is a spanning tree of G∗, and L is a set of extra

edges. Euler’s formula implies that L contains 2g or g edges if Σ is orientable or

non-orientable, respectively.

If Σ is a surface with boundary, G∗ has boundary vertices that correspond to

boundary faces of G. In this case, we can obtain a tree-coforest decomposition by

computing the tree-cotree decomposition (T, C , L), make the dual spanning tree

C∗ a rooted spanning tree R∗ by picking an arbitrary boundary vertex to be the

root, and remove all boundary vertices to obtain the forest F∗. Each vertex of F∗

is assigned to its lowest ancestor in R∗ that is a boundary vertex. Since the root

of R∗ is a boundary vertex each connected component of F∗ is assigned to a single

boundary vertex. Equivalently, the coforest F has one component per boundary.

11



2.6 Homotopy and isotopy

Homotopy is an equivalence relation between curves that captures the notion of

continuous deformation. Two paths p and p′ are homotopic if there is a continuous

map h: [0,1] × [0,1] → Σ such that h(0, t) = p(t) and h(1, t) = p′(t) for all

t, and h(·, 0) and h(·, 1) are constant maps. Two cycles γ and γ′ are (freely)

homotopic if there is a continuous map h: [0, 1]× S1→ Σ such that h(0, t) = γ(t)
and h(1, t) = γ′(t) for all t. A loop or cycle is contractible if it is homotopic to a

constant map; an arc is contractible if it is homotopic to a subpath of a boundary

cycle.

A (proper) isotopy between two cycles γ and γ′ is a continuous map h: [0, 1]×
S1 → Σ such that h(0, ·) = γ and h(1, ·) = γ′, and h(t, ·) is a properly embedded

cycle for all t ∈ [0,1]. Similarly, a (proper) isotopy between two arcs α and α′ is

a continuous map h: [0,1]× [0,1]→ Σ such that h(0, ·) = α and h(1, ·) = α′, and

h(t, ·) is a properly embedded arc for all t ∈ [0, 1]. The definition of isotopy extends

naturally to properly embedded curves with multiple components. Two curves are

isotopic, or in the same isotopy class, if there is a isotopy between them.

2.7 Chains, circulations, and flows

Let G = (V, E) be a graph cellularly embedded on an orientable surface Σ, and let F

be the set of faces of the embedding. A 2-chain α : F → IR assigns weights to the

faces of the graph; a 1-chain φ : E→ IR assign weights to the edges of the graph;

and a 0-chain ω : V → IR assigns weights to the vertices of the graph. It is helpful

to think about a 1-chain as a function that assigns numbers to each dart such that

φ(~e) =−φ(rev(~e)).
The boundary of a 1-chain φ is defined as

∂φ(v) =
∑

u:u→v∈~E

φ(u→v).

Similarly, the boundary of a 2-chain α is defined as

∂α( f ↑g) = α( f )−α(g).

A circulation is a 1-chain whose boundary is trivial; that is the conservation

constraint ∂φ(v) = 0 holds for every vertex v. For any two vertices s and t a

1-chain whose boundary is 0 everywhere except possibly at s and t is called an

(s , t )-flow. In this case |∂φ(s)|= |∂φ(t)| is called the value of the flow φ, denoted

|φ|.
The (first) chain space C(G) of an embedded graph is the vector space of

all possible 1-chains, which is clearly isomorphic to IR|E|. The cycle space Z(G)
is the vector space of all possible circulations, which is isomorphic to IR|E|−|V |+1.

Finally, the flow space Z(G; s t ) is the space of all (s, t)-flows, which is isomorphic

12



to IR|E|−|V |+2. Intuitively, one can think of a flow space as the cycle space when s and

t are identified.

2.8 Homology

The boundary of any 2-chain α : F → IR is defined to be ∂α : E → IR, where

∂α( f ↑g) = α(g) − α( f ) for any edge f ↑g ∈ E. A boundary circulation is the

boundary of some 2-chain, which is indeed a circulation. In planar graphs, any

circulation is a boundary circulation as well, which is not true for higher genus

surfaces. The boundary space B(G) is a vector space of all possible boundary

circulations, which is isomorphic to IR|F |−1.

Two flows or circulation (any two 1-chains, in general) φ andψ are homologous

(or in the same homology class) if and only if φ −ψ is a boundary circulation. Thus

the homology space H(G), the space of all homology classes, is the quotient space

Z(G)/B(G), which is by definition homeomorphic to IR|E|−|V |−|F |+2 which is IR2g by

Euler’s formula. The (s , t )-flow homology space H(G; s t ) is similarly defined to

be the space of all homology classes of (s, t)-flows, which is isomorphic to IR2g+1.

2.9 Piecewise linear surfaces

A piecewise linear surface is composed of a finite number of Euclidean polygons by

identifying pairs of equal length edges. The interiors of the constituent polygons

are called the faces of the surface. The vertices and edges of the surface are the

equivalence classes of the vertices and edges of the polygons. A piecewise linear is a

triangulation if all its faces are triangles.

An embedding of a triangulation Σ to IRd is an injective map Φ : Σ→IRd , such

that each triangle maps to the convex hull of three points in IRd . We say that a

triangulation can be embedded in IRd if such an embedding exists. Most piecewise-

linear surfaces cannot be embedded in any Euclidean space; consider, for example,

the flat torus obtained by identifying opposite sides of the unit square.

A geodesic is a path that is locally as short as possible; for any point x in a

geodesic γ, a sufficiently small neighborhood of γ around x is a shortest path; in

particular any shortest path is a geodesic. If γ is a geodesic in a piecewise-linear

surface Σ, any subpath of γ that lies entirely within a face of Σ is a straight line

segment. Similarly, a subpath of γ that crosses an edge of Σ from one face A to

another face B is a line segment in the polygon obtained by unfolding A and B

into a common planar coordinate system [57,135]. A geodesic is simple if it does

not self-intersect. We emphasize that a simple geodesic may cross each face of a

piecewise-linear surface arbitrarily many times, or even infinitely many times; again,

consider the flat torus.

13



2.10 Curve similarity

Comparing embedded curves is a challenging task with many applications, which is

elaborated in Chapter 5. In this section, we provide some preliminary definitions,

which are mostly used in that chapter. The subject of the definitions, and in fact our

algorithms, are paths instead of curves.

2.10.1 Frechét distance

Let Σ be a topological space with a metric d : Σ2→IR, and let f and g be two paths

in Σ. A parametrization φ : [0,1]→ [0,1] is a bijective continuous function. The

width of a parametrization with respect to f and g is

width
�

φ
�

= max
x∈[0,1]

d
�

f (x), g(φ(x))
�

The Frechét distance between f and g is defined to be

dF
�

f , g
�

= inf
φ:[0,1]→[0,1]

width
�

φ
�

,

where φ ranges over all orientation-preserving homeomorphisms.

While this distance makes sense when the underlying metric is Euclidean, it

becomes less natural if the distance function is more interesting. For example,

imagine walking a dog in the woods. The leash might get tangled as the dog and

the person walk on two different sides of a tree. Since the Frechét distance cares

only about the distance between the two moving points, the leash would “magically”

jump over the tree.

2.10.2 Homotopic Frechét distance and homotopy height

To address this shortcoming, a natural extension called homotopic Frechét distance

was introduced by Chambers et al. [34]. Informally, revisiting the above person-dog

analogy, we consider the infimum over all possible traversals of the paths, but this

time, we require that the person is connected to the dog via a leash. The homotopic

Frechét distance is the minimum length of a leash that allows the dog and its owner

to simultaneously traverse the curves.

More formally, consider a homotopy h : [0,1]2 → Σ, and four paths f , r, g, `

whose concatenation in this order is a closed walk. For fixed parameters s and t

consider `t(y) = h(t, y) and µs(x) = h(x , s) as functions of y and x , respectively.

The functions µ(y)≡ µt(y) and `(x)≡ `s(x) are parametrized curves that are the

natural restrictions of h to one dimension, by the x and y coordinates, respectively.

We require that µ(0) = f , µ(1) = g, `(0) = ` and `(1) = r. The homotopic width

of h is width(h) = max
t∈[0,1]

|`(t)|, and the homotopic Frechét distance between f and

14



f

g

`(t)
µ(s)

`(t)
µ(s)

(i) (ii)

Figure 2.2. (i) Two paths f and g, and (ii) the parametrization of their homotopic Frechét distance.

g is

dH
�

f , g
�

= min
h:[0,1]2→Σ

width(h) ,

Clearly, dH
�

f , g
�

≥ dF
�

f , g
�

. Further, dH
�

f , g
�

can be arbitrary larger than

dF
�

f , g
�

. We remark that dH
�

f , g
�

= dF
�

f , g
�

for any pair of paths in Euclidean

space of any dimension, as we can always pick the leash to be a straight line segment

between the person and the dog. However, this is not true for general ambient

spaces, where the leash might have to pass over obstacles or hills. In particular, in

most spaces, usually, the leash is not always a shortest path during the motion.

Efrat et al. [69] refer to the homotopic Frechét distance as the morphing width

of f and g, which bounds how far a point on f has to travel to its corresponding

point in g under the morphing of h. The length of µ(s) is the height of the morph

at time s, and the height of such a morphing is height
�

µ
�

=maxs∈[0,1] |µ(s)|. The

homotopy height between f and g bounded by `(0) and `(1) is

hh
�

f , g,`(0),`(1)
�

= inf
µ

height
�

µ
�

,

where h varies over all possible maps h : [0, 1]2→Σ such that h(0, ·) = `, h(1, ·) = r,

h(·, 0) = f and h(·, 1) = g. See Figure 2.2 for an example. Note that if we do

not constraint the endpoints of the paths during the homotopy to stay on `(0) and

`(1), the problem of computing the minimum height homotopy is trivial. One can

contract f to a point, send it to g from the shortest ( f , g)-path, and then expand

it to g. To keep the notation simple, we use hh
�

f , g
�

when f and g have common

endpoints.

Intuitively, the homotopy height measures how long the path has to become as

it deforms from f to g, and it was introduced by Chambers and Letscher [40,41]
and Brightwell and Winkler [19]. Observe that if we are given the starting and

ending leashes `(0) and `(1) then the homotopy height of f and g, is the homotopic

Frechét distance between `(0) and `(1).

15



2.10.3 Discrete problems

Let W1 be an (s, t)-walk and f be a face in G. Assume that α1 is a subwalk of W1

and ∂ f = α1 ∪α2, where α1 and α2 are walks that share endpoints u and v, such

that u is closer to s on W1. The face flip operation is defined as follows. The walk

W2 =W1[s, u] ·α2 ·W1[v, t] is the result of flipping W1 over f . In this case, we say

that W1 and W2 are one face flip operation apart.

Now, let W1 be an (s, t)-walk and e = u→v be an edge in G. Assume that u ∈W1.

We obtain the walk W2 =W1[s, u] · (u→v) · (v→u) ·W1[u, t] after applying a spike

operation on W1 along e. In this case, we can obtain W1 from W2 by applying a

reverse spike operation along e. We say that W1 and W2 are a spike operation apart.

In general, we say that W1 and W2 are one operation apart if we can transform one

to the other using a single face flip, spike, or reverse spike. Letscher and Chambers

refer to the same set of operations as: face lengthening, face shortening, spike and

reverse spike.

Figure 2.3. From left to right: face-flip, spike/reverse spike, man-move and dog-move.

Let A= (a0, a1, . . . , ak) and B = (b0, b1, . . . , bl) be walks of G. An (A, B)-walk is

a walk that has one endpoint on A and one endpoint on B. The walk W1 = (ai =
w1, w2, . . . , wk = b j) changes to the walk W2 = (ai+1, ai = w1, w2, . . . , wk) after a

man move. Similarly, the walk W1 = (ai = w1, w2, . . . , wk = b j) changes to the walk

W2 = (w1, w2, . . . , wk = b j , b j+1) after a dog move. An endpoint move is either a

man move or a dog move. A leash operation is a man move, a dog move, a face

flip, a spike or a reverse spike.

A sequence of (A, B)-walks, (W1, W2, . . . , Wq) is called an (A, B)-leash sequence if

W1 is a (a0, b0)-walk, Wq is a (ak, bl)-walk and for all 1≤ i < q, Wi changes to Wi+1

by a set of leash operations that contains exactly one endpoint move. The height

of a leash sequence is the length of its longest walk. The discrete Frechét distance

of A and B is the height of the minimum height (A, B)-leash sequence. The leash

sequence (W1, W2, . . . , Wq) contains no gap if Wi changes to Wi+1 by exactly one

leash operation. The discrete homotopic Frechét distance of A and B is the height

of the minimum height (A, B)-leash sequence that contains no gap.

Let L and R be two (s, t)-walks on the outer face of G with shared endpoints.

The sequence of walks (L = W0, W1, . . . , Wm = R) is a (L,R)-discrete homotopy if

for all 1≤ i ≤ m, Wi−1 changes to Wi with a single face flip, spike or reverse spike.

We may use the word homotopy as a short form of discrete homotopy when it is

clear from context. The height of the homotopy is the length of the longest walk in

its sequence. The discrete homotopy height between L and R, is the height of the

16



shortest possible (L, R)-homotopy.

17



Chapter 3

Z2-homologous cycles

In this chapter, we consider two related problems of testing whether two even

subgraphs are Z2-homologous and computing the minimum even subgraph or the

minimum cycle in a given Z2-homology class. In Chapter 4 we consider the related

problem of computing the minimum circulation in a Z-homology class, which

is intimately related to the problem of computing maximum flow on a surface

embedded graph.

In the rest of this chapter we describe results [39,77] about computing minimum

homologous cycles and even subgraphs. We focus on Z2-homology in this chapter;

throughout the current chapter when we use the word homology without any prefix

we mean Z2-homology. We start by giving a brief overview of the related results

in Section 3.1. In section 3.2 we show that fast algorithms for two well-known

problems in topological graph theory, namely computing the minimum cut in an

undirected embedded graph and computing the minimum non-separating cycle in a

directed graph, are implied by our results . In Section 3.4 we introduce the notion of

homology signature, which is a vector representation of homology classes, and use it

to design a linear time algorithm for testing homology. Homology signatures prove

to be further helpful in Section 3.5 when we introduce the concept of Z2-homology

cover and describe a 2O(g)n log n time algorithm to compute the minimum element

of a Z2-homology class, for an alternative algorithm that runs in gO(g)n log log n

see our paper [39]. Finally, in Section 3.6, we show that fixed parameter tractable

algorithms are the best we can hope for by proving that computing the minimum

Z2-homologous subgraph is in general NP-hard.

3.1 Related results

In this section, we review previously known results; we refer the interested reader

to two survey papers by Colin de Verdière and Erickson [45,75].

3.1.1 Equivalent cycles

Testing whether two subgraphs are equivalent (homotopic or homologous) is a

fundamental problem of computational topology. Dehn’s algorithm [54] to test

whether two loops are homotopic or two cycles are freely homotopic is one of the

oldest algorithms in this category. A simpler and linear time algorithm has been

18



developed to solve the same decision problem as a result of a series of works [59,

80, 131]. In Section 3.4 we describe the first linear time algorithms [77] to test

whether two cycles are Z2-homologous.

Several authors have considered the related question of finding the shortest

cycle in a surface graph that is either homotopic to a given cycle. Colin de Verdière

and Erickson [46] describe an algorithm to compute the shortest cycle homotopic

to a given cycle in a combinatorial surface in O(gnk log nk) time, where k is the

number of edges in the input cycle, following a series of work that consider different

versions of this problem [10,30,48,49,70,110].
An argument of Chambers et al. [35] implies that finding the shortest cycle

(either simple or not) in a given Z2-homology class in a surface graph is NP-hard;

Chen and Friedman [42,43] proved that the corresponding problem in simplicial

complexes is NP-hard to approximate within any constant factor.

In Section 3.6 we give a similar proof to Chambers et al. [39] for the NP-hardness

of computing the minimum element of a Z2-homology class. In Section 3.5 we

present an algorithm to find the shortest Z2-homologous cycles in 2O(β)n log n and

gO(β)n log log n time. In Chapter 4 we describe a result by Chambers et al. [38] to

find the minimum-cost circulation in a given real or integer homology class in a

directed surface-embedded graph in polynomial time; Dey et al. [60] generalized this

result to arbitrary chains of arbitrary dimension in arbitrary simplicial complexes.

3.1.2 Shortest non-trivial cycles

The problem of finding shortest topologically nontrivial cycles in embedded undi-

rected graphs has a long history. Itai and Shiloach [113] observed that the minimum

(s, t)-cut in an undirected planar graph G is dual to the minimum-cost cycle that

separates faces s∗ and t∗ in the dual graph G∗. Thus, Frederickson’s minimum cut

algorithm [88] computes the shortest nontrivial cycle in a combinatorial annulus

in O(n log n) time. Thomassen [183] developed the first efficient algorithm for

graphs on arbitrary surfaces, which runs in O(n3) time and exploits the so-called

3-path condition; see also Mohar and Thomassen [143, Sect. 4.3]. Erickson and

Har-Peled described a faster algorithm that runs in O(n2 log n) time [76]. This

is the fastest algorithm known for arbitrary surface-embedded graphs; however,

several faster algorithms are known when the genus g of the underlying surface is

small [26,27,31,128].
The history for directed embedded graphs is much shorter, in part because neither

Thomassen’s 3-path condition nor Cabello and Mohar’s crossing condition hold. The

shortest nontrivial directed cycle in an annular graph is dual to either the minimum

(s, t)-cut or the minimum (t, s)-cut in the directed planar dual graph, whichever

has smaller capacity. Both of these cuts can be computed in O(n log n) time using

planar flow algorithms. It appears that Jeniga and Koubeck’s algorithm [117] always

correctly computes the smaller of these two cuts. Cabello et al. [28] describe an

algorithm to find a shortest non-contractible and non-separating cycle in a directed

19



surface graph in O(n2 log n) time and O(pgn3/2 log n) time, respectively, using a

subtle generalization of Thomassen’s 3-path condition. Erickson and Nayyeri [77]
found a 2O(g)n log n time algorithm to compute the shortest non-separating cycle;

see Section 3.5. Later Erickson [74] further improved the best known running times

by finding a O(g2n log n) time algorithm to compute the shortest non-separating

cycle and a O(gO(g)n log n) time algorithm to compute the shortest non-contractible

cycle. Very recently, Fox [85] gave a O(g3n log n) time algorithm to compute the

shortest non-contractible cycle.

3.1.3 Flows in sparse graphs

Euler’s formula implies that an n-vertex graph embedded on a surface of genus

O(n) has at most O(n) edges. The fastest known combinatorial maximum-flow

algorithms for sparse graphs, due to Sleator and Tarjan [177] and Goldberg and

Tarjan [95], run in time O(n2 log n). The minimum-cost maximum flow can be

computed in O(n2 log2 n) time using an algorithm of Orlin [145]. (For graphs

with small separators, the running time of Orlin’s algorithm can be improved

to O(n2 log n) by replacing Dijkstra’s algorithm with a linear-time shortest-path

algorithm [109, 182].) The fastest algorithm known for integer capacities, due

to Goldberg and Rao [94], runs in O(n3/2 log n log U) time, where U is an upper

bound on the edge capacities. A more recent algorithm of Diatch and Spielman [64]
computes the minimum-cost maximum flow in O(n3/2 polylog n log U) time.

3.1.4 Flows and cuts in planar graphs

Maximum flows in planar graphs have received considerable attention for more

than 50 years. Weihe [189] and Borradaile and Klein [14,16] describe the history

of planar flow algorithms in detail; we describe only a few important highlights.

Itai and Shiloach exploited the connection between maximum flows in an undi-

rected planar graph and shortest paths in its dual graph to obtain an O(n log n)-time

algorithm when the source and sink vertices lie on a common face [113]; see also

Hassin [105].
Reif [156] developed a divide-and-conquer algorithm to compute a minimum

cut, and thus the maximum flow value, in a planar undirected network in O(n log2 n)
time. Reif’s algorithm was extended by Hassin and Johnson to compute the ac-

tual maximum flow in O(n log n) additional time, using a carefully structured dual

shortest-path computation [106]. Frederickson subsequently improved Reif’s algo-

rithm to O(n log n) time [88]. Frederickson’s improvement can also be obtained

more directly using more recent planar shortest-path algorithms [27,109,125,182].
The same improvement can also be obtained using more recent multiple-source

shortest path algorithms by Klein [125] and Cabello and Chambers [27]. Very

recently, after almost 25 years without progress, Italiano et al. [114] described an

improved algorithm that runs in O(n log log n) time.

20



Maximum flows in directed planar graphs were first investigated by Johnson and

Venkatesan [118], who described a divide-and-conquer algorithm, based on recur-

sive separator decompositions, with running time O(n3/2 log n). Venkatesan [186]
observed that a feasible flow with a given value, if such a flow exists, can be

computed in O(n3/2) time by computing a single-source shortest path tree in a

dual graph with both positive and negative edge weights, using an algorithm of

Lipton, Rose, and Tarjan [134]. (Venkatesan’s reduction is described in greater

detail in Section 4.2.2.) For graphs with integer capacities, binary search over

the possible flow values immediately yields a max-flow algorithm that runs in

O(n3/2 log C) time, where C is the sum of the capacities. This running time can be

improved by more recent planar shortest path algorithms [81,109,126]; in particu-

lar, the recent algorithm of Mozes and Wulff-Nilsen [144] implies a running time of

O(n log2 n log C/ log log n). Miller and Naor [139] generalized Johnson and Venkate-

san’s algorithm to planar (single-commodity) flow networks with multiple sources

and sinks. Returning to the classical augmenting path technique, Weihe [188,189]
described a planar maximum-flow algorithm that runs in O(n log n) time, provided

the input graph satisfies a certain connectivity condition. Finally, Borradaile and

Klein [14,16] described the first O(n log n)-time algorithm to find maximum flows in

arbitrary directed planar graphs. Erickson [73] simplified the presentation and anal-

ysis of Borradaile and Klein’s algorithm by reformulating it in terms of parametric

shortest paths.

This O(n log n) time algorithm was the fastest known for undirected planar

minimum cut for more than a decade until, recently, Italiano et al. [114] found a

O(n log log n) time algorithm.

3.1.5 Generalizations of planar cuts

Surprisingly little is known about the complexity of computing maximum flows

or minimum cuts in generalizations of planar graphs. In particular, we know of

no algorithm to compute minimum cuts in non-planar graphs that does not first

compute a maximum flow prior to our results.

By combining a technique of Miller and Naor [139] with the planar directed

flow algorithm of Borradaile and Klein [14–16], one can compute maximum (single-

commodity) flows in a planar graph with k sources and sinks in O(k2n log n) time.

A recent algorithm of Hochstein and Weihe [111] computes a maximum flow in a

planar graph with k additional edges in O(k3n log n) time, using a clever simulation

of Goldberg and Tarjan’s push-relabel algorithm [95]. Recently, Borradaile et al. [17]
found a O(n log3) time algorithm to compute maximum flow with multiple sources

and sinks in directed planar graphs. In a different work, Lacki et al. [129] describe

an algorithm to compute the value of all (n− 1) flows from a given source to each

other sink.

To our knowledge, the only prior max-flow algorithm that applies to graphs

of positive genus, but not to arbitrary sparse graphs, is an algorithm of Imai and

21



Iwano [112] that computes minimum-cost flows in graphs with small balanced

separators, using a combination of nested dissection [134, 147], interior-point

methods [185], and fast matrix multiplication. Their algorithm can be adapted to

compute maximum flows (and therefore minimum cuts) in any graph of constant

genus in time O(n1.595 log C), where C is the sum of the capacities. However, this is

slower than more recent and more general algorithms [94].
Euler’s formula implies that a simple n-vertex graph embedded on a surface of

genus O(n) has at most O(n) edges. The fastest known combinatorial maximum-

flow algorithms for sparse graphs, due to Sleator and Tarjan [177] and Goldberg

and Tarjan [95], run in time O(n2 log n). The fastest algorithm known for integer

capacities, due to Goldberg and Rao [94], runs in time O(n3/2 log n log U), where

U is an upper bound on the edge capacities. These are also the fastest algorithms

previously known for computing maximum flows or minimum cuts in graphs of any

positive genus.

For further background on maximum flows, minimum cuts, and related problems,

we refer the reader to monographs by Ahuja et al. [5] and Schrijver [170].

3.2 Undirected minimum cut and directed

non-separating cycle

Before we describe our algorithm, we first show that the minimum-weight homol-

ogous subgraph problem includes (the combinatorial dual of) the classical minimum-

cut problem as a special case. Thus, our results immediately imply fast algorithm

for computing minimum cuts on surfaces with small genus; see Corollary 3.5.12.

Lemma 3.2.1. Let G = (V, E) be an edge-weighted graph embedded on a sur-

face Σ without boundary, and let s and t be vertices of G. Finally, let X be the

minimum-weight (s, t)-cut in G. Then X ∗ is the minimum-weight even subgraph of

G∗ homologous with the boundary of s∗ in the surface Σ \ (s∗ ∪ t∗).

Proof: Let ∂ s∗ denote the boundary of s∗, and let Σ′ denote the surface Σ\ (s∗ ∪ t∗).
Let X be an arbitrary (s, t)-cut in G. This cut partitions the vertices of G into

two disjoint subsets, S and T , respectively containing vertices s and t. Thus, the

dual subgraph X ∗ partitions the faces of G∗ into two disjoint subsets, S∗ and T ∗,

respectively containing faces s∗ and t∗. In particular, X ∗ is the boundary of the union

of the faces in S∗, which implies that X ∗ is null-homologous in Σ. The subgraph

X ∗ ⊕ ∂ s∗ is the boundary of the union of faces in S∗ \ {s∗}, which is a subset of the

faces of Σ′. Thus, X ∗ ⊕ ∂ s∗ is null-homologous in Σ′. We conclude that X ∗ and ∂ s∗

are homologous in Σ′.
Conversely, let X ∗ be an arbitrary even subgraph of G∗ homologous to ∂ s∗ in Σ′.

The subgraph X ∗ ⊕ ∂ s∗ is null-homologous in Σ′. This immediately implies that X ∗

is null-homologous in Σ; moreover, faces s∗ and t∗ are on opposite sides of X ∗. Any

22



path from s to t in the original graph G must traverse at least one edge of X . We

conclude that X is an (s, t)-cut. �

In addition, computing the minimum homologous cycle in every Z2-homology

classes generalize the problem of computing shortest non-separating cycle in a

directed embedded graph, see Corollary 3.5.8. In fact, the shortest non-separating

cycle is the shortest cycle whose Z2-homology class is not trivial.

3.3 Forest-cotree construction and greedy system of

arcs

For the rest of the chapter, fix a directed graph G = (V, E) cellularly embedded on

a surface Σ of genus g with b boundaries. Without loss of generality, we assume

that the underlying surface Σ has at least one boundary; otherwise, we can remove

an arbitrary face of G from Σ without affecting its homology at all. Let δ1, . . . ,δb

denote the boundary cycles of Σ, and let β = 2g + b− 1 denote the the first Betti

number of Σ.

Cutting a surface embedded graph into a disc is an algorithmic problem in

computational topology, with numerous applications. Here, we discuss a natural

generalization of tree-cotree decompositions [72] to surfaces with boundary as a

tool to compute a set of paths to cut the graph into a topological disc. We refer the

interested reader to our paper [77] to see the other possible generalization.

A forest-cotree decomposition of G is any partition (∂G, F, C , X ) of the edges of

G into four edge-disjoint subgraphs with the following properties:

• ∂G is the set of all boundary edges of G.

• F is a spanning forest of G, that is, an acyclic subgraph of G that contains

every vertex.

• Each component of F contains a single boundary vertex.

• C∗ is a spanning tree of G∗ \ (∂ G)∗, that is, a subtree of G∗ that contains every

vertex except the dual boundary vertices δ∗i .

Euler’s formula implies that there are exactly β edges in X ; arbitrarily label these

edges e1, e2, . . . , eβ . For each edge ei ∈ X , the subgraph F ∪ {ei} contains a single

nontrivial arc αi , which is either a simple path between distinct boundary cycles, or

a nontrivial loop from a boundary cycle back to itself; in the second case, αi may

traverse some edges of F twice. Cutting along the arcs α1, . . . ,αβ transforms Σ into

a topological disk. Thus, every non-null-homologous cycle in G must cross at least

one arc αi . See Figure 3.1.

Lemma 3.3.1. A forest-cotree decomposition can be computed in O(n) time.

Proof: First construct a graph H by identifying all boundary vertices in G to a single

vertex. Compute a spanning tree of H by whatever-first search; the edges of this

23



Figure 3.1. Left: A forest-cotree decomposition of a graph; thick doubled lines indicate edges in X .
Right: The resulting system of arcs.

spanning tree define an appropriate spanning forest F . Construct the dual subgraph

G∗ \ F∗ and compute a dual spanning tree C∗ via whatever-first search. Finally, let

X = G \ (C ∪ F). �

Using the forest-cotree decomposition we obtain a set of arcs {α1, . . . ,αβ} to

cut the surface into a topological disc in linear time. In the following lemma we

compute a particular system of arcs with the property that each composing arc is

composed of two shortest paths. Following Chambers et al. [36] we call such a

system of arcs a greedy system of arcs. The concept of greedy system of loops is closely

related [79].

Lemma 3.3.2. A greedy system of arcs P = {p1, p2, . . . , pβ} can be computed in

linear time.

Proof: Let G/∂ G denote the graph obtained from G by contracting the entire

subgraph ∂ G—both vertices and edges—to a single vertex x . Using Dijkstra’s

algorithm, we compute the single-source shortest-path tree T in G/∂ G rooted at x

in O(n+ g + b) time [109,182]. Let F be the subgraph of G corresponding to T .

Each component of F is a tree of shortest paths from a boundary vertex to a subset

of the non-boundary vertices of G. With the shortest-path forest F in hand, we can

easily construct the rest of the forest-cotree decomposition in O(n) time.

Finally, for each edge ei ∈ X , let σi and τi denote the unique directed paths in F

from the boundary of G to the endpoints of ei , and let S := {σ1, . . . ,σβ ,τ1, . . . ,τβ}.
By construction of F , every element of S is a (possibly empty) shortest directed path.

Moreover, because pi = σi · ei · rev(τi) for each index i, every non-null-homologous

cycle in G must intersect at least one path in S. We can easily compute each path in

S in O(n) time. �

3.4 Homology signatures and homology test

Recall that the space of homology classes of cycles on a surface is a vector space.

It follows that we should be able to present each homology class with a vector. In

this section we introduce the notion of homology signature for cycles, which is

24



essentially a vector that presents the homology class of cycles according to a certain

bases. We describe how to build the signatures for Z2-homology and Z-homology,

however they can be easily generalize to cover any Zk-homology classes.

We define α+i to be the arc obtained by extending αi to the boundaries by adding

vertices of degree 1 to its endpoints. Let α+i = (w0, w1, · · · , wk, wk+1). We say that

a dart ~e = u→v enters αi from right if and only if v = w j for 1 ≤ j ≤ k, u 6∈ αi

and (w j−1, u, w j+1) are in counterclockwise order around w j = v. We say that a

dart ~e = u→v leaves αi from right if and only if u = w j for 1 ≤ j ≤ k, v 6∈ αi and

(w j−1, v, w j+1) are in counterclockwise order around w j = u. For each dart ~e = u→v

in G, we define its integer signature [~e] to be the vector of β integers whose ith

integer is equal to 1 if and only if ~e enters αi from right side, it is −1 if it leaves

αi from right side, and it is 0 otherwise. Then, the signature of a circulation is the

weighted vector sum of the integer signatures of its edges. The binary signature of

a an edge e, denoted by [e]2, or an even subgraph η, denoted by [η]2, are their

integer signature modulo 2.

Let h ⊕ h′ denote the vector sum of two integer homology signatures h and

h′, and b ⊕2 b′ is the bitwise exclusive-or (vector sum modulo 2) of the binary

signatures b and b′. For circulations η and η′, the identity [η⊕ η′] = [η]⊕ [η′]
follow directly from the definitions. In particular, we have [η⊕2η

′]2 = [η]2⊕2 [η′]2
note that a circulation under Z2-homology is essentially and even subgraph. When

it is clear from the context that we are working with Z2-homology we drop the

subscripts and write [·] instead of [·]2 and ⊕ instead of ⊕2.

Lemma 3.4.1. G can be preprocessed in O(βn) time, so that the integer signature

of any circulation can be computed in O(β) time per edge.

Proof: A forest-cotree decomposition can be computed in O(n) time using the

algorithm of Lemma 3.3.1. With the decomposition in hand, it is straightforward to

compute each path αi in O(n) time, and then compute each edge signature in O(β)
time. �

Corollary 3.4.2. We can preprocess G in O(βn) time, so that the binary signature

of any even subgraph can be computed in O(β) time per edge.

3.4.1 Z-homology

In this subsection we describe an algorithm to test whether two circulations are

Z-homologous. This is the only subsection of this chapter, in which we talk about

Z-homology. We start with the following structural lemma about integer circulations.

Lemma 3.4.3. Any circulation η with integer coefficients can be decomposed to a

collection of directed simple cycles.

Proof: Let v be a vertex of G that has at least one outgoing dart with a positive

coefficient in η. Our algorithm starts a walk from v, whenever it enters an unvisited

25



vertex u, it leaves u through an unvisited outgoing dart with positive coefficient.

Since η is a circulation the existence of such an outgoing dart is guaranteed upon

the first entrance to any vertex. As soon as, the algorithm enters an already visited

vertex, it finds a cycle in η and so in G; note that this cycle does not necessarily

contain v. Now we can subtract this cycle from η to obtain another circulation η′.

Then, the statement of the lemma follows by induction on the sum of the coefficients

of η. �

Now, we use the above lemma to show that the integer homology signature

captures null-homology.

Lemma 3.4.4. A circulation η of G is in trivial Z-homology class in Σ if and only if

[η] = 0.

Proof: Let η be a null-homologous circulation of G. Then by definition, η is the

boundary of a 2-chain α. The boundary of any face f is contractible in Σ and

therefore has signature 0. It follows immediately that [η] = [
∑

f ∈Y ∂ α( f )] =
∑

f ∈Y [∂ α( f )] = 0.

Conversely, suppose [η] = 0. Lemma 3.4.3 implies that η can be decomposed

into a set of cycles. In particular, we can define a set of crossing points between η

(in fact, the collection of cycles) and any αi . For a directed cycle γ and an arc αi ,

we say that γ crosses αi from right to left (resp. from left to right) at x1 if and only

if there is a subpath (x0, x1, . . . , xk) of γ such that x0→x1 enters αi from right (resp.

from left), x1, x2, . . . , xk−1 ∈ αi , and xk−1→xk leaves αi from left (resp. from right).

In the above case, we refer to the subpath x1, x1, . . . , xk−1 as the crossing interval of

x1.

Since the net number of times that η crosses αi is 0, there exists intersection

points x1 and y1 such that η crosses pi from right to left and left to right at x1

and y1, respectively. Let Ix = (x1, . . . , xk−1) be the crossing interval of x1 and

let I y = (y1, y1, . . . , yl−1) be the crossing interval of y1. Further let αi[x , y] and

αi[y, x] be the directed subpaths of αi from x to y and from y to x respectively. We

change η without changing its homology class in order to reduce its total number

of crossing points. We change Ix and I y and so their containing cycles as follows.

First we add the trivial cycle αi[x1, y1] · αi[y1, x1] to η. Then we reinterpret

the connections to have a (x0, yl)-path (x0→x1) ·αi[x1, y1] · I y · (yl−1→yl) and a

(y0, xk)-path (y0→y1) ·αi[y1, x1] · Ix · (xk−1→xk).
It follows by induction that η is homologous to another circulations (or collection

of cycles) η′ that does not cross any path αi at all, and so it is null-homologous. �

The following corollary is now immediate.

Corollary 3.4.5. Two circulations η and η′ of G are Z-homologous in Σ if and only

if [η] = [η′].

Now, we can conclude this section by the following theorem, which gives an

algorithm for Z-homology test.

26



Theorem 3.4.6. Let G = (V, E) be a graph with n vertices embedded on a surface Σ
of genus g with b boundaries. Then, after preprocessing G in O((g + b)n) time, for

any two circulations η1 and η2, we can test whether η1 and η2 are Z-homologous

in O((g+ b)(|η1|+ |η2|)) time, where |η| denotes the number of vertices of the even

subgraph η.

3.4.2 Z2-homology

Now, we show how to compute with the Z2-homology class. Some results of this

subsection are used later in building the Z2-homology cover, which will be used to

compute the minimum elements of Z2 homology classes.

Lemma 3.4.7. An even subgraph η of G is in trivial Z2-homology class in Σ if and

only if [η]2 = 0.

Proof: The proof is exactly similar to the proof of Lemma 3.4.4, however, we should

note that crossing from right to left and from left to right are not distinguishable

when we work under Z2-homology. As a result we can pair any two crossing points,

so we can reduce the total number of crossings as long as there are at least two

crossings on any arc αi . It follows that we can reduce the number of crossings to 0

if [η]2 = 0. �

The following corollaries are now immediate.

Corollary 3.4.8. Two even subgraphs η and η′ of G are Z2-homologous in Σ if and

only if [η]2 = [η′]2.

Corollary 3.4.9. Two cycles γ and γ′ in G are Z2-homologous in Σ if and only if

[γ]2 = [γ′]2.

The algorithm for testing whether two even subgraphs are Z2-homologous

follows immediately.

Theorem 3.4.10. Let G = (V, E) be a graph with n vertices embedded on a surface

Σ of genus g with b boundaries. Then, after preprocessing G in O((g + b)n)
time, for any two even subgraphs η1 and η2, we can test whether η1 and η2 are

Z2-homologous in O((g + b)(|η1|+ |η2|)) time, where |η| denotes the number of

vertices of the even subgraph η.

3.5 Minimum homologous subgraph and the

Z2-homology cover

3.5.1 The Z2-homology cover

In the remaining of this chapter we mainly work with Z2-homology classes, so we

frequently use the word homology instead of Z2-homology, [·] instead of [·]2 and ⊕
instead of ⊕2.

27



00

10

01

11
1 2

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

00

11

01

10

1

1

1

12

2

2

2

Figure 3.2. Constructing the Z2-homology cover of a pair of pants (a genus zero surface with three
boundaries).

With the homology signatures in hand, the Z2-homology cover of a combinatorial

surface can be defined using a standard voltage construction [100, Chapter 4], as

follows. Let G denote the graph whose vertices are all ordered pairs (v, h) where v

is a vertex of G and h is an element of (Z2)β , and whose edges are the ordered pairs

(u→v, h) := (u, h)→(v, h⊕ [u→v]) for all edges u→v of G and all homology classes

h ∈ (Z2)β , where β = 2g + b− 1 is the first betti number. Let π: G → G denote

the covering map π(v, h) = v; this map projects any cycle in G to a cycle in G. To

define a cellular embedding of G, we declare a cycle in G to be a face if and only if

its projection is a face of G. The combinatorial surface defined by this embedding is

the Z2-homology cover Σ.

Our construction can be interpreted more topologically as follows. Let α1, . . . ,αβ
denote the system of arcs used to define the homology signatures [e]. The surface

D := Σ \ (α1 ∪ · · · ∪αβ) is a topological disk. Each arc αi appears on the boundary

of D as two segments α+i and α−i . For each signature h ∈ (Z2)β , we create a disjoint

copy (D, h) of D; for each index i, let (α+i , h) and (α−i , h) denote the copies of α+i
and α−i in the disk (D, h). For each index i, let bi denote the β-bit vector whose

ith bit is equal 1 and whose other β − 1 bits are all equal to 0. The Z2-homology

cover Σ is constructed by gluing the 2β copies of D together by identifying boundary

paths (α+i , h) and (α−i , h⊕ bi), for every index i and homology class h. See Figure

3.2 for an example.

Lemma 3.5.1. The combinatorial surface Σ has n = 2βn vertices, genus g =
O(2ββ), and b = O(2β b) boundaries, and it can be constructed in O(2βn) time.

Proof: Let m and f denote the number of edges and faces of Σ, respectively. Recall

that the Euler characteristic of Σ is χ = n− m+ f = 2− 2g − b = 1− β . The

combinatorial surface Σ has exactly n = 2βn vertices, 2βm edges, and 2β f faces, so

its Euler characteristic is χ = 2β(1− β).
If b > 1, then each boundary cycle δi has a non-zero homology signature; at

least one arc α j has exactly one endpoint on δi . Thus, Σ has exactly b = 2β−1 b

boundary cycles, each of which is a double-cover (in fact, the Z2-homology cover)

of some boundary cycle δi . It follows that Σ has genus g = 1 − (χ + b)/2 =
2β−2(4g + b− 4) + 1. (Somewhat surprisingly, Σ may have positive genus even

when Σ does not!) On the other hand, when b = 1, the boundary cycle δ1 is

null-homologous, so Σ has b = 2β b boundary cycles, and thus Σ has genus g =

28



1− (χ + b)/2= 2β(g − 1) + 1.

After computing the homology signatures of the edges of Σ in O(βn) time,

following the definition, it is straightforward to construct Σ in O(n) = O(2βn)
time. �

If the input graph G is weighted we can compute weights on the edges of the

covering space as follows. We assign weights to the directed edges of G by setting

w(u→v, h) := w(u→v) for each edge u→v of G and each homology class h. In other

words, each directed edge in Σ inherits the weight of its projection in Σ.

Now consider an arbitrary path p in G, with (possibly equal) endpoints u and v.

A straightforward induction argument implies that for any homology class h ∈ (Z2)β ,

the path p lifts to a unique path from (u, h) to (v, h⊕ [p]), which we denote (p, h).
Moreover, this lifted path has the same length as its projection: w(p) = w(p, h). The

following lemmas are now immediate.

Lemma 3.5.2. Every lift of a shortest directed path in G is a shortest directed path

in G.

We say that a loop ` in G with basepoint v is tight in its homology class if and

only if there is no shorter loop with basepoint v in the same homology class.

Lemma 3.5.3. A loop ` in G with basepoint v is tight its Z2-homology class if and

only if, for some (in fact, every) homology class h ∈ (Z2)β , the lifted path (`, h) is a

shortest directed path in G from (v, h) to (v, h⊕ [`]).

3.5.2 Computing Z2-minimal cycles

We now describe our algorithm to compute the shortest directed cycle in a given

Z2-homology class.

Lemma 3.5.4. In linear time, we can construct a set S of O(β) directed shortest

paths in G, such that every non-null-homologous cycle in G intersects at least one

path in S.

Proof: Any greedy system of arcs can be decomposed into 2β shortest paths that

collectively have the property of the lemma; so the lemma statement is an immediate

implication of Lemma 3.3.2. �

Recall that any path σ from u to v in G lifts to a unique path (σ, 0) from (u, 0)
to (v, [σ]) in G.

Lemma 3.5.5. Let γ be a Z2-minimal cycle in G, and let σ be any shortest path in

G that intersects γ. There is a Z2-minimal cycle γ′ homologous to γ, that lifts to a

shortest path (γ′, h) in G that starts with a subpath of (σ, 0) but does not otherwise

intersect (σ, 0).

29



Proof: Let v be the vertex of σ∩ γ closest to the starting vertex of σ, and let (v, h)
be the corresponding vertex of the lifted path (σ, 0). Think of γ as a loop based at

v. Lemma 3.5.3 implies that the lifted path (γ, h) is a shortest path from (v, h) to

(v, h⊕ [γ]).
Now let (w, h′) be the last vertex along (γ, h) that is also a vertex of (σ, 0). Let

(γ′, h) be the path obtained from (γ, h) by replacing the subpath from from (v, h) to

(w, h′) with the corresponding subpath of (σ, 0). By construction, (γ′, h) starts with

a directed subpath of (σ, 0) but does not otherwise intersect (σ, 0). Because both

(γ, h) and (σ, 0) are shortest paths in Σ, the new path (γ′, h) has the same length

as (γ, h). Thus, the projected cycle γ′ has the same length and homology class as γ,

which implies that γ′ is Z2-minimal. �

We emphasize that the modified cycle γ′ may intersect σ arbitrarily many times;

however, all such intersections lift to intersections between (γ′, h) and lifts of σ

other than (σ, 0). In general, two directed shortest path may cross each other

arbitrary many times in directed graphs, where the weight of edges are asymmetric.

In undirected graphs and under the assumption of uniqueness of shortest paths, it is

easy to show that no pairs of shortest paths cross more than once.

Our algorithm uses a recent generalization of Klein’s seminal multiple-source

shortest path algorithm [125] to higher-genus embedded graphs:

Lemma 3.5.6 (Chambers et al. [33]). Let G be a directed graph with non-negative

edge weights, cellularly embedded on a surface Σ of genus g with b > 0 boundaries,

and let f be an arbitrary face of G. We can preprocess G in O(gn log n) time, and

O(n) space, so that the length of the shortest path from any vertex incident to f to

any other vertex can be retrieved in O(log n) time.

Theorem 3.5.7. Let G be a directed graph with non-negative edge weights, cellu-

larly embedded on a surface Σ with first Betti number β , and let γ be a cycle in G

with k edges. A shortest directed cycle in Σ that is Z2-homologous with γ can be

computed in O(βk+ 2βn log n) time.

Proof: We begin by computing homology signatures for the edges of G in O(βn)
time, as described in Section 3.4. In O(βk) time, we then compute the homology

signature [γ]. If [γ] = 0, we return the empty walk and halt.

Next, we construct the Z2-homology cover G in 2O(β)n log n time, as described

in Section 3.5.1, as well as the set S of directed shortest paths described in

Lemma 3.5.4. We then look for the shortest path in G of the canonical form

described in Lemma 3.5.5, by considering each shortest path σ ∈ S in turn as

follows.

Let us write (σ, 0) = (v0, 0)→(v1, h1)→·· ·→(vt , ht). We construct the combi-

natorial surface Σ Q(σ, 0) by splitting the path (σ, 0) into two parallel paths from

(v0, 0) to (vt , ht), which we denote (σ, 0)+ and (σ, 0)−. For each index 1≤ i ≤ t−1,

let (vi , hi)+ and (vi , hi)− denote the copies of vertex (vi , hi) on the paths (σ, 0)+

30



and (σ, 0)−, respectively. The paths (σ, 0)+ and (σ, 0)− bound a new common face

f(σ,0) in Σ Q(σ, 0).
Lemma 3.5.5 implies that if any Z2-minimal cycle homologous to γ intersects σ,

then some Z2-minimal cycle homologous to γ is the projection of a shortest path in

Σ Q(σ, 0) from some vertex (vi , hi)± to the corresponding vertex (vi , hi ⊕ [γ]). To

compute these shortest paths, we implicitly compute the shortest path in Σ Q(σ, 0)
from every vertex on the boundary of f(σ,0) to every vertex of Σ Q(σ, 0), using

Lemma 3.5.6. The resulting algorithm runs in O(g n log n) = O(4ββ2 n log n) time,

by Lemma 3.5.1. �

By running this algorithm 2β times, we can compute the shortest directed cycle

in Σ in every Z2-homology class, in 2O(β)n log n time. In particular, we can compute

the shortest directed cycle in Σ that has nontrivial Z2-homology. When the original

surface has no boundary, this is just the shortest non-separating cycle in Σ. Very

recently, Cabello et al. [28] described an algorithm to compute the shortest non-

separating cycle in any surface-embedded directed graph in O(g1/2n3/2 log n) time;

our new algorithm is faster whenever g ≤ (lg n)/13.

Corollary 3.5.8. Given a directed graph G with n vertices with non-negative edge

weights, cellularly embedded on a surface with genus g, we can compute the

shortest directed cycle in G that is non-separating in Σ in 2O(g)n log n time.

3.5.3 Computing Z2-minimal even subgraphs

In this section, we describe an algorithm to compute the minimum-weight even

subgraph in every Z2-homology class, using the algorithm of the previous section.

Theorem 3.5.7 immediately implies that we can compute a minimum-weight cycle in

every Z2-homology class in 2O(β)n log n time. However, the minimum weight even

subgraph in a given homology class may not be a Z2-minimal cycle. In particular, if a

Z2-minimal cycle γ traverses any edge more than once, then every minimum-weight

even subgraph with signature [γ] must be disconnected.

Call a cycle in G weakly simple if it traverses each edge of G at most once and

never crosses itself. Any weakly simple cycle in G can be perturbed into a simple

cycle in an arbitrarily small neighborhood of G. A cycle decomposition of an even

subgraph η is a set of edge-disjoint, non-crossing, weakly simple cycles whose union

is η.

Lemma 3.5.9. Every even subgraph of an embedded graph has a cycle decomposi-

tion.

Proof: Let H be an even subgraph of G. We can decompose H into cycles by

specifying, at each vertex v, which pairs of incident edges of H are consecutive. Any

pairing that does not create a crossing at v is sufficient. For example, if e1, e2, . . . , e2d

are the edges of H incident to v, indexed in clockwise order around v, we could pair

edges e2i−1 and e2i for each i. �

31



The components of any Z2-minimal even subgraph are themselves Z2-minimal

even subgraphs. Thus, we can assemble a Z2-minimal even subgraph in any homol-

ogy class from a subset of the Z2-minimal cycles we have already computed. The

following lemma puts an upper bound on the number of cycles we need.

Lemma 3.5.10. Every Z2-minimal even subgraph of G has at most g + b− 1 com-

ponents.

Proof: Let η be an even subgraph of G with more than g+ b−1 components. Then,

by Lemma 3.5.9, η has a cycle decomposition with at least g + b elements.

Let γ1, . . . ,γg+b any subset of the cycle decomposition of η, and consider the

surface Σ′ = Σ \ (γ1 ∪ · · · ∪ γg+b). The definition of genus implies that Σ′ cannot

be connected; indeed, Σ′ must have at least b+ 1 components. So the pigeonhole

principle implies that some component Σ′′ of Σ does not contain any of the boundary

cycles of Σ. The boundary of Σ′′ is therefore null-homologous. We conclude that η

is not Z2-minimal. �

Theorem 3.5.11. Let G be an undirected graph with non-negative edge weights,

cellularly embedded on a surface Σ with first Betti number β . A minimum-weight

even subgraph of G in each Z2-homology class can be computed in 2O(β)n log n time.

Proof: Our algorithm computes a minimum-weight cycle γh in every Z2-homology

class h in 2O(β)n log n) time, via Theorem 3.5.7, and then assemble these Z2-minimal

cycles into Z2-minimal even subgraphs using dynamic programming.

For each homology class h ∈ (Z2)β and each integer 1 ≤ k ≤ g + b − 1, let

C(h, k) denote the minimum total weight of any set of at most k cycles in G whose

homology classes sum to h. Lemma 3.5.10 implies that the minimum weight of any

even subgraph in homology class h is exactly C(h, g + b− 1). This function obeys

the following straightforward recurrence:

C(h, k) =min
¦

C(h1, k− 1) + C(h2, 1)
�

� h1 ⊕ h2 = h
©

.

This recurrence has two base cases: C(0, k) = 0 for any integer k, and for any

homology class h, the value C(h, 1) is just the length of γh. A standard dynamic

programming algorithm computes C(h, g + b− 1) for all 2β homology classes h in

O(4ββ) time. We can then assemble the actual minimum-weight even subgraphs in

each homology class in O(βn) time. The total time for this phase of the algorithm

is O(4ββ + 2ββn), which is dominated by the time to compute all the Z2-minimal

cycles. �

Lemma 3.2.1 and Theorem 3.5.11 immediately give us the following corollary:

Corollary 3.5.12. Given an undirected graph H with non-negative edge capacities,

embedded on a surface Σ with genus g, and two vertices let s and t, we can compute

a minimum (s, t)-cut in H in 2O(g)n log n time.

32



3.6 NP-hardness

In this section, we show that finding the minimum-weight even subgraph in a given

homology class is NP-hard, even when the underlying surface has no boundary.

Cabello et al. [29] show that computing the minimum separating or splitting

cycles are NP-complete. Further, Chen and Freedman [43] prove that the problem of

computing the minimum cycle in a given Z2-homology class is hard to approximate

within any constant factor. Finally, Dunfield and Hirani [66] show that finding the

minimum element of give Z-homology class in complexes is NP-hard. Our proof

closely follows a reduction of McCormick et al. [138] from MIN2SAT to a special

case of MAXCUT.

Theorem 3.6.1. Computing the minimum-cost even subgraph in a given homology

class on a surface without boundary is equivalent to computing a minimum-capacity

cut in an embedded edge-weighted graph G whose negative-cost edges are dual to

an even subgraph in G∗.

Proof: Fix a graph G embedded on a surface Σ without boundary, together with a

cost function c : E→ R. For any even subgraph H of G, let c(H) =
∑

e∈H c(e), and

let MINHOM(H, c) denote the even subgraph of minimum cost in the homology class

of H.

Consider the residual cost function cH : E → R defined by setting cH(e) = c(e)
for each edge e 6∈ H, and cH(e) = −c(e) for each edge e ∈ H. For any subgraph

H ′ of G, we have c(H ′) = cH(H ⊕ H ′) + c(H), which immediately implies that

MINHOM(H, c) = H ⊕MINHOM(∅, cH).
Every null-homologous even subgraph of G is dual to a cut in the dual graph

G∗. Thus, we have reduced our problem to computing the minimum cut in G∗ with

respect to the cost function cH . Since the empty set is a valid cut with zero cost, the

cost of the minimum cut is never positive. In particular, H is the minimum-cost even

subgraph in its homology class if and only if the cut in G∗ with minimum residual

cost is empty.

In fact, our reduction is reversible. Suppose we want to find the minimum cut in

an embedded graph G = (V, E) with respect to the cost function c : E→ R, where

every face of G is incident to an even number of edges with negative cost. Let

H = {e ∈ E | c(e)< 0} be the subgraph of negative-cost edges, and let X denote the

(possibly empty) set of edges in the minimum cut of G. Consider the absolute cost

function |c|: E∗→ R defined as |c|(e∗) = |c(e)|. Then (H ⊕ X )∗ is the even subgraph

of G∗ of minimum absolute cost that is homologous to H∗. �

We now prove that this special case of the minimum cut problem is NP-hard,

by reduction from MINCUT in graphs with negative edges. This problem includes

MAXCUT as a special case (when every edge has negative cost), but many other

special cases are also NP-hard [138]. The output of our reduction is a simple

triangulation; the reduction can be simplified if graphs with loops and parallel edges

are allowed.

33



Suppose we are given an arbitrary graph G = (V, E) with n vertices and an

arbitrary cost function c : E→ R. We begin by computing a cellular embedding of G

on some surface. If we don’t care whether the surface is orientable, we can simply

impose a cyclic order on the edges incident to each vertex. The maximum-genus

orientable cellular embedding can be computed in polynomial time [89]. Alternately,

we can add zero-length edges to make the graph complete and then use classical

results of Ringel, Youngs, and others [157, 158] to compute a minimum-genus

orientable embedding of Kn in polynomial time. Once we have an embedding, we

add vertices and zero-cost edges to obtain a triangulation.

Now, we describe a procedure to further modify G to obtain another cellularly

embedded graph G′ (with the same vertex set), in which the dual of all negative

edges is an even subgraph without changing the cost of any cut; Chambers et al. [39]
describe an alternative procedure.

Observe that the dual of all negative edges is a subgraph, which, indeed, has an

even number of vertices of odd degree; let ( f ∗1 , f ∗2 , . . . , f ∗2k) be the set of such vertices.

For each 1≤ i ≤ k we glue a handle between the faces f2i−1 and f2i (after making

a puncture in each of them) to obtain an annulus Ai whose boundary components

are ∂ f2i−1 and ∂ f2i . Then, to make the embedding cellular, we connect an arbitrary

vertex of f2i−1 to and arbitrary vertex of f2i through Ai with an edge of zero weight.

Clearly, all faces of G′ has an even number of edges with negative weight on

their boundary (equivalently, the dual of all negative edges is an even subgraph).

Further, the vertex set of G and G′ are equal, and G′ has only some extra edges of

weight zero. It follows that the cost of any cut in G and G′ are equal.

Theorem 3.6.2. Given an even subgraph H of an edge-weighted graph G embedded

on a surface without boundary, computing the minimum-weight even subgraph

homologous to H is strongly NP-hard.

Finally, we emphasize that the NP-hardness of this problem relies crucially on

the fact that we are using homology with coefficients taken from the finite field

Z2. The corresponding problem for homology with real or integer coefficients is a

minimum-cost circulation problem, and thus can be solved in polynomial time; see

Chapter 4.

34



Chapter 4

Flows and Z-homology

4.1 Introduction

Let G = (V, E) be a directed graph embedded on a surface of genus g, s, t ∈ V

known as source and sink, and c : E→ R+ be a capacity function on edges. In this

chapter we describe an algorithm to compute the maximum (s, t)-flow in G. For any

fixed genus g and polynomially-bounded integer capacities, our algorithm runs in

O(n polylog n) time (bit operations). We also describe a combinatorial algorithm

that runs in O(n3/2) time (arithmetic operations) for arbitrary real capacities, for

graphs of any fixed genus.

Generalizing a relation between planar flows and shortest paths, first observed

by Venkatesan [186], and using homology, we give a reduction of the flow problem

to another optimization problem in a lower dimension space. More precisely, we

show that the problem of finding the maximum flow is reduced to the problem of

finding the homology class of the maximum flow in the flow homology space, which

is a vector space of dimension O(g). Since the new optimization problem involves

an exponential number of constraints, we perform the optimization implicitly, using

an adaptation of central ellipsoid method and multidimensional parametric search.

Following a strategy first suggested by Sullivan [181], we show that a dual

formulation of our algorithm finds the minimum-cost circulation in the same homol-

ogy class as a given circulation, in a graph with non-negative edge costs but no

capacities, in roughly the same time as computing a maximum flow; see Section 4.3.

For an overview of related results we refer the interested reader to Section 3.1.

Our algorithm to compute the maximum flow in surface embedded graphs follows

in Section 4.2. Finally, we describe the dual formulation of our algorithm resulting

in a result to compute the minimum circulation in a given Z-homology class in

Section 4.3.

4.2 Homology flows

Throughout this section, we fix an undirected graph G = (V, E), a cellular embedding

of G on an orientable surface Σ of genus g, a capacity function c : E→ R+, and two

vertices s and t. See our paper [38] for an extension of the result to directed graphs

and non-orientable surfaces.

35



4.2.1 Overview

Our key insight generalizes the relationship between flows and dual shortest paths

in planar graphs first observed by Venkatesan [186] using a standard equivalence

relation from algebraic topology called homology. We prove in Section 4.2.2 that

given any flow f , one can find a feasible flow in the same homology class in near-

linear time, by computing a single-source shortest path tree in the dual of the

residual network G f . Two flows are in the same homology class if their difference is

the weighted sum of directed facial cycles. This observation allows us to optimize

the homology class of the flow, rather than directly optimizing the flow itself. Instead

of optimizing a vector of O(n) flow values, our algorithm optimizes a vector of 2g+1

homology coefficients, subject to a much larger set of linear constraints; see Section

4.2.4.

We perform this optimization implicitly using two different techniques: central

cut ellipsoid method [101] and multidimensional parametric search [1,3]; see our

paper [37] for more details. In order to apply the above optimization methods we

required a require a membership separation oracle, which we [37] obtained by

generalizing a recent algorithm of Mozes and Wulff-Nilsen [144], and a parallel

shortest path algorithm, for which we use an algorithm by Cohen [44].

4.2.2 Homologous feasible flows

More than 25 years ago, Venkatesan [186] observed that for any planar graph G,

a feasible (s, t)-flow with a given value can be computed, if such a flow exists, by

solving a single-source shortest path problem in a dual planar graph G∗ with both

positive and negative edge lengths. Similar approaches were proposed by Johnson

and Venkatesan [118], Hassin and Johnson [106], Khuller et al. [121], and Miller

and Naor [139]. The following lemma directly generalizes Venkatesan’s observation

to flow networks of higher genus.

Let φ : E→ R be an arbitrary (in particular, not necessarily feasible) (s, t)-flow

in G. The dual residual network G∗φ is the directed dual graph ~G∗, where every

dual dart ~e ∗ has a cost cφ(~e ∗) equal to the residual capacity of its corresponding

primal dart: cφ(~e ∗) = cφ(~e). For any directed cocycle λ, let c(λ) denote its total

capacity, and for any flow φ, let φ(λ) denote the total flow through edges in λ:

c(λ) :=
∑

~e∈λ

c(e) and φ(λ) :=
∑

~e∈λ

φ(~e).

Lemma 4.2.1. A (s, t)-flow (circulation) φ is null-homologous if and only if for

every directed cycle λ∗ in G∗ we have φ(λ) = 0.

Proof: If φ is null-homologous then φ = ∂α there some 2-chain α. Then, for any

directed cycle λ∗ of G∗ we have:

φ(λ) =
∑

f ↑g∈λ

α(g)−α( f ) = 0

36



The last equality holds because λ∗ is a cycle.

On the other hand, suppose φ(λ) = 0 for every cocycle λ. We build the 2-

chain α such that ∂α = φ as follows. Let r be an arbitrary face of G and assign

α(r) = 0. Then for any other face f of G let α( f ) = φ(γ), where γ is an arbitrary

(r∗, f ∗)-directed path in G∗. Observe that the assumption of the lemma implies that

φ(γ) = φ(γ′) for any pair of (r∗, f ∗)-paths γ and γ′ in G∗. Now, it is straightforward

to check that ∂α= φ. �

The following Corollary is now immediate.

Corollary 4.2.2. Two (s, t)-flows φ and ψ are homologous if and only if for any

directed cycle λ∗ in G∗ we have φ(λ) =ψ(λ).

Let ψ∗ be a circulation in G∗ (equivalently,ψ is a cocirculation in G), then we de-

fine φ(ψ), call it the amount of flow that φ sends through ψ, to be
∑

~e∈G φ(~e)ψ(~e).
The following corollary is immediate from the fact that ψ∗ can be specified as a

linear combination of cycles (of a circulation basis) in G∗.

Corollary 4.2.3. Any two homologous flows in G send the equal amount of flow

through any cocirculation in G.

Lemma 4.2.4. There is a feasible (s, t)-flow in G homologous to a given (s, t)-flow

φ if and only if the dual residual network G∗φ contains no negative-cost cycles.

Proof: Let ψ be a feasible flow homologous to φ; since ψ is feasible, G∗ψ does not

contain a negative-cost cycle. Then Corollary 4.2.2 implies that the cost of any cycle

λ in G∗φ is equal to its cost in G∗ψ, and so G∗φ cannot contain a negative cocycle.

On the other hand, suppose G∗φ has no negative cycles. Fix an arbitrary source

vertex r∗ in G∗φ . For any face f of G, let α( f ) denote the shortest-path distance from

r∗ to f ∗ in G∗φ; these distances are well-defined precisely because G∗φ has no negative

cycles. Finally, consider the flow ψ := φ + ∂α, which is clearly homologous to φ.

Because α is defined by shortest-path distances, we have cφ( f ↑g) = cφ( f ∗→g∗)≥
α(g)−α( f ), and therefore

ψ( f ↑g) = φ( f ↑g) +α(g)−α( f )

≤ φ( f ↑g) + cφ( f ↑g)

= c( f ↑g)

for every dart f ↑g. In other words, ψ is feasible. �

4.2.3 Shortest paths with negative edges

Lemma 4.2.4 and its proof immediately imply an algorithm to find a feasible flow

in a given homology class, if one exists, by directly applying any single-source

shortest-path algorithm for embedded directed graphs with both positive- and

negative-weight edges. The next two theorems [38] describe the best parallel and

37



serial algorithms known at present. The serial algorithm is a generalization of

the planar shortest path algorithms by Klein et al. [126] and Mozes and Wulff-

Nilsen [144]. We use a system of shortest non-contractible cycles to planarize the

surface embedded graph.

Theorem 4.2.5. After O(n) preprocessing time, given an (s, t)-flow φ in G, we can

either find a feasible (s, t)-flow homologous with φ, or determine correctly that no

homologous feasible flow exists, in O(log3 n) time and O(g3/2n3/2) work on a EREW

PRAM.

Let ~G = (V, ~E) denote the symmetric directed graph associated with some

undirected graph G = (V, E); this directed graph inherits a cellular embedding from

the embedding of G.

Theorem 4.2.6. We can compute either a single-source shortest-path tree or a neg-

ative cycle in ~G, with respect to any given edge weights w : ~E→ R, in O(g2n log2 n)
arithmetic operations.

Corollary 4.2.7. Given an (s, t)-flow φ in G, we can either find a feasible (s, t)-flow

in G that is homologous with φ, or find a negative cycle in G∗φ if no homologous

feasible flow exists, using O(g2n log2 n) arithmetic operations.

4.2.4 Basic flows and optimization

Every (s, t)-flow can be expressed as a weighted sum of simple directed cycles and

simple directed paths from s to t. Consequently, every homology class of (s, t)-
flows is a weighted sum of homology classes of (s, t)-paths and cycles. It follows

immediately that the flow homology space Z(G, st) ∼= R2g+1 can be generated by

the homology classes of 2g + 1 curves, each of which is a (s, t)-path or a cycle.

We call such a collection of curves a flow homology basis. Any flow homology

basis includes at least one (s, t)-path; we call a flow homology basis canonical if it

contains exactly one (s, t)-path and 2g cycles; these 2g cycles necessarily define a

basis for the space H(G) of homology classes of circulations.

Figure 4.1. A canonical flow homology bases for a surface of genus 2.

Lemma 4.2.8. We can compute a canonical flow homology basis for G in O(gn)
time.

Proof: Let (T, K , X ) be a tree-cotree decomposition, and let X = {e1, e2, . . . , e2g}.

38



We define a path p0 and 2g cycles γ1, . . . ,γ2g as follows. Let p0 denote the

unique path from s to t in T . For each index i between 1 and 2g, let γi denote

the unique cycle in the graph T ∪ ei , oriented arbitrarily. We claim that the curves

p0,γ1, . . . ,γ2g lie in linearly independent homology classes, and hence comprise a

basis for the flow homology space H(G, st).
Any linear combination of cycles is a circulation, but a flow along any path from s

to t is not. It follows immediately that the homology class of p0 is independent from

the subspace of H(G; st) generated by homology classes of the cycles γ1, . . . ,γ2g .

It remains only to prove that these 2g cycles lie in linearly independent homology

classes (and hence define a basis for the homology space H(G)).

Suppose to the contrary that φ =
∑2g

i=1 aiγi is null-homologous for some real

coefficients ai . It follows that φ = ∂α for a 2-chain α. Observe that, φ(e) = 0 for

any e ∈ K. Since K∗ is a spanning tree of the dual α assigns the same value to all

faces of G, which implies φ(e) = 0 for all edges of G. Thus, all ai ’s are zero, which

proves the lemma statement.

The tree T and cotree K∗ can each be constructed in O(n) time using (for

example) depth-first search, after which the path p0 and each cycle γi can be easily

constructed in O(n) time. �

Fix a canonical flow homology basis p0,γ1, . . . ,γ2g for G. A basic flow is any flow

φ of the form φ0 · p0+
∑2g

i=1φi ·γi for some coefficients φ0,φ1, . . . ,φ2g . Specifically,

we have φ0 = |φ| and φi = φ(ei) for each index i. Equivalently, a flow φ is basic if

and only if φ(e) = 0 for every cotree edge e ∈ K . (Given a flow φ that avoids every

edge in K , subtracting the basic flow with coefficients |φ|,φ(e1), . . . ,φ(e2g) leaves

a circulation that avoids every edge in K ∪ X = G \ T and is therefore identically

zero.) Every flow in G is homologous to exactly one basic flow.

Corollary 4.2.9. Given the coefficients φ0,φ1, . . . ,φ2g of a basic flow φ, we can

either find a feasible (s, t)-flow in G that is homologous with φ, or find a negative

cycle in G∗φ if no homologous feasible flow exists, using O(g2n log2 n) arithmetic

operations.

Corollary 4.2.10. After O(n) preprocessing time, given the coefficients φ0, . . . ,φ2g

of a basic flow φ, we can either find a feasible (s, t)-flow homologous with φ, or

determine correctly that no homologous feasible flow exists, in O(log3 n) time and

O(g3/2n3/2) work on a EREW PRAM.

The preceding results imply that to compute a maximum (s, t)-flow in G, it

suffices to find a basic flow φ of maximum value such that the dual residual network

G∗φ contains no negative cycles. We can formulate this optimization problem as a

linear program as follows.

For any basic flow φ and any cocycle λ, we can decompose the total flow through

λ as a linear combination of the flow parameters φi:

φ(λ) = φ0 · p0(λ) +
2g
∑

i=1

φi · γi(λ).

39



Thus, the optimal basic flow is the solution to the following linear programming

problem.
maximize φ0

subject to φ(λ)≤ c(λ) for each cocycle λ in G
(LP)

Most of the constraints in this linear program are redundant; it suffices to

consider only cocycles λ whose dual cycles λ∗ are simple and have minimum cost in

their homology class—that is, simple cocycles λ with minimum residual capacity in

their cohomology class. However, the best upper bound we can prove on the number

of non-redundant constraints is nO(g). The cohomology class of a cocycle λ can be

identified by the vector of flow values (p0(λ),γ1(λ), . . . ,γ2g(λ)). Since each curve

in the basis is simple, each of these cohomology coefficients is an integer between

−n and n. Thus, there are at most (2n+ 1)2g+1 different cohomology classes of

simple cocycles in G.

Without a significant improvement in this upper bound, we cannot hope to solve

(LP) directly; instead, we turn to implicit solution methods.

Specifically, two different methods: central cut ellipsoid method [101], and multi-

dimensional parametric search [1,2]. The ellipsoid method requires the capacities of

the edges to be integers, and the running time of the algorithm is logarithmically

dependent to the sum of the edge capacities. On the other hand, using parametric

search we can obtain a combinatorial algorithm with a slower running time. We

refer the interested reader to our paper [38] for details.

Theorem 4.2.11. Given an undirected graph G = (V, E) embedded on an orientable

surface of genus g, a positive integer capacity function c : E→ Z+, and two vertices

s, t ∈ V , a maximum (s, t)-flow in G can be computed in time O(g8n log2 n log2 C),
where C is the sum of the edge capacities.

Theorem 4.2.12. Given a graph G = (V, E) embedded on an orientable surface

of genus g, a positive capacity function c : E → R+, and two vertices s, t ∈ V , a

maximum (s, t)-flow in G can be computed in gO(g) n3/2 time.

4.3 Cohomology cuts

Suppose we are given an undirected graph G (with no source or sink), a positive

capacity function c : E → R+, and a value function θ : ~E → R. The value of a

circulation φ is the inner product 〈φ,θ 〉 =
∑

~e∈~E φ(~e) · θ(~e). Like the capacity

function c, the value function θ is not (in general) a 1-chain; the values of a dart

and its reversal need not have any relationship. In particular, some darts may have

negative value. The goal of the maximum-value circulation problem is to compute

a feasible circulation φ whose value 〈φ,θ 〉 is as large as possible. The standard

maximum-flow problem can be reduced to this problem by adding an edge t→s with

infinite capacity and value 1 to the flow network, and assigning every other edge

value 0. The maximum-value circulation problem is equivalently—and much more

40



commonly—formulated as finding a feasible circulation of minimum cost, where the

cost of an edge is just the negation of its value.

Our methods do not improve the fastest algorithms for the general maximum-

value/minimum-cost circulation problem in surface-embedded graphs; even for

planar graphs, the fastest algorithms known are those for arbitrary sparse graphs [64,

145]. However, a minor modification of our maximum-flow algorithm allows us

to solve two interesting special cases in roughly the same running time. In the

first special case, described in Section 4.3.1, we require that the value function is

homology invariant; that is, any two homologous circulations must have the same

value. In the second special case, described in Section 4.3.2, we find the minimum-

cost circulation in a given homology class; this special case requires each edge to

have a non-negative cost and infinite capacity. These two special cases are related by

a combination of combinatorial (Poincaré) duality and linear programming duality.

4.3.1 Homology-invariant values

The maximum-flow algorithm described in the previous section can be easily modi-

fied to compute maximum-value circulations, provided all circulations in the same

homology class have the same value. We call the value function θ : ~E → R is

homology-invariant if 〈φ,θ 〉= 〈ψ,θ 〉 for any two homologous circulations φ and

ψ, or equivalently, if 〈∂α,θ 〉 = 0 for any 2-chain α. In particular, any homology-

invariant value function must be a 1-chain.

Theorem 4.3.1. Given a graph G = (V, E) embedded on a surface of genus g, a

capacity function c : E→ R+, and a homology-invariant value function θ : ~E →
R, we can compute a maximum-value circulation in gO(g)n3/2 time, or in time

O(g8n log2 n log2 C) if capacities are integers that sum to C .

Proof: The homology space H(G)∼= R2g can be generated by (the homology classes

of) 2g directed cycles γ1,γ2, . . . ,γ2g in independent homology classes. The proof

of Lemma 4.2.8 implies that we can construct such a homology basis in O(gn)
time [76,79].

Corollary 4.2.9 implies that it suffices to find the homology class of the maximum-

value circulation. Specifically, we must find a feasible homology vector (φ1, . . . ,φ2g)
such that the cost function

� 2g
∑

i=1

φi · γi , θ
�

=
2g
∑

i=1

φi ·



γi ,θ
�

is maximized. Corollary 4.2.9 gives us both strong membership and strong sep-

aration oracles for this linear optimization problem, so we can apply either the

central-cut ellipsoid method or multidimensional parametric search, exactly as we

did for the standard maximum-flow problem. �

The following lemma exactly characterizes homology-invariant value functions.

Recall that a 1-chain θ : E → R is a cocirculation if its dual 1-chain θ ∗ : E∗ → R,

41



defined by setting θ ∗(~e ∗) = θ(~e), is a circulation in G∗.

Lemma 4.3.2. A value function θ : ~E→ R is homology invariant if and only if θ is

a cocirculation.

Proof: If the function θ : E → R is not a cocirculation, then for some face f , we

have

〈∂ f ,θ 〉=
∑

~e : left(~e)= f

θ(~e) 6= 0

Because θ gives non-zero value to the boundary circulation ∂ f , it cannot be homol-

ogy invariant.

On the other hand, observe that the value of a circulation φ is, in fact, the

amount of flow that φ sends though θ . So, the other direction of the lemma follows

from Corollary 4.2.3. �

4.3.2 Minimum-cost homologous circulation

The special case of maximum-value circulations considered in the previous section

has the following natural dual interpretation. Consider the following classical linear

programming formulation of the maximum-value circulation problem.

max
∑

u→v
φ(u→v) · θ(u→v)

s.t.
∑

u:uv∈E

�

φ(u→v)−φ(v→u)
�

= 0 for all v ∈ V

φ(u→v) ≤ c(u→v) for all u→v ∈ ~E

φ(u→v) ≥ 0 for all u→v ∈ ~E

The dual of this linear program has a variable α(v) for each vertex v and a variable

x(u→v) for each dart u→v.

min
∑

u→v
x(u→v) · c(u→v)

s.t. α(u)−α(v) + x(u→v) ≥ θ(u→v) for all u→v ∈ ~E

x(u→v) ≥ 0 for all u→v ∈ ~E

This dual linear program is more naturally cast in terms of the dual graph G∗, as

follows:

min
∑

f ↑g
x( f ↑g) · c( f ↑g)

s.t. α( f )−α(g) + x( f ↑g) ≥ θ( f ↑g) for all f ↑g ∈ ~E ∗

x( f ↑g) ≥ 0 for all f ↑g ∈ ~E ∗

(4.1)

Let αOPT( f ) and xOPT( f ↑g) denote the variables in the optimum solution to this

dual-dual linear program. We view the vector αOPT of face variables as a 2-chain.

We define a 1-chain ϑ : E∗ → R by setting ϑOPT( f ↑g) := xOPT( f ↑g)− xOPT(g↑ f )

42



for every dart f ↑g. Because every primal capacity c(u→v) is non-negative, each

dart variable xOPT( f ↑g) is individually as small as possible without violating any

constraint; that is,

xOPT( f ↑g) =max
�

0, θ( f ↑g)−α( f ) +α(g)
	

.

It follows immediately that ϑOPT = θ − ∂α; thus, ϑOPT is a circulation in G∗, homol-

ogous with the circulation θ . Equivalently, ϑOPT is a cocirculation in G, in the same

cohomology class as θ . Moreover, the optimal objective value can be rewritten as

follows:
∑

f ↑g

xOPT( f ↑g) · c( f ↑g) =
∑

e∗∈E∗
c(e∗) · |ϑOPT(e

∗)|

We conclude that ϑOPT is the minimum-capacity cocirculation in the same cohomol-

ogy class as θ .

Theorem 4.3.3 (Homological Maxflow/Mincut). Let G = (V, E) be an undirected

graph embedded on a surface of genus g, let c : E→ R+ be a capacity function,

and let θ : E → R be a cocirculation in G. The maximum value 〈φ,θ 〉 of any

feasible circulation φ in G is equal to the minimum capacity of any cocirculation

cohomologous with θ .

The previous theorem is a special case of a more general result of Sullivan [181],
relating optimal homologous (d−1)-chains (“surfaces”) in any orientable d-manifold

cell complex to minimum-cost flows in the 1-skeleton of the dual cell complex.

Essentially the same result was rediscovered by Buehler et al. [22,97,124]; see also

recent results of Grady [98,99].
A simple modification of our maximum-value circulation algorithm computes

the minimum-cost circulation in a given homology class, in any surface-embedded

graph whose edges have non-negative costs but no capacities.

Theorem 4.3.4. Given a graph G = (V, E) embedded on a surface of genus g, a cost

function c : E→ R+, and a circulation θ : E→ R, we can compute a minimum-cost

circulation homologous with θ in gO(g)n3/2 time, or in time O(g8n log2 n log2 C) if

all capacities are integers that sum to C .

Proof: Within the stated time bounds, we can compute a maximum-value feasible

circulation φ∗OPT in the dual graph G∗, using c as a capacity function and θ as a

homology-invariant value function. Our algorithm optimizes the homology class of

the circulation, using a linear-programming formulation similar to (LP):

max
2g
∑

i=1
φ∗i · 〈θ ,λ∗i 〉

s.t.
2g
∑

i=1
φ∗i · λ

∗
i (γ) ≤ c(γ) for every cycle γ in ~G

(4.2)

43



Here, λ∗1,λ∗2, . . . ,λ∗2g are cycles in G∗ that generate the homology space of G∗. As

described in the proof of Lemma 4.2.8, we can construct a suitable set of 2g cycles

in O(gn) time.

In any feasible basis for the homology linear program (4.2), exactly 2g of the

linear constraints are satisfied with equality. These constraints are defined by 2g

cycles γ1,γ2, . . . ,γ2g in ~G, which necessarily lie in independent homology classes

and thus comprise a basis for the homology space of G. (Moreover, each cycle γi is

the minimum-cost cycle in its homology class.)

The dual of linear program (4.2) has a non-negative variable a(γ) for each

directed cycle γ in ~G.

max
∑

cycle γ in ~G

c(γ) · a(γ)

s.t.
∑

cycle γ in ~G

λ∗i (γ) · a(γ) = 〈θ ,λ∗i 〉 for all 1≤ i ≤ 2g

a(γ) ≥ 0 for every cycle γ in ~G

(4.3)

The variables a(γ) are the coefficients of a cycle decomposition of a circulation

ϑ =
∑

γ a(γ) · γ; conversely, any circulation ϑ can be expressed as a weighted sum

of cycles with non-negative coefficients a(γ). The objective function of (4.3) is just

the cost of this circulation. Moreover, we can mechanically verify that

∑

cycle γ in ~G

λ∗i (γ) · a(γ) = 〈ϑ,λ∗i 〉,

so the equality constraints specify that ϑ must be homologous with θ . In other

words, the optimal solution to (4.3) describes the minimum-cost circulation ϑOPT =
∑

γ aOPT(γ) · γ homologous with the given circulation θ .

Complementary slackness implies that in the optimal solution to (4.3), any

variable aOPT(γ) is non-zero only if the corresponding capacity constraint in (4.2) is

satisfied with equality. Thus, the minimum-cost homologous circulation ϑOPT is a

weighted sum of the 2g homology basis cycles γi .

To simplify notation, let ai = aOPT(γi) for each index i, so that ϑOPT =
∑2g

i=1 aiγi .

After computing the dual circulation φ∗OPT and the saturated cycles γi , we can

compute the coefficients ai time as follows. For each index j, we have a linear

equation

〈θ ,λ∗j 〉= 〈ϑOPT,λ∗j 〉=

*

2g
∑

i=1

aiγi , λ
∗
j

+

=
2g
∑

i=1

ai〈γi ,λ
∗
j 〉.

We compute the O(g2) inner products 〈θ ,λ∗j 〉 and 〈γi ,λ
∗
j 〉, each in O(n) time, by a

brute-force sum over the edges of ~G. Finally, we solve the resulting system of 2g

linear equations in O(g3) time via Gaussian elimination. �

Finally, consider the special case where the input circulation θ is a single directed

cycle. The minimum-cost circulation ϑOPT homologous to θ is not necessarily a

single cycle, but the proof of the previous theorem implies that it is a weighted sum

44



of at most 2g directed cycles. Moreover, ϑOPT is defined by a linear program (4.1)

whose constraint matrix is totally unimodular, which implies that ϑOPT is an integer

circulation. For more general applications of total unimodularity to optimization

within an integer homology class, we refer the reader to Dey et al. [61] and Dunfield

and Hirani [66].

45



Chapter 5

Homotopic Frechét distance

5.1 Introduction

Comparing the shapes of curves – or sequenced data in general – is a challenging task

that arises in many different contexts. The Frechét distance and its variants have

been used as a similarity measure in various applications such as matching of time

series in databases [123], comparing melodies in music information retrieval [173],
matching coastlines over time [137], as well as in map-matching of vehicle tracking

data [18,190], and moving objects analysis [20,21]. See [6,7,86] for algorithms

for computing the Frechét distance.

Frechét distance is not always an accurate measure between the curves, particu-

larly where the ambient space is not Euclidian. However, homotopic Frechét distance

deliberately considers the ambient space, which in many occasions, make its com-

puting a more challenging problem (see Section 2.10).

Here, we are interested in the problems of computing the homotopic Frechét dis-

tance and the homotopy height between two simple polygonal curves that lie on the

boundary of an arbitrary triangulated topological disk. Similar to previous chapters,

we start with a brief discussion of related results. Section 5.3 provides motivation

and an overview of the algorithm. Section 5.4 discusses preliminary results about

the geodesics. The approximation algorithms for homotopy height and homotopic

Frechét distance problems are described in Section 5.5 and Section 5.6, respectively.

Basic definitions are provided in 2.10.

5.2 Related results

Chambers et al. [34] gave a polynomial time algorithm to compute the homotopic

Frechét distance between two polygonal curves on the Euclidean plane with polygo-

nal obstacles. Chambers and Letscher [19,40,41] introduced the notion of minimum

homotopy height, and proved structural properties for the case of a pair of paths

on the boundary of a topological disk. We remark that in general, it is not known

whether the optimum homotopy has polynomially long description. In particular, it

is not known whether the problem is in NP.

Alt and Godau [7] describe a polynomial time algorithm to compute the (regular)

Frechét distance. Eiter and Mannila [71] study the easier discrete version of this

46



problem. Computing the Frechét distance between surfaces [87] appears to be a

much more difficult task, and its complexity is poorly understood. The problem has

been shown to be NP-hard by Godau [93], while the best algorithmic result is due

to Alt and Buchin [6], who showed that it is upper semi-computable.

Efrat et al. [69] considered the Frechét distance inside a simple polygon as a

way to facilitate sweeping it efficiently. They also used the Frechét distance with the

underlining geodesic metric as a way to get a morphing between two curves. For

recent work on the Frechét distance, see [51,52,104,162] and references therein.

5.3 Motivation and overview

5.3.1 Why are these measures interesting?

For the sake of discussion, assume that we know the starting and ending leash of the

homotopy between f and g. The region bounded by the two curves and these leashes

is a topological disk, and any mapping realizing the homotopic Frechét distance

with the given extreme leashes is a mapping of the unit square to this disk D. This

mapping specifies how to sweep over D in a geometrically “efficient” way (especially

if the leash does not sweep over the same point more than once), so that the leash

(i.e., the sweeping curve) is never too long [69]. As a concrete example, consider the

two curves as enclosing several mountains between them on the surface – computing

the homotopic Frechét distance corresponds to deciding which mountains to sweep

first and in which order.

Furthermore, this mapping can be interpreted as a surface parameterization

[84,175] and can thus be used in applications such as texture mapping [8,151]. In

the texture mapping problem, we wish to find a continuous and invertible mapping

from the texture, usually a two-dimensional rectangular image, to the surface.

Obviously, this is not possible when the surface has a different topology from sphere.

Nevertheless, finding a map that, roughly speaking, minimizes discontinuity is still

interesting.

Another interesting interpretation is when f is a closed curve, and g is a point

inside. Interpreting f as a rubber band in a 3d model, the homotopy height between

f and g here is the minimum length the rubber band has to be so that it can be

collapsed to a point (here, the rubber band stays on the surface as this is happening).

In particular, a short closed curve with large homotopic height to any point in the

surface is a “neck” in the 3d model.

To summarize, these measures seem to provide us with a fundamental under-

standing of the structure of the given surface/model.

5.3.2 Overview of the algorithms

In this chapter, we consider the problems of computing the homotopic Frechét dis-

tance and the homotopy height between two simple polygonal curves that lie on the

47



boundary of a triangulated topological disk D that is composed of n triangles.

We give a polynomial time O(log n)-approximation algorithm for computing the

homotopy height between f and g. Our algorithm to compute an approximate

homotopy between f and g uses a simple yet delicate divide and conquer algorithm.

We use the homotopy height algorithm as an ingredient for an approximation

algorithm for the homotopic Frechét distance problem. Here is an informal (and

somewhat imprecise) description of our algorithm for approximating the homotopic

Frechét distance: we first guess dH
�

f , g
�

; the actual algorithm implements guessing

using a strongly polynomial search scheme. Using this guess, we interpret the

potions of D over which a short leash cannot pass as “obstacles”. Let D′ be the

punctured disk obtained from D after removing these obstacles. Observe that

the leashes of the optimum solution belong to the same homotopy class (after

contracting the input paths). We describe a greedy algorithm to compute a “small”

number of homotopy classes out of infinite number of choices. The homotopic

Frechét distance constrained to one of these classes is a polynomial approximation

to the homotopic Frechét distance in D. We can then do a binary search over this

interval to get a better approximation. An extended version of the homotopy height

algorithm is used in this algorithm in several places.

The O(log n) factor shows up in the homotopic Frechét distance algorithm only

because it uses the homotopy height as a subroutine. Thus, any constant factor

approximation algorithm for the homotopy height problem implies a constant factor

approximation algorithm for the homotopic Frechét distance.

5.4 Geodesic paths, an overview

We say that a triangulated surface is non-degenerate if for every non-boundary

vertex x , the sum of the angles of the triangles incident to x is not equal to 2π. We

can turn any triangulated surface into a non-degenerate one by perturbing all edge

lengths by a factor of at most 1+ε, for some ε = O(1/n2). Since, each shortest path

goes through O(n) triangles, perturbation changes the metric of the surface by at

most a factor of O(1+ 1/n), and thus the minimum height of a homotopy. Since

such a factor will be negligible for our approximation guarantee, we can assume

that the input surface is always non-degenerate.

Recall that a path is a geodesic if and only if it is locally a shortest path; it cannot

be shortened by an infinitesimal perturbation. In particular, global shortest paths

are geodesics. Only during this section, we use the term curve as an alternative for

path. A path or a curve is polygonal if it is composed of a finite number of segments.

Mitchell et al. [140] describe an algorithm to compute the shortest path distance

from a single source to every other points of an embedded polygonal surface in IR3 in

O(n2 log n) time. The same algorithm can be adapted to compute the shortest path

distance from an edge to every other points of the surface in the same asymptotic

running time. It follows that the shortest path from a set of O(n) edges to the every

48



other points of the surface can be computed in O(n3 log n).
The shortest path from a point in D to a set is a geodesic. So, it is a polygonal

line that intersects every edge at most once at a point and passes through a face

along a segment. The shortest path crossing an edge looks locally like a straight

segment, if one rotates the adjacent faces so that they are coplanar [140].
Let the source S be a set of edges of D and let π be a shortest path from a point

p to S. We define the crossing sequence of π to be the ordered set of edges (crossed

or used) by π. Since π is locally a straight segment, we can rotate all faces that

intersect π one by one so that π becomes a straight line. It follows that there cannot

be two geodesics from p with the same crossing sequence.

A point p on the surface is a medial point (with respect to S) if there are more

than one shortest paths (with different crossing sequences) from p to S.

The following theorem, essentially taken from Mitchell et al. [140], is very

helpful during this section.

Theorem 5.4.1. Let D be a triangulated polyhedral disc in IR3, composed of n

triangles, v be a vertex of D, and S be a set of O(n) edges of D. Then,

(A) The shortest path from v to every other points of D can be computed in

O(n2 log n) time,

(B) The shortest path from S to every other points of D can be computed in

O(n3 log n) time,

(C) Any shortest path intersects a face along a segment. Further, two adjacent

segments of any shortest path become colinear after the adjacent faces are

rotated to be coplanar.

5.5 Homotopy height

In this section, we give an approximation algorithm for finding a homotopy of

minimum height in a topological disc D, whose boundary is defined by two walks L

and R that share their end-points s and t. We start with the discrete case, i.e. when

the disk is a triangulated edge-weighted planar graph. We use the ideas developed

here in the continuous case; see 5.5.3.

5.5.1 Settings

We are given an embedded planar graph D all of whose faces (except possibly

the outer face) are triangles. Let s and t be vertices on the outer face of D and

L and R be the two non-crossing (s, t)-walks with shared endpoints on the outer

face in counter-clockwise and clockwise order, respectively. We also use D to refer

to the topological disk enclosed by L ∪ R. Our goal is to find a minimum height

homotopy from L to R of non-crossing walks. Informally, the homotopy is defined by

49



a sequence of walks, where every two consecutive walks differ by either a triangle,

or an edge (being traversed twice). For a formal definition, see Section 2.10.

Lemma 5.5.1. Let x and y be vertices of D. Any homotopy between L and R has

height at least d(x , y).

Proof: Fix a homotopy of height δ. This homotopy contains an (s, t)-walk ω that

passes through x , and an (s, t)-walk χ that passes through y. We have, by the

triangle inequality, that ρ = dD
�

x , y
�

≤ |ω[s, x]|+ |χ[s, y]|, and ρ ≤ |ω[x , t]|+
|χ[y, t]|. Therefore, ρ ≤ (|ω|+ |χ|)/2≤max

�

|ω|, |χ|
�

≤ δ, as required. �

Lemma 5.5.2. Suppose d1 is the maximum distance of a vertex of D from either of

L or R, d2 is the largest edge weight, and let d =max
�

d1, d2
	

. Furthermore, let D,

L, and R be defined as above. Then any homotopy between L and R has height at

least d.

Proof: For every homotopy between L and R, and for every edge e, there exists a

walk in the homotopy that passes through e. Therefore, the height of the homotopy

is at least d2. Moreover, the height is at least d1 by 5.5.1. �

5.5.2 The discrete algorithm

Theorem 5.5.3. Let D be an edge-weighted triangulated topological disk with n

faces whose boundary is formed by two walks L and R that share endpoints s and

t. One can compute, in O(n log n) time, a homotopy from L to R of height at most

|L|+ |R|+O(dL log n), where dL is the largest among (i) the maximum distance of

a vertex of D from L, and (ii) the maximum edge weight.

In particular, the generated homotopy has height O(hhopt log n), where hhopt is

the minimum homotopy height between L and R.

Proof: Here, we describe a recursive algorithm to build a homotopy. Let f (|L|+
|R|, dL , n) denote the maximum height of such a homotopy. For the purpose of

analysis, we describe the height as a function of |L|+ |R|, and not |L| and |R|. We

will show that f (u, dL , n) = u+O
�

dL log n
�

.

The base case n = 0 is easy. Indeed, if we have two edges (u, v) and (v, u)
consecutive in R (or in L) we can retract these two edges. By repeating this

procedure we arrive at both L and R being identical, and we are done. The case

n = 1 is handled in a similar fashion. After one face flip, the problem reduces to the

case n= 0. As such, f (|L|+ |R|, dL , 1)≤ |L|+ |R|+ dL .

So suppose n > 1. Compute for each vertex of D its shortest path to L, and

consider the set of edges E used by all these shortest paths. These shortest paths

can be chosen so that L ∪E form a tree; for example by contracting L and running

any shortest path finder to all other vertices. Now we consider a coy R′ of R and

for each vertex v ∈ R′ we connect it to its corresponding copy of R with a corridor

edge. Intuitively, we build a corridor along R to make further discussions simpler.

50



After duplicating R we obtain a graph whose faces are (original) triangles, the outer

face, and the new 4-sided polygons within the corridor. Note that E does not use

any edge of R′.

Now, if we cut D along the edges of E, what remains is a simple polygon

composed of triangles and 4-sided polygons gons. One can find a diagonal uv such

that each side of the diagonal contains at least dn/3e triangles of D (and at most

(2/3)n). We emphasize that we only count the number of triangles and not the

4-sided polygons. We consider two cases:

u
v

πv

v′

L

R

s

t

D1

D2

u

v

πu

πv

u′

v′

L

R

s

t

D1

D2

Figure 5.1. Left: uv us a corridor edge, right: uv is not a corridor edge.

Case 1: uv is a corridor edge: Assume, without loss of generality, that v ∈ E

and u ∈ R. Let πv be the shortest path in D from v to L, and let v′ be its endpoint

on L, see Figure 5.2, left.

Consider the disk D1 having left boundary L1 = L[s, v′]∪πv∪vu and R1 = R[s, u]
as its right boundary. This disk contains at most 2n/3 triangles, and by the inductive

hypothesis, it has a homotopy of height f (|L1|+ |R1|, dL , (2/3)n). Observe that u

and v are copies of the same vertex of R. That is, all shortest paths of vertices inside

D1 to L are completely inside D1. Particularly, the distance of all vertices in D1 to

L1 are at most dL .

Similarly, the topological disk D2 with left boundary L2 = uv ∪πv ∪ L[v′, t] and

right boundary R2 = R[u, t] has a homotopy of height f
�

|L2|+ |R2|, dL , (2/3n
�

.

Starting with L, extending a tendril from v′ to v, from v to u, and then applying

the homotopy to first half of this walk (i.e., L1) to move to R1, and then the

homotopy of D2 to the second part, results in a homotopy of L to R of height

max











|L|+ 2dL ,

f
�

|L1|+ |R1|, dL , (2/3)n
�

+ |L2|,

|R1|+ f
�

|L2|+ |R2|, dL , (2/3)n
�











.

If the first number is the maximum, we are done. Otherwise, the above value is at

most f (|L|+ |R|+ 2dL , dL , 2/3n).
Case 2 (uv is not a corridor edge) Here we handle the case that u and v are

both vertices of L ∪E. Then, as before, let u′ and v′ be the closest points on L to u

51



and v, respectively. Now, let πu (resp. πv) be the shortest path from u (resp. v) to

u′ (resp. v′).

Consider the disk D1 having L1 = L[u′, v′] as left boundary, and R1 = πu∪uv∪πv

as right boundary. This disk contains between n/3 and 2n/3 triangles of the original

surface. The distance of any vertex of D1 to L1 (when restricted to D1) is at

most dL , and as such by induction, there is a homotopy from L1 to R1 of height

α = f
�

|L1|+ |R1|, dL , 2n/3
�

≤ f (|L[u′, v′]|+3dL , dL , 2n/3). This yields a homotopy

of height α1 = |L[s, u′]|+α+|L[v′, t]|, from L to L2 = L[s, u′]∪πu∪uv∪πv∪L[v, t].
It is straight forward to check that α1 ≤ f (|L|+ 3dL , dL , 2n/3).

Next, let D2 be the disk with its left boundary being L2 and its right boundary

being R2 = R. Observe, that as before, the maximum distance of any vertex of

D2 to L2 is at most dL . As before, by induction, there is a homotopy form L2

to R2 of height α2 = f (|L2| + |R2|, dL , 2n/3). Since |L2| ≤ |L| + 3d, we have

α2 ≤ f (|L|+ |R|+ 3dL , dL , 2n/3).
In all cases the length of the homotopy is at most

f
�

|L|+ |R|+ 3dL , dL , 2n/3
�

.

Now, it is easy to verify that the solution to the recursion f (u, dL , n) that complies

with all the above inequalities is f (u, dL , n) = u+O(dL log n), as desired.

The final guarantee of approximation follows as dL ≤ hhopt, by 5.5.2.

We can compute the shortest path tree in linear time using the algorithm of

Henzinger et al. [109]. The separating edge can also be found in linear time using

DFS. So, the running time for a graph with n faces is T (n) = T (n1) + T (n2) +O(n),
where n1 + n2 = n and n1, n2 ≤ 2n/3. It follows that T (n) = O(n log n). �

In the algorithm of 5.5.3, it is not necessary that we have the shortest paths

from L to all the vertices of D. Instead, it suffices to have a tree of paths of length

at most dL from any vertex of D to L. We will use this property in the continuous

case, where recomputing the shortest path tree is relatively expensive.

A more careful analysis shows that the height of the homotopy generated by

Theorem 5.5.3 is at most max(|L|, |R|) +O
�

dL log n
�

.

If dL = O
�

max(|L|, |R|)/ log n
�

then Theorem 5.5.3 provides a constant factor

approximation. In this situation L and R are close to each other compared to their

relative length.

5.5.3 The continuous algorithm

In this section we extend the algorithm to the continuous case. Here we are given

a piecewise linear triangulated topological disk D with n triangles. The boundary

of D is composed of two paths L and R with shared endpoints s and t. Observe

that the distance of any point x in D from L and R is not longer than the homotopy

height as there is a (s, t)-path that contains x . Here, we build a homotopy of height

52



|L|+ |R|+ O(d log n), where d is the maximum distance of any point in D from

either L or R.

5.5.3.1 Homotopy height if edges are short

Here, we assume that the longest edge in D has length at most 2d, where d is the

maximum distance for any point of D from either L or R.

As in the discrete case, let E be the union of all the shortest paths from the

vertices of D to L. As before, we treat the edges and vertices of R as having

infinitesimal thickness. For a vertex v of D, its shortest path πv is a polygonal path

that crosses between faces (usually) in the middle of edges; it might also go to a

vertex, merge with some other shortest paths and then follow a common shortest

path back to L. Recall from Section 5.4 that each shortest path intersects a face of

D along a single segment or not at all. As such, the cell-complex P resulted from

cutting D along E has complexity O(n2). A face of P is a hexagon, a pentagon, a

quadrilateral, or a triangle. However, each such face has at most three edges that

are portions of the edges of D. We say the degree of a face is i if it has i edges that

are portions of the edges of D. Observe that, each triangle of D is now decomposed

into a set of faces. Obviously, each triangle of D contains at most one face of degree

3 in P. Overall, there are O(n) faces of degree 3 in P.

Now consider C∗, the dual of the graph that is inside the polygon (ignore the

edges on the boundary). More precisely, C∗ has a vertex corresponding to each

face inside the polygon P. Two vertices of C∗ are adjacent if and only if their

corresponding faces share a portion of an edge of D (this shared edge is a diagonal

of the polygon resulting from the cutting). Since the maximum degree of the tree C∗

is 3, there is an edge that is a good separator. We use this edge in a similar fashion

to the proof of 5.5.3, except that in the recursion we avoid recomputing the shortest

paths (i.e., we use the old shortest paths and distances computed in the original disk).

So, we compute the shortest paths once in the beginning in O(n3 log n) time (see

Theorem 5.4.1). Then, in each step we can find the separator in O
�

n2
�

time. Namely,

the total time spent on computing the separators is T (n) = T (n1) + T (n2) +O(n2),
where n1+ n2 = O

�

n2
�

and n1, n2 ≤ (2/3)(n1+ n2); that is, T (n) = O(n2 log n). As

such, the total running time is dominated by the computation of the shortest paths.

The proof of 5.5.3 then goes through literally in this case. Since all the edges

have length at most 2d, by assumption, we get the following.

Lemma 5.5.4. Let D be a topological disk with n faces where every face is a

triangle (here, the distance between any two points on the triangle is their Euclidean

distance). Furthermore, the boundary of D is formed by two walks L and R (that

share two endpoints s, t). Let dL be the maximum distance of any point of D from

L. Furthermore, assume that all edges of D have length at most 2dL . Then, one can

compute a continuous homotopy from L to R of height at most |L|+|R|+O
�

dL log n
�

in O(n3 log n) time.

53



5.5.3.2 Breaking the disk into strips, pockets and chunks

For any two points in D consider a shortest path π connecting them. The crossing

sequence of π is the ordered sequence of edges (crossed or used) and vertices used

by π, see Section 5.4. For a point p ∈ R, let sL
�

p
�

denote the crossing sequence

of the shortest path from p to L. The crossing sequence sL
�

p
�

is well defined in

R except for a finite set of medial points, where there are two (or more) distinct

shortest paths from L to p. In particular, let ΠR be the set of all shortest paths

from any medial point on R to L. Observe that, the medial points are the only

points that the crossing sequence of the shortest path from R to L changes in any

non-degenerate triangulation.

delta

strip

c

L
R

R

chunk

pocket

strip

c

L

Figure 5.2. Strip, delta, pocket and chunk.

Cutting D along the paths of ΠR breaks D into corridors. If the intersection of a

corridor with R is a point (resp. segment) then it is a delta (resp. strip). In a strip

C , all the shortest paths to L from the points in the interior of the segment C ∩ R

have the same crossing sequence. Intuitively, strips have a natural way to morph

from one side to the other. We further break each delta into chunks and pockets, as

follows.

So, consider a delta C with an apex c (i.e., the point of R on the boundary of C).

For a point x ∈ L ∩ C , we define its crossing sequence (in relation to C), to be the

crossing sequence of the shortest path from x to c (restricted to lie inside C). Again,

we partition L ∩ C into maximum intervals that have the same crossing sequence. If

a newly created region has a single intersection point with both L and R, then it is a

pocket, otherwise, it is a chunk.

Applying the above partition scheme to all the deltas results in a decomposition

of D into strips, chunks and pockets.

5.5.3.2.1 Analysis Let d the maximum distance of any point of D to either L or

R, and consider a chunk C . Its intersection with L is a segment, and its intersection

with R is a point (i.e., the apex c of the delta). Observe that the distance of any

point of x ∈ L ∩ C to c is at most 2d. To see that, consider the shortest path πx

from x to R in D, and observe that if it intersects the boundary of C then it can be

modified to connect to c, and its new length is 2d. As such, for a chunk C there is a

natural way to morph L ∩ C to c.

A pocket, on the other hand, is a topological disk that its intersections with L and

R are both single points, and the two boundary paths between these intersections are

54



of length at most 2d. Pockets are handled by using the recursive scheme developed

for the discrete case.

5.5.3.3 Homotopy height if there are long edges

We use the algorithm described above to break the given disk D into strips, chunks

and pockets (notice, that we assume nothing on the length of the edges). Next,

order the resulting regions according to their order along L, and transform each one

of them at time, such that starting with L we end up with R.

σL

σR

πt

πb

Figure 5.3. Morphing a chunk/strip.

• Morphing a chunk/strip S: Let σL = L∩S and σR = R∩S. There is a natural

homotopy from πt ∪σL to σR ∪πb.

The strip/chunk S has no vertex of D in its interior, and as such it is formed

by taking planar quadrilaterals and gluing them together along common

edges. Observe that by the triangle inequality, all such edges of any of these

quadrilaterals are of length at most max
�

|σL |, |σR|
�

+ 4d. It is now easy to

check that we can collapse each such quadrilateral in turn to get the required

homotopy. Since each of πt and πb is composed of two shortest paths, there

is a linear number of such quadrilaterals, and each collapse can be done in

constant time.

• Morphing a pocket: A pocket has perimeter at most 4d, and there is a point

on its boundary, such that the distance of any point in it to this base point is at

most 2d. By the triangle inequality, we have that if in a topological disk D all

the points of D are in distance at most 2d from some point c, then the longest

edge in D has length at most 4d. As such, all the edges inside a pocket can

not be longer than 4d. We can now apply 5.5.4 to such a pocket. This results

in the desired homotopy.

The shortest paths from R to L can be computed in O(n3 log n) time. The shortest

paths inside a delta to its apex can be computed in O(n2 log n). Since there is a

linear number of deltas, the total running time for building the strips is O(n3 log n).

Lemma 5.5.5. The number of paths in ΠR is O(|V (D) |), where V (D) is the set of

vertices of D.

55



Proof: Let
�

σ1,σ2, . . . ,σk
	

be the paths in ΠR sorted by the order of their endpoints

along R. Observe that these paths are geodesics and so one can assume that

they are interior disjoint. Now, if li ∈ L and ri ∈ R are the endpoints of σi , for

i = 1, . . . , k, then these endpoints are sorted along their respective curves. In

particular, let Di be the disk having L[s, li]∪σi+1 ∪ R[s, ri] for boundary. We have

that D1 ⊆D2 ⊆ · · · ⊆Dk. The crossing sequences of σi and σi+2 must be different

as otherwise they would be consecutive. Furthermore, because of the inclusion

property, if an edge or a vertex of D intersects σi but does not intersect σi+1 then,

it can not intersect any later path. As such, every other path in ΠR can be charged

to vertices or edges that are added or removed from the crossing sequence of the

respective path. Since an edge or a vertex can be added at most once, and deleted

at most once, this implies the desired bound on the number of paths. �

Arguing as in 5.5.5, we have that the total number of parts (i.e., strips, chunks,

and pockets) generated by the above decomposition is O(|V (D) |).

Lemma 5.5.6. Consider a strip or a chunk S generated by the above partition of D.

Let σL = L ∩ S and σR = R∩ S. Let πt and πb be the top and bottom paths forming

the two sides of S that do not lie on R or L.

• We have |πb| ≤ 2d and |πt | ≤ 2d.

• If |σL |> 0 or |σR|> 0 then there is no vertex of D in the interior of S.

• If |σL |> 0 or |σR|> 0 then there is a homotopy from πt ∪σL to σR ∪πb of

height max
�

|σL |, |σR|
�

+ 4d. This homotopy can be computed in linear time.

Proof: (A) If the strip was generated by the first stage of partitioning then the claim

is immediate.

Otherwise, consider a delta C with an apex c. For any point x ∈ L ∩ C we claim

that there is a path of length at most 2d to c. Indeed, consider the shortest path πx

from x to R in D. If this path goes to c the claim holds immediately. Otherwise, the

shortest path (that has length at most d) must cross either the top or bottom shortest

path forming the boundary of C that are emanating from c. We can now modify

πx , so that after its intersection point with this shortest path, it follows it back to c.

Clearly, the resulting path has length at most 2d and lies inside the resulting chunk.

(B) Indeed, the boundary paths πt and πb have the same crossing sequence

(formally, they are the limit of paths with the same crossing sequence). Since D is

non-degenerate, if there was any vertex in the middle, then the path on one side of

the vertex, and the path on the other side of the vertex can not possibly have the

same crossing sequence.

(C) Immediate from the algorithm description. �

5.5.3.4 The result

Theorem 5.5.7. Suppose that we are given a triangulated piecewise linear surface

with the topology of a disk, such that its boundary is formed by two walks L

56



and R. Then, there is a continuous homotopy from L to R of height at most

|L|+ |R|+O
�

d log n
�

, where d is the maximum geodesic distance of any point of D

from either L or R. This homotopy can be computed in O
�

n3 log n
�

time.

5.6 Homotopic Frechét distance

In this section, fix D to be a triangulated topological disk with n faces. Let the

boundary of D be composed of T , R, B, and L, four internally disjoint walks

appearing in clockwise order along the boundary. Also, let t l = L ∩ T , bl = L ∩ B,

t r = R∩ T , and br = R∩ B.1 See Figure 5.4.

T

B

L

R

tl

bl br

tr

D

Figure 5.4. The input triangulated disk D, whose boundary is composed of L, T , R and B.

5.6.1 Approximating the regular Frechét distance

5.6.1.1 The continuous case

Let dF(T, B) (resp. dH(T, B)) be the regular (resp. homotopic) Frechét distance

between T and B (when restricted to D). Clearly, dF(T, B) ≤ dH(T, B). The

following lemma implies that the Frechét distance can be approximated within a

constant factor.

Lemma 5.6.1. Let D, n, T , and B be as above. Then, for the continuous case, one

can compute, in O(n3 log n) time, reparametrizations of T and B of width at most

2dF(T, B).

Proof: We compute the shortest path L (resp. R) between the left (resp. right)

vertices of T and B. In the following, consider D to be region bounded by these

four curves.

We decompose D into strips, chunks and pockets using the algorithm of Subsec-

tion 5.5.3.2 (using T and B here as the two boundary curves). Clearly, any region

in this decomposition has boundary made out of portions of T and B, and two other

curves that have length at most 2δ, as implied by the analysis in Subsection 5.5.3.2.

Clearly, a region that is a strip or a chunk does not contain any vertex of D in its in-

terior, and it provides a natural Frechét reparameterization, between corresponding

portions of T and B, of width at most 2δ. As for pockets, observe that the leash does

not have to move continuously and it can jump from one boundary curve to the

1We use the same notation to argue about the discrete and continuous problems.

57



other boundary curve (of this pocket). Namely, we computed a reparametrization of

T and B of width 2δ, as desired. �

5.6.2 The discrete case

We can use a similar idea to the decomposition into atomic regions as done above.

Lemma 5.6.2. Let D be a triangulated topological disk with n faces, and T and B

be two internally disjoint walks on the boundary of D. Then, for the discrete case

one can compute, in O(n) time, reparametrizations of T and B that approximate

the discrete Frechét distance between T and B. The computed reparametrizations

have width at most 3δ, where δ is the Frechét distance between T and B.

Proof: First, compute the set of shortest paths, ΠT =
�

π1,π2, · · · ,πk
	

, from vertices

of T to the path B. To this end, we (conceptually) collapse all the vertices of B

into a single vertex, and compute the shortest path from this meta vertex to all the

vertices in D.

Now, let πi and πi+1 be two consecutive paths; that is, the endpoints of πi and

πi+1, ai and ai+1, are adjacent vertices on T . For all 1 ≤ i < k, we add the paths

π+i = (ai , ai+1) · πi+1 to the set ΠT to obtain Π+T . Observe that each path in Π+T
has length at most 2δ; it is composed of zero or one edge of T and a shortest path

from a vertex of T to B. Further, Π+T partitions the graph into regions, similar to the

continuous case. Now for each vertex of B that is not an endpoint of a path in Π+T ,

we compute the shortest path inside its region to T . Because the region is bounded

by paths of length at most 2δ, the length of such a shortest path is at most 3δ. If

ΠB is the set of all such shortest paths, then Π+T ∪ΠB is a leash sequence of height

at most 3δ.

We use the algorithm of Henzinger et al. [109] to compute the shortest paths

from B in linear time. Since all regions are disjoint, and every edge appears on the

boundary of at most two regions, we can compute all the shortest paths inside all

these regions to T in O(n) time overall (this step requires careful implementation to

achieve this running time). �

The paths realizing the Frechét distance computed by Lemma 5.6.2 are stored us-

ing implicit data-structure (essentially two shortest path trees that are intertwined).

Therefore, the used space is linear, and it can be constructed in linear time. Of

course, an explicit listing of the realizing paths may require quadratic space.

5.6.3 Without mountains

The following lemma implies that if all the vertices in D are not too far from the

two curves, then we can approximate homotopic Frechét distance is doable.

Lemma 5.6.3. Let D be a triangulated topological disk with n faces, and T and B

be two internally disjoint walks on the boundary of D. Further, assume for all p ∈D,

58



p’s distance to both T and B is at most x . Then, one can compute reparametrizations

of T and B of width O(x log n). The running time is O(n4 log n) (resp. O(n2 log n))
in the continuous (resp. discrete) case.

In particular, if x = O(dH(T, B)) then this is an O(log n)-approximation to the

optimal homotopic Frechét distance.

Proof: Consider the continuous case. Using the algorithm of Lemma 5.6.1 we

compute (not necessarily continuous) reparametrization of T and B of width δ,

realizing approximately (the regular) Frechét distance, where δ = O(x). Let `(t)
denote the leash at time t. The leash `(·) is not required to deform continuously

in t. In particular, for a given time t ∈ [0,1], let `−(t) = limt ′→t− `
�

t ′
�

and

`+(t) = limt ′→t+ `
�

t ′
�

. By definition, the leash is discontinuous at t if and only if

`−(t) 6= `+(t).
Naturally, the above reparameterization can be used as long as it is continuous.

Whenever the leash jumps over a gap (i.e., the leash is discontinuous at this point in

time), say at time t, we are going to replace this jump by a (`−(t) ,`+(t))-homotopy

between the two leashes. Clearly, this would result in the desired continuous

homotopy.

To this end, observe that all the vertices inside the disc with boundary `−(t)∪
`+(t) have distance O(x) to T and B, and thus also so to `−(t) and `+(t). As such,

using the algorithm of Theorem 5.5.7 compute an (`−(t) ,`+(t))-homotopy with

height O(x log n). Since a gap must contain a vertex there are O(n) gaps, so this

filling in is done at most O(n) times. Computing the initial reparameterization takes

O(n3 log n) time. Each gap can be filled in O(n3 log n) time.

The discrete case is similar. The Frechét distance here can be computed in linear

time using 5.6.2. Filling each gap takes O(n log n) time using 5.5.3. Overall, the

resulting running time is O(n2 log n). �

Lemma 5.6.3 demonstrates that if the starting and ending leashes are known

(that is the region of the disk D swept over by the morphing) then we can approxi-

mate the homotopic Frechét distance within a O(log n) ratio. The challenge is that a

priori, we do not know these two leashes, as the input is a topological disk D with

the two curves T and B on its boundary, and the extreme leashes might lie in the

interior of D.

5.6.4 With mountains, a decision procedure

For a parameter τ ≥ 0, a vertex v ∈ V (D) is τ-tall if and only if its distance to T

or B is larger than τ (intuitively τ is a guess for the value of dH(T, B)). Here, we

consider the case where there are τ-tall vertices. Intuitively, one can think about

tall vertices as insurmountable mountains. Thus, to find a good homotopy between

T and B, we have to choose which “valleys” to use (i.e., what homotopy class the

solution we compute belongs to if we think about tall vertices as punctures in the

disk).

59



In the discrete case, we subdivide each edge in the beginning so that if an edge

has length > 2τ, then the vertex inserted in the middle of it is τ-tall. Observe that, if

τ≥ dH(T, B) then no leash of the optimum homotopic motion can afford to contain

a τ-tall vertex. We use Mτ to denote the set of all τ-tall vertices in V (D).
Now, let ω and ω′ be two walks connecting points on T and B. We say that ω

and ω′ are homotopic in D \Mτ if and only if they are homotopic in D \Mτ after

contracting T and B (each to a single point).

Given a subset X ⊆ Mτ, consider a path σ from T to B, such that X is con-

tained in one side of D \σ (i.e., cutting D along σ breaks it into two connected

components), and Mτ \ X is contained in the other side. The set of all such paths

is the partitioning class of X . Note that each partitioning class contains infinitely

many homotopy classes of paths. However, it is straightforward to check that two

non-crossing paths in a same partitioning class are homotopic.

Let πL,h be the left geodesic (resp. right geodesic) of a partitioning class h; that

is, πL,h denotes the shortest path in h from t l to bl (resp. from t r to br).

T

B

L

R

tl

bl br

trt

b
ω

Ml(ω)

Mr(ω)

Figure 5.5. A partitioning class.

Let ω be any walk in h from t ∈ B to t ∈ T . We define the left tall set of h,

denote Ml(h) = Ml(ω) to be the set of all τ-tall vertices to the left of ω. Namely,

Ml(h) is the set of tall vertices inside the disc with boundary L∪T[t l , t]∪ω∪B[bl , t],
where L is the “left” portion of the boundary of D, having endpoints t l and bl . We

similarly define the right tall set of h, Mr(h) = Mr(ω), to be the set of all τ-tall

vertices to the right of ω. See figure on the right.

We say that h is τ-extendable from the left if and only if |πL,h| ≤ τ and there is

a partitioning class h′, such that |πL,h′ | ≤ τ and Ml(h)⊂ Ml
�

h′
�

. In particular, h is

τ-saturated if it is not τ-extendable and |πL,h| ≤ τ.

5.6.4.1 On the left and right geodesics

Lemma 5.6.4. Let h be a τ-saturated partitioning class and πL,h be its left geodesic,

where τ≥ dH(T, B). There is a (t r , br)-path homotopic to πL,h, whose length is at

most 4τ.

Proof: Let hopt be the partitioning class of the leashes in the optimum solution. Of

course, no leash in the optimum solution contains a τ-tall vertex, and therefore, all

leashes in the optimal solution are in fact homotopic. Let π∗L and π∗R be the extreme

leashes in the optimum solution.

60



Since h is saturated the set Ml(h) is not a proper subset of Ml

�

hopt

�

. If Ml(h) =
Ml

�

hopt

�

then either π∗L and πL,h are homotopic, and in particular |πR|= |π∗R| ≤ τ,

or πL,h crosses π∗R.

T

B

tl

bl br

tr

y′ y

x
x′

πR,hoptπL,h
hopt

T

B

tl

bl br

tr

y′ y

x
x′

πL,h
T′

B′

Figure 5.6. Computing a short homotopic path on the right.

Otherwise, the set Ml(h) ∩ Mr

�

hopt

�

is not empty. Again, it follows that πL,h

crosses π∗R.

Now consider the overlayed graph of T , B, Ml(h), π∗L and π∗R. This graph has

a vertex for each intersection point of the mentioned paths, and two vertices are

connected if there is a subpath between them that contains no other vertex. The

overlayed graph has a natural embedding and so a natural set of faces. The outer

face of the graph contains T and B. Let FT and FB be the other faces of the graph

that contain T and B, respectively. Further, let T ′ = ∂ FT\T and B′ = ∂ FB\B;

observe that T ′ and B′ are homotopic to T and B, respectively.

It follows that πL,h is homotopic to T ′ ·πL,h · B′. In particular, the shortest path

that connects t r to br and is homotopic to πL,h has length at most:

|T ′ ·πL,h · B′| ≤ |πL,h|+ (|π∗L |+ |πL,h|+ |π∗R|)≤ 4τ,

�

A region that contains no τ-tall vertices can still, potentially, contain τ-tall points

(that are not vertices) on in its edges or faces. We next prove that this does not

happen in our settings.

Lemma 5.6.5. Let πL and πR be homotopic paths, such that max(πL ,πR) ≤ x ,

where x ≥ τ≥ dH(T, B). Let D′ be the disk with boundary T ·πR,h · B ·πL,h. Then,

all the points inside D′ are within distance O(x) to both T and B in D′.

Proof: We first consider the continuous case. By the assumption of the lemma, the

disk D′ has no τ-tall vertices. Furthermore, by the definition of x , we have that

the distance of any point on T to B, restricted to paths in D′ is at most δ1, where

δ1 = x + dF(T, B) ≤ 2x . Indeed, the shortest path from any point on T to B in D,

either stays inside D′, or alternatively intersects either πL,h or πR,h.

We can now deploy the decomposition of D′ into strips, pockets and chunks as

done in 5.5.3.2. Every strip (or a chunk) is being swept by a leash of length at most

61



δ2 = 2δ1 ≤ 4x (the factor two is because a strip might rise out of a delta), and as

such the claim trivially holds for points inside such regions.

Every pocket P has perimeter of length at most |∂ P| ≤ δ3 = 2δ2 = 8x (the

perimeter also contains two points of T and B and they are in distance at most δ2

from each other in either direction along the perimeter).

So consider such a pocket P. Since D′ contains no τ-tall vertices, P does

not contain any tall vertex. Let e be an edge in P (or a subedge if it intersects

the boundary of P). The two endpoints of e are in P, and such an endpoint is

either a (not tall) vertex or it is contained in ∂ P. In either case, these endpoints

are in distance at most x from ∂ P, and as such they are in distance at most

δ4 = 2x + |∂ P|/2 = 2x + δ2 ≤ 6x from each other (inside P). We conclude that

|e| ≤ δ4, and as such, any point in e is in distance at most δ5 = |e|/2+ x + δ2 ≤
3x + x + 8x ≤ 12x from T and B.

Now, consider any point p in P, and consider the face F that contains it. Since

the surface is triangulated, F is a triangle. Clipping F to P results in a planar region

F ′ that has perimeter at most δ6 = 3δ4 + |∂ P| ≤ 3 · 6x + δ3 ≤ (18+ 8)x ≤ 26x

(note, that an edge might be fragmented into several subedges, but the furthest two

points along a single edge is at most δ4 using the same argument as above). As

such, the furthest a point of P can be from an edge of P is at most δ7 = δ6/2π≤ 5x .

As such, the maximum distance of a point of P from either T or B (inside D′) is at

most δ5 +δ7 ≤ 12x + 5x = 17x .

The discrete case is easy. Any edge of length ≥ 2τ was split, by introducing a

middle vertex, which must be τ-tall. As such, the claim immediately holds. �

5.6.4.2 The decision algorithm

Lemma 5.6.6. Let D, n, T, L, B, R, t l , bl ,τ be as above, and let X ⊆ V (D) be a set of

τ-tall vertices. Consider the shortest path σl (between t l and bl) that belongs to

any homotopy class h such that X ⊆ Ml(h). Then, the path σl can be computed in

O(n4 log n) (resp. O(n log n)) time in the continuous (resp. discrete) case.

Proof: For each vertex of v ∈ X , compute its shortest path ψv to L in D. Cut the

disk D along these paths. The result is a topological disk D′. Compute the shortest

path ζ in D′ between t l and bl .

We claim that ζ = σl . To this end, consider σl and any path ψv computed by

the algorithm. We claim that σl and ψv do not cross in their interior. Indeed, if

σl cross ψv an odd number of times, then v is inside the disk σl · T · R · B, which

contradict the condition that v ∈ X ⊆ Ml(h). Clearly, σl and ψv can not cross in

their interiors more than once, because otherwise, one can shorten one of them,

which is a contradiction as they are both shortest paths. Thus, σl is a path in D′

connecting t l to bl , thus implying that ζ is σl .

As for the running time, each shortest path computation takes time O(n2 log n),
in the continuous (resp. discrete) case. The resulting disk has complexity O(n2),

62



and computing a shortest path in it takes O(n4 log n) time in the continuous case.

In the discrete case, computing the paths can be done by collapsing L to a vertex,

forbid the shortest path tree edges, and run shortest path algorithm in the remaining

graph. Clearly, this takes O(n log n) time. �

Lemma 5.6.7. Let D be a triangulated topological disk with n faces, and T and B

be two internally disjoint walks on D’s boundary. Given τ > 0, one can compute

a τ-saturated partitioning class, in O(n5 log n) (resp. O(n2 log n)) time, in the

continuous (resp. discrete) case.

Proof: Start with an empty initial set X = ;. At each iteration, try adding one

of the τ-tall vertices v ∈ Mτ of D to X , by using Lemma 5.6.6. The algorithm of

Lemma 5.6.6 outputs a path σ between t l and bl and a set X ′ ⊃ X ∪ {v}.
If σ is of length at most τ update X to be the new set X ′, otherwise reject v. If v

is rejected then the left geodesic of any superset of X ∪ {v} has length larger than

τ. It follows that v cannot be accepted in any later iteration, so we do not need to

reinspect it. Clearly, after trying all the vertices of Mτ, the set X defines the desired

saturated class, which can be computed by using the algorithm of Lemma 5.6.6. �

Lemma 5.6.8. Let D be a triangulated topological disk with n faces, and T and B

be two internally disjoint walks on the boundary of D. Given a real number x > 0,

one can either:

(A) Compute a homotopy from T to B of width O(x log n).

(B) Return that x < dH(T, B).

The running time of this procedure is O(n5 log n) (resp. O(n2 log n)) in the continu-

ous (resp. discrete) case.

Proof: Assume x ≥ δH = dH(T, B), and we use x as a guess for this value δH . Using

Lemma 5.6.7, one can compute a x-saturated partitioning class, h. Lemma 5.6.4

implies that both πL,h and πR,h are at most 4x . Let D′ ⊆D be the disc with boundary

T ∪ ∪πL,h ∪ B ∪πR,h. By Lemma 5.6.5, all the vertices in D′ are in distance O(x)
from T and B (this holds for all points in D′ in the continuous case). That is, there

are no O(x)-tall vertices in D′. Finally, Lemma 5.6.3 implies that a continuous leash

sequence of height ≤ Z = O(x log n) between T and B, inside D′, can be computed.

Thus, if x is larger than dH(T, B) then this algorithm returns the desired ap-

proximation; that is, is a homotopy of width ≤ Z . If the width of the generated

homotopy is however larger than Z (a value that can be computed directly from x),

then the value of x was too small. That is, the algorithm fails in this case only if

x < dH(T, B). In the case of such failure, return that x is too small. �

5.6.5 A strongly polynomial approximation algorithm

For a vertex v ∈ V (D), define cost(v) to be the length of the shortest path between

t l and bl that has v on its left side. Similarly, for a set of vertices X ⊆ V (D), let

63



Cost(X ) be the length of the shortest path between t l and bl that has X on its left

side. For a specific v or X , one can compute cost(v) and Cost(X ) by invoking the

algorithm of Lemma 5.6.6 once.

5.6.5.1 The algorithm

1. Identifying the tall vertices. Observe that using the algorithm of Lemma 5.6.8,

we can decide given a candidate value δH for dH(T, B) if it is too large, too

small, or leads to the desired approximation. Indeed, if the algorithm returns

an approximation of values O(δH log n) but fails for δH/2, we know it is the

desired approximation.

So, compute for each vertex v ∈ V (D) its tallness; that is αv would be

the maximum distance of v to either T or B. Sort these values, and using

binary search, compute the vertex w, with the minimum value αw , such

that Lemma 5.6.8 returns a parametrization with homotopic Frechét distance

O(αw log n). If the algorithm of Lemma 5.6.8 returns that αw/n is too small

of a guess, then [αw/n,αw log n] contains δH . In this case, we can use binary

search to find an interval [γ/2,γ] that contains δH and use Lemma 5.6.8 to

obtain the desired approximation. Similarly, if v is the tallest vertex shorter

than w, then we can assume that αvn is too small of a guess, otherwise we

are again done as [αv ,αvn] contains δH .

As such, in the following, we know that the desired distance δH lies in interval

[x , y] where x = αvn and y = αw/n, and for every vertex u of D it holds

that (i) αu ≤ x/n, or (ii) αu ≥ yn. Naturally, we consider all the vertices that

satisfy (ii) as tall vertices, by setting τ = 2x/n. In the following, let M denote

the set of these τ-tall vertices.

2. Computing candidate partitioning classes. Start with X0 = ;. In the

ith iteration, the algorithm computes the vertex vi ∈ M \ X i−1, such that

Cost
�

X i−1 ∪
�

vi
	�

is minimized, and set X i = X i−1 ∪
�

vi
	

. Let hi be the parti-

tioning class having X i on its left side, and M \ X i on its right side.

3. Binary search over candidates. We approximate the homotopic Frechét width

of each one of the classes h1, . . . , hn. Let x be the minimum homotopic

Frechét width computed among these n candidates.

Next, do a binary search in the interval [x/n2, x] for the homotopic Frechét dis-

tance. We return the smallest width reparametrization computed as the

desired approximation.

5.6.5.2 Analysis

Lemma 5.6.9. (i) For any X ′ ⊆ X ⊆ V (D), we have Cost
�

X ′
�

≤ Cost(X ).

(ii) For any x ∈ X ⊆ V (D), we have cost(x)≤ Cost(X ).

64



(iii) For X , Y ⊆ V (D), we have that Cost(X ∪ Y )≤ Cost(X ) +Cost(Y ).

Proof: (i) Observe that the path realizing Cost
�

X ′
�

is less constrained than the path

realizing Cost(X ), as such it might only be shorter.

(ii) Follows immediately from (i).

(iii) Consider the disk D and the two paths σX and σY realizing Cost(X ) and

Cost(Y ), respectively. The close curves σx ∪ L and σY ∪ L encloses two topological

disks. Consider the union of these two disks, and its connected outer boundary

σX∪Y ∪ L. Clearly, σX∪Y connects t l and bl , and it has all the points of X and Y on

one side of it, and finally |σX∪Y | ≤ |σX |+ |σY | as σX∪Y ⊆ σX ∪σY . See figure on

the right. �

Lemma 5.6.10. The cheapest homotopic Frechét parametrization computed among

h1, . . . , hn has width O(dH(T, B)n log n).

Proof: Consider the set Y that is the subset of tall vertices on the left side of the

optimal solution. Let i be the first index such that Y ⊆ X i and Y 6⊆ X i−1. Let v be

any vertex in Y \ X i−1. By construction, we have that Cost
�

X i
�

≤ Cost
�

X i−1 ∪ {v}
�

,

and furthermore, for all j ≤ i, we have that Cost
�

X j

�

≤ Cost
�

X j−1 ∪ {v}
�

, by the

greediness in the construction of X1, . . . , X i . Now, we have

Cost
�

X i
�

≤ Cost
�

X i−1 ∪ {v}
�

(by construction of X i)

≤ Cost
�

X i−1
�

+ cost(v) (by Lemma 5.6.9 5.6.9)

≤ Cost
�

X i−1
�

+Cost(Y ) (by Lemma 5.6.9 5.6.9)

≤ (Cost
�

X i−2
�

+Cost(Y )) +Cost(Y ) (applying same argument to X i−1)

= Cost
�

X i−2
�

+ 2Cost(Y )

≤ · · · ≤ iCost(Y )≤ nCost(Y ) .

Now, setting τ= Cost
�

X i
�

, it follows that X i is τ-saturated. Applying Lemma 5.6.4,

implies that |πR,hi
| ≤ 4τ. Observe, that the disk defined by T , πL,hi

, B, πR,hi
can not

contain any tall vertex (by construction).

Now, plugging this into Lemma 5.6.3 implies the homotopic Frechét width of hi

(starting with πL,hi
and ending up with πR,hi

) is O(τ log n), which implies the claim

since Cost
�

X i
�

≤ nCost(Y )≤ ndH(T, B). �

5.6.5.3 The algorithm

Theorem 5.6.11. Let D be a triangulated topological disk with n faces, and T

and B be two internally disjoint walks on the boundary of D. One can compute a

homotopic Frechét parametrization of T and B of width O(dH(T, B) log n), where

dH(T, B) is the homotopic Frechét distance between T and B in D.

The running time of this procedure is O(n6 log n) (resp. O(n3 log n)) in the

continuous (resp. discrete) case.

65



Proof: For correctness, observe that the algorithmic either found the desired value,

or identified correctly the tall vertices. Next, by Lemma 5.6.10, the range the

algorithm searches over contains the desired value.

The algorithm requires O(n2) calls to Lemma 5.6.6, which takes O(n6 log n)
(resp. O(n3 log n)) time in the continuous (resp. discrete) case. Then, the algo-

rithm requires Lemma 5.6.3 to compute the homotopic Frechét distance of the

classes h1, . . . , hn. The algorithm also performs O(log n) calls to the algorithm of

Lemma 5.6.8. �

66



Chapter 6

Tracing compressed curves

6.1 Introduction

Given a surface combinatorially presented by a triangulation (or more generally

an embedded graph), embedded curves can be presented by their interaction with

the triangles (faces of the embedded graph). The sequence of edges that a curve

crosses is an example of a method to present a sufficiently well-behaved curve on

a triangulated surface up to continuous deformation that avoids vertices of the

triangulation. Although crossing sequences are simple to deal with, they are usually

very long, because of the redundancy in the encoding.

In fact, there are exponentially shorter implicit encodings for well-behaved curves

on surfaces. Normal coordinates of curves is an example of such encodings, which

is an specialization of normal coordinations to present surfaces (see Section 6.2 for

an overview). Many algorithms in computational topology owe their efficiency to

the compactness of the normal-coordinate representation [4,23,24,107,163,164,

166,169,179].
On the flip side, it is usually more difficult to compute with a compact presenta-

tion of a curve in polynomial time (intuitively, without uncompressing the input).

In this chapter, we consider several algorithmic problem about curves (presented by

normal coordinates) such as computing the number of components of a curve, decid-

ing whether two given curves are isotopic, and computing algebraic and geometric

intersection numbers of pairs of curves. Classical algorithms for these problems

require explicit traversal or crossing sequences as input.

The kernel of our algorithms is a method to trace a normal curve in linear time

(with respect to the length of its compressed presentation). The output of our tracing

method is an alterative cell complex of the underlying manifold, on which the input

curve has a compact explicit representation. Using that, we design simple natural

algorithms for several problems about normal curves, our algorithm are faster than

the previously known results in most of the cases; see Section 6.3 for an overview.

We can extend our result to trace a geodesic path on a piece-wise linear surface to

find its first self-crossing point. Here the input is a piecewise linear surface described

by a set of Euclidian polygons and a collection of rules to identify some pairs of

same length edges of the polygons (so that the resulting space is a 2-manifold).

The geodesic path is specified by a point inside a polygon and a local direction.

67



The goal is finding the closest self-crossing point on the geodesic path in the given

direction. We refer the interested reader to our paper [78] for a full description of

that algorithm.

6.2 Related results

There are several compact methods to present simple (sufficiently well-behaved)

curves on triangulated surfaces. For example, given a triangulation of the surface,

such a curve curve can be described by listing the number of elementary segments

connecting each pair of edges in each triangle; an elementary segment is a connected

subpath between two consecutive edges of the triangulation. These numbers are

called the normal coordinates of the curve [102,127]. Any vector of normal coordin-

ates identifies a unique simple curve (again up to continuous deformation), because

there is only one way to fill each triangle with the correct number of elementary

segments without intersection. The normal coordinate representation is remarkably

compact; only O(n log(X/n)) bits are needed to list the normal coordinates of a curve

with X crossings on a triangulated surface with complexity n. Several algorithms in

two- and three-dimensional topology owe their efficiency to the compactness of the

normal-coordinate representation [4,23,24,107,163,164,166,169,179].
Schaefer et al. [163, 166, 179] consider several algorithmic questions about

normal curves, such as computing the number of components of a curve, deciding

whether two given curves are isotopic, and computing algebraic and geometric

intersection numbers of pairs of curves. Classical algorithms for these problems

require explicit traversal or crossing sequences as input.

By connecting normal coordinates with grammar-based text compression [132,

133,141,161] and word equations [65,152,159,160], Schaefer et al. developed

algorithms whose running times are polynomial in the bit complexity of the nor-

mal coordinate vector, which they call the normal complexity of the curve. These

algorithms rely on a complex algorithm of Plandowski and Rytter [152] to compute

compressed solutions of word equations. We are unaware of any precise time analy-

sis, but as Plandowski and Rytter’s algorithm uses a nested sequence of quadratic-

and cubic-time reductions, its running time is quite high. Štefankovic [179] de-

scribed simpler algorithms for some of these problems in time linear in the normal

complexity, or O(n log(X/n)) time in our notation, by reducing them to an elegant

algorithm of Robson and Deikert [159,160] to solve word equations with a certain

special structure.

Some of the problems considered by Schaefer et al. can also be solved in poly-

nomial time using the polynomial-time orbit-counting algorithm of Agol, Hass, and

Thurston [4], which was originally designed to compute the number of components

of normal surfaces in triangulated 3-manifolds in polynomial time, but in fact (like

the word-equation algorithms of Schaefer et al. [163,166,179]) works for similar

problems in any dimension. Agol et al. do not claim a precise time bound, but a

68



direct reading of their analysis implies a running time of O(n4 log3(X/n)). Dynnikov

and Wiest [67] later developed a special case of the orbit-counting algorithm to

reconstruct braids from their planar curve diagrams; Dehornoy et al. [56] refer to

this variant as the transmission-relaxation method.

Other compact representations of curves include weighted train tracks [11,12,82,

83,150], Dehn-Thurston coordinates (with respect to a fixed pants decomposition of

the surface) [55,82,83,149,184], and compressed intersection sequences [166,179].

6.3 Overview

6.3.1 Tracing

We propose an alternate strategy to efficiently compute with curves on surfaces.

Instead of using complex compression techniques to avoid unpacking the crossing

sequence of the input curve, our algorithms modify the underlying cellular decompo-

sition of the surface so that the curve has a small explicit description with respect to

the new decomposition. Specifically, given the normal coordinates of a curve γ on a

triangulated surface with n edges, we compute a new cellular decomposition of the

surface with complexity O(n), called a street complex, such that γ is a simple path or

cycle in the 1-skeleton. After reviewing some background terminology, we formally

define the street complex in Section 6.4; see Figure 6.2 for an example.

At a high level, our algorithm simply traces the curve, continuously updating

the street complex to reflect the portion of the curve traced so far. A naïve imple-

mentation of our tracing strategy runs in O(X ) time, where X is the total number of

edge crossings; each time the curve enters a triangle by crossing an edge, we can

easily determine in O(1) time which of the other two edges of the triangle to cross

next. The main result of this paper is a tracing algorithm that runs in O(n2 log X )
time, an exponential improvement over the naïve algorithm for any fixed surface

triangulation.

Our new algorithm relies on two simple ideas. First, we observe that for typical

curves, most of the decisions made by the brute-force tracing algorithm are redun-

dant. If a curve enters a triangle ∆ between two older elementary segments that

leave ∆ through the same edge, the new elementary segment must also leave ∆
through that edge; see Figure 1.1. The street complex allows us to skip these

redundant decisions automatically.

Second, even with redundant decisions filtered out, the naïve algorithm may

repeat the same series of crossings many times when the input curve contains

a spiral [67, 146, 165, 167]. Our algorithm detects spirals as they occur, quickly

determines the depth of the spiral (the number of repetitions), and then skips ahead

to the first crossing after the spiral. See Figure 6.6 below.

We describe our generic tracing algorithm in Section 6.5 and analyze its running

time in Section 6.6. We also describe and analyze a symmetric untracing algorithm

in Section 6.7, which works backward from the street complex of a curve to its

69



normal coordinates.

6.3.2 Applications

The street complex allows us to answer several fundamental topological questions

about simple curves using elementary algorithms. For example, to determine

whether a curve represented by normal coordinates is connected, we can trace one

component of the curve, and then check whether the number of edge crossings we

encountered is equal to the sum of the normal coordinates. To determine whether

a connected normal curve is contractible, we can trace the curve and then apply

a O(n)-time depth-first search in the dual of the resulting street complex [76]. To

find the normal coordinates of a single component of a curve, we can trace just that

component, discard the untraced components, and then untrace the street complex.

In Section 6.8, we describe algorithms to solve these and several other related

problems for normal curves in O(n2 log X ) time. All of the problems we consider

were previously solved in (large) polynomial time by Schaefer et al. [163]; however,

our algorithms are significantly faster and simpler. Our algorithms are also faster

than the orbit-counting algorithm of Agol et al. [4] and more general than Dynnikov

and Wiest’s transmission-relaxation method [56, 67]. For some of the problems

we consider, our algorithms appear to be slower by a factor of n than algorithms

described by Štefankovic [179]; however, we optimistically conjecture that this gap

can be closed with more careful time analysis.

6.3.3 Computational assumptions

Most of our time bounds are stated functions of two variables: the number n

of triangles in the input triangulation and the total crossing number X of the

traced curve. We assume that X = Ω(n2), since otherwise our analysis yields a

time bound slower than the trivial bound O(n+ X ); this assumption implies that

log(X/n) = Θ(log X ).
We formulate and analyze our algorithms for normal curves in the standard

unit-cost integer RAM with w-bit words, where w = Ω(log X ); that is, we assume

that the sum of the normal coordinates can be stored in a single memory word. This

assumption implies that all necessary integer arithmetic operations (comparison,

addition, subtraction, multiplication, and division) required by our tracing algorithm

can be executed in constant time. The O(n log X ) time bound for Štefankovic’s

word-equation algorithms [159, 160, 179] and the O(n4 log3 X ) time bound for

the Agol-Hass-Thurston orbit-counting algorithm [4] require the same model of

computation.1 For integer RAMs with smaller word sizes (for example, if the word

size is only large enough to the largest individual normal coordinate), all these

running times increase by at most a polylogarithmic factor in X .

1For several of his algorithms, Štefankovic [4] only claims running times on integer RAMs with
significantly larger word sizes, but his estimates are unnecessarily conservative.

70



6.4 Normal coordinates vs. street complex

In this section, we describe two different methods to compactly present normal

curves on surfaces, namely normal coordinates and street complex. Normal coor-

dinates is a well-known method that is a special case of the presentation of the

surfaces in 3-manifolds. Street complex is another method, that we [78] introduced,

to compactly present normal curves; Jaco et al. [115,116] apply a similar idea to

present surfaces in 3-manifolds.

6.4.1 Normal curves, normal isotopy, and normal coordinates

Let T be a triangulation of a surface Σ. A properly embedded curve γ in Σ is normal

with respect to T if (1) γ avoids the vertices of T ; (2) every intersection between γ

and an edge of T is transverse; and (3) the intersection of γ with any triangular face

of T is a finite set of disjoint elementary segments: simple paths whose endpoints

lie on distinct sides of the triangle. A normal isotopy between two normal curves

is a proper isotopy h such that h(t, ·) is a normal curve for all t; or, equivalently,

h avoids vertices of T . Two curves are normal isotopic, or in the same normal

isotopy class, if there is a normal isotopy between them.

Any normal curve can be identified, up to normal isotopy, by two different

vectors of O(n) non-negative integers, where n is the number of faces of T . There

are three types of elementary segments within any face ∆, each separating one

corner of ∆ from the other two; the corner coordinates of γ list the number of

elementary segments of each type in each face of T . The edge coordinates of γ list

the number of times γ intersects each edge of T . See Figure 6.1. We collectively

refer to the corner and edge coordinates of a curve as its normal coordinates.2

Given either normal coordinate representation, it is easy to compute the other

representation in O(n) time. The total crossing number of a normal curve is the

sum of its edge coordinates; this number is also equal to the sum of the curve’s

corner coordinates plus the number of edges in T .

1

1

0

0

0

0

0

0

0
0 0

3 0

3

31

2

1
3

0

10

0

3

2
5

5

0

5
2

2
0

0

0

00

1

1

1

2
3

0
5

5

5
0

0

0

3

5

2

2

3

3

3

0

0

Figure 6.1. Corner and edge coordinates of a normal curve with two components in a triangulated
disk.

2Schaefer et al. [163,166,179] refer to the edge coordinates as “normal coordinates”, but the standard
coordinate system for normal surfaces [102] is a generalization of corner coordinates.

71



6.4.2 Ports, blocks, junctions, and streets

We now introduce the street complex and its components.

The intersections between any normal curve γ and the edges of any triangulation

T partition γ into elementary segments and partition the edges of T into segments

called ports. The overlay graph T‖γ is the cellularly embedded graph whose edges

are these elementary segments and ports. Every vertex of T‖γ is either a vertex of

T or an intersection point of γ and some edge of T . Every face of T‖γ is a subset of

some face ∆ of T . We call each face a junction if it is incident to all three sides of

its containing face ∆, and a block if it is incident to only two sides of ∆; these are

the only two possibilities. Each face of T contains exactly one junction. Each block

is bounded either by two elementary segments and two ports, or by one elementary

segment and two ports that share a vertex of T .

We call a port redundant if it separates two blocks; because each face of T

contains exactly one junction, each edge of T contains at most two non-redundant

ports. Removing all the redundant ports from the overlay graph T‖γ merges

contiguous sets of blocks into streets. Each street is either a single open disk with

exactly two non-redundant ports on its boundary (called the ends of the street), an

open annulus bounded by a trivial component of γ and a vertex of T , or an annulus

bounded by two parallel components of γ (in particular, if γ is reduced, all streets are

of the first type.) For any normal curve γ, the street complex S(T,γ) is the complex

of streets and junctions in the overlay T‖γ. See Figure 6.2. Streets and junctions

are two-dimensional analogues of the product regions and guts of normal surfaces,

defined by Jaco, Letscher, and Rubinstein [115,116].

Figure 6.2. The street complex of the normal curve in Figure 6.1. Unshaded faces are junctions;
shaded faces are streets; one street is shaded darker (green) for emphasis.

The crossing sequence of a street is the sequence of edges in the original trian-

gulation T crossed by any path that traverses the street from one end to the other.

The crossing length of a street is the length of its crossing sequence, or equivalently,

the number of constituent blocks plus one. To simplify our analysis, we regard any

port between two junctions, as well as any boundary port incident to a junction, as

72



a street with crossing length 1. The sum of the crossing lengths of the streets in any

street complex S(T,γ) is the total crossing number of γ plus the number of edges

in T .

Any normal curve γ′ that is disjoint from γ subdivides each port in S(T,γ) into

smaller ports, each street in S(T,γ) into narrower “blocks”, and each junction in

S(T,γ) into blocks and exactly one smaller junction. Removing all redundant ports

from this refinement gives us the refined street complex S(T,γ ∪ γ′). Conversely,

the intersection of γ′ with any street or junction in S(T,γ) is a set of elementary

arcs. There are three types of elementary arcs within any junction, each connecting

two of the junction’s three ports. The junction coordinates of γ′ list the number

of elementary arcs of each type in each junction of S(T,γ). Similarly, the street

coordinates of γ′ list the number of such arcs within each street of S(T,γ). Junction

and street coordinates have the same simple linear relationship as corner and edge

coordinates; in fact, the normal coordinates of a curve γ are just the junction and

street coordinates of γ in the trivial street complex S(T,∅).
Our tracing strategy must handle normal curves that are partially drawn on the

surface; we slightly extend our definitions to include such curves. A normal path

is any simple path whose endpoints lie in the interior of edges of T and that can

be extended to a normal curve on Σ. Let γ be composed of a normal curve γ′ and

possibly a normal path π disjoint from γ′. A fork is the union of two ports that

share one of the endpoints of π; for most purposes, we can think of a fork as a

degenerate junction. Formally, we call a port redundant if it separates two blocks

and it is not part of a fork; modified definitions of streets and the street complex

follow immediately. The modified street complex S(T,γ) clearly still has complexity

O(n). See Figure 6.3.

1 1 2

2

2

1

1

1

1

2

22

1

1

Figure 6.3. A partially traced street complex with street and junction coordinates. (Zero coordinates
are omitted.)

6.4.3 Reduced curves

A normal cycle is trivial if it bounds a disk in Σ containing a single vertex of T ; note

that any normal bounds at most two discs, each of them contains at least one vertex

73



of T . We call a normal curve reduced if no component of γ is a trivial cycle and no

two components of γ are normal isotopic. The following lemma and its corollary,

observed by Kneser [127], are helpful during the rest of this chapter.

Lemma 6.4.1. The components of a properly embedded curve on a surface with

genus g and b boundary cycles fall into at most 6g + 6b− 8 isotopy classes.

Proof: Fix a properly embedded curve γ on a surface Σ. We separately bound the

contractible components, noncontractible cycles, and noncontractible arcs in γ; thus,

our analysis is not tight.

Two contractible arcs are isotopic if and only if their endpoints lie on the same

boundary cycle of Σ; thus, contractible arcs fall into at most b isotopy classes.

All contractible cycles in Σ are isotopic. We conclude that γ has at most b + 1

contractible components.

Let C be a maximal set of pairwise-disjoint noncontractible cycles in distinct

isotopy classes. Cutting the surface along any cycle leaves its Euler characteristic

unchanged. Each component of Σ \ C is either a pair of pants bounded by three

cycles in C or an annulus bounded by a cycle in C and a boundary cycle of Σ. A pair

of pants has Euler characteristic −1; an annulus has Euler characteristic 0; and each

annular component of Σ \C contains exactly one boundary cycle of Σ. Thus, Σ \C
consists of exactly −χ(Σ) = 2g + b− 2 pairs of pants and b annuli, which implies

that |C|= (3(2g + b− 2) + b)/2= 3g + 2b− 3.

Similarly, let A be a maximal set of pairwise-disjoint noncontractible arcs in

distinct isotopy classes. Each component of Σ \A is a disk bounded by exactly three

arcs in A and three boundary arcs. Contracting each boundary cycle of Σ to a point

transforms A into a b-vertex triangulation of a surface of genus g with no boundary.

Thus, Euler’s formula implies that |A|= 3g + 3b− 6. �

Corollary 6.4.2. A reduced normal curve in a surface triangulation with n triangles

has at most b(3n− 1)/2c= O(n) components.

In this chapter we restrict our attention to the reduced curves, because of the

following reasons. First, the street complex of any non-reduced curve γ contains

annular faces, which would complicate our algorithms (but probably not seriously);

observe that the street complex of a reduced curve is cellular. More importantly, the

street complex of a non-reduced curve can have arbitrarily high complexity, since

the curve can have arbitrarily many components. Fortunately, as we argue in Section

6.8, it is easy to avoid tracing trivial components or more than one component in

the same normal isotopy class.

By construction, the components of any reduced normal curve γ appear as

disjoint paths and cycles in the 1-skeleton of the street complex. Although the

complexity of the overlay graph T‖γ can be arbitrarily large, even when the curve γ

is connected, the street complex S(T,γ) of a reduced normal curve is never more

than a constant factor more complex than the original triangulation.

74



Lemma 6.4.3. Let T be a surface triangulation with n triangles. For any reduced

normal curve γ in T , the street complex S(T,γ) has complexity O(n).

Proof: Each triangle of T contains exactly one junction of S(T,γ), it follows that

the total number of junctions is O(n). Each junction is adjacent to at most 3 streets,

so the number of streets is O(n). Each junction is adjacent to at most 6 vertices and

each vertex is either adjacent to a junction or it is a vertex of T , that is the number

of vertices of S(T,γ) is O(n). Finally, each edge of S(T,γ) is on the boundary of a

street or a junction, and so the number of edges is O(n) as well. �

6.5 Tracing connected normal curves

In this section, we describe our algorithm to trace connected normal curves. Given

a triangulation T of an orientable surface Σ and the corner and edge coordinates

of a connected normal curve γ, our tracing algorithm computes the street complex

S(T,γ). We extend our algorithm to arbitrary reduced curves in Section 6.6, and we

consider arbitrary normal curves in Section 6.8.

Our algorithm maintains a normal subpath π of γ that is growing at one end,

along with the street complex S(T,π) and the junction and street coordinates of

the complementary path γ \π. If γ is an arc, we trace it from one endpoint to the

other. If γ is a cycle, we trace it starting at some intersection point with an edge of

T . Initially, π is an arbitrary crossing point, which splits some edge into a fork.

6.5.1 Steps

In each step of our algorithm, we extend the path π through one junction or fork,

and then through one street, updating both the street complex and the junction and

street coordinates. We call the streets that contain the moving endpoint of π the left

and right active streets.

Suppose π is about to enter a junction. We call the streets adjacent to the

junction but not the endpoint of π the left exit and the right exit. Suppose the local

junction coordinates are a, b, and c, and the active street coordinates are l and r,

as shown in Figure 6.4. These coordinates satisfy the equation l + r + 1= a+ c, so

either l < a or r < c. If l < a, we extend π through the junction and through its left

exit into the next junction; the left active street grows to the end of the left exit, and

the left exit becomes the new right active street. We call this case a left turn; the

symmetric case r < c is called a right turn. In either case, we update the street and

junction coordinates as shown in Figure 6.4. A similar case analysis applies when π

crosses a fork; see Figure 6.5.

The tracing algorithm ends when π hits either the boundary of Σ or the starting

point of the trace. In all other cases, each step makes one active street longer,

replaces the other active street, and makes the new active street narrower. All

necessary operations for a single step—comparing and updating the junction and

street coordinates and updating the street complex—can be performed in O(1) time.

75



a

b

c

l

a−
l−

1

b

c

l

b

a

r

c−
r−

1

r

r' l'

l < a r'=a+b – l – 1 l'=b+c – r – 1

a+
b b+

c

b+
c a+

b

l r l r

a

b

c

l r

r < c

a+
b b+

c

Figure 6.4. Tracing a curve through a junction.

l r
l r

a c

l=a, r=c Done!

l r

a c

l r

a l'

l'=c−r−1 r<c

rl

cr'

r'=a−l−1 

l r

a c

l<a

c

a

l r c

r'
l

r

r'=a−l−1 l<a

a

c

arl

l'
r

l

l'=c−r−1 r<c

Figure 6.5. Tracing a curve through a fork.

6.5.2 Phases and spirals

Unfortunately, executing each step by brute force is not necessarily efficient. To

improve the brute-force algorithm, we more coarsely partition the tracing process

into phases. Each phase is a maximal sequence of either left turns or right turns.

Every step in a phase consisting of left turns extends the same left active street;

similarly, every step in a right phase extends the same right active street. In either

case, each phase extends a single active street.

During each phase, we maintain a sequence of directed streets and junctions

traversed during that phase. If the growing path π ever enters a street for the

second time, in the same direction, during the same phase, then π has entered a

spiral. The reentered street must be the first street traversed during the current

phase; for the remainder of the phase, π repeatedly traverses the same sequence of

directed streets and junctions. The length of a spiral is the total number of streets

it traverses, counted with multiplicity, and the depth of the spiral is the number of

times it repeats the entire sequence of directed streets and junctions. If the spiral

has length ` and traverses m distinct directed streets, its depth is d`/me − 1. See

Figure 6.6.

Instead of tracing the spiral step by step, we compute the depth of the spiral

directly in O(m) time as follows. Let J0, J1, . . . , Jm−1 be the junction coordinates

modified during the first iteration of the spiral. Let w denote the width of the active

street, defined as the corresponding street coordinate plus 1. The depth of the spiral

is d =minibJi/wc, and the spiral ends at the first junction whose coordinate Ji is

76



Figure 6.6. A spiral with length `= 16 and depth d = 3 through m= 5 distinct streets, plus one step
of the next phase.

smaller than dw. Once we compute d, we can update the street complex S(T,π)
and the appropriate street and junction coordinates in O(m) time. In particular, as

long as the depth of the spiral is at least 2, the combinatorial structure of S(T,π)
(the 1-skeleton and the rotation system encoding its embedding in Σ) depends only

on the last `mod m steps of the spiral.

The lengths and widths of the streets, as well as junction and street coordinates

of the remainder of the curve, can all be updated in O(m) time. The length of the

active street increases by d times the total length of the m distinct directed streets in

the spiral, plus the total length of the last `mod m streets; no other street changes

length. Each undirected street in the spiral is traversed d, d + 1, 2d, 2d + 1 or

2d +2 times, depending on whether the street is traversed in one or both directions,

and which of those traversals occur in the last `mod m steps of the phase. We can

compute all such numbers in O(m) time, after which updating the widths of the

streets traversed by the spiral is straightforward.

The crude upper bound m= O(n) immediately implies that each phase of our

tracing algorithm can be executed in O(n) time. We analyze the number of phases,

as a function of the total crossing number of the traced curve, in Section 6.6.

6.5.3 History

For some applications of our tracing algorithm, it is useful to maintain the history of

the street complex, which records the evolution of each street during the algorithm’s

execution. For each phase of the tracing algorithm, the history records the tuple

(a; `; m; i0, i1, . . . , im−1), where

• a is the index of the street that is active for the entire phase;

• ` is the number of steps in the phase;

• m is the number of distinct directed streets traversed during the phase; and

• i0, i1, . . . , im−1 are the indices of these m directed streets in the order they are

traversed.

77



The resulting history is equivalent to a context-free grammar whose terminals

correspond to the edges of T and most of whose productions have the following

form, where d = dl/me − 1:

Xa → X b (X i0 X i1 · · · X im−1
)d X i0 X i1 · · · X i(`−1)mod m

X a → X i(`−1)mod m
· · · X i1 X i0(X im−1

· · · X i1 X i0)
d X b.

The language of each non-terminal X i is a single string, recording the crossing

sequence of the street at the end of some phase. In the example above, Xa is the

crossing sequence of the active street just after the phase ends; X b is the crossing

sequence of the active street just before the phase begins; and X i denotes the reversal

of X i . If the same street is traversed in both directions during a phase, we will

have X i j
= X ik for some indices j 6= k, so both the forward and reverse productions

are necessary; otherwise, the indices i j are distinct. The grammar also contains

terminal productions of the form X i → ei and X i → ei for each edge ei in the input

triangulation.

This context-free grammar can be transformed into Chomsky normal form by

replacing each production in the form above with O(m + log d) productions of

the form A → B C . (Chomsky normal form grammars for one-string languages

are sometimes called straight-line programs [119] or grammar-based codes [122].)
Thus, our history data structure is equivalent to the compressed intersection sequence

constructed by Schaefer et al. [166,179]. We analyze the complexity of our history

data structure and the resulting compressed intersection sequence in the next

section.

6.6 Analysis

We now bound the running time of our tracing algorithm. In Section 6.6.1, we

bound the time required to trace a connected normal curve; we extend our analysis

to curves with multiple components in Section 6.6.2. Throughout our analysis, we

let N denote the current number of streets in the evolving street complex; although

N changes during the algorithm’s execution, Lemma 6.4.3 implies that N =Θ(n) at

all times.

Our analysis can be viewed as a generalization of Lamé’s classical analysis of

Euclid’s GCD algorithm in terms of Fibonacci numbers [130,174]. This connection is

not a coincidence; for tracing geodesics on a minimal triangulation of the torus, our

algorithm actually reduces to Euclid’s algorithm [78]. In particular, handling each

phase in O(n) time, instead of constant time per step, generalizes the use of division

in Euclid’s algorithm instead of repeated subtraction. Euclid’s algorithm is invoked

explicitly by the orbit-counting algorithm of Agol et al. [4] and by the compressed

pattern-matching algorithms [119, 141, 161] underlying the results of Schaefer

et al. [166,179]. See also related results of Moeckel [142] and Series [171,172]
on encoding (infinite) geodesics in surfaces of constant curvature by continued

78



fractions.

In retrospect, our analysis (at least for connected curves) is nearly identical

to Dynnikov and Weist’s analysis of their transmission-relaxation method [56,67],
although the algorithms themselves appear to be quite different. In particular, the

potential function Φ in the proof of Lemma 6.6.1 closely resembles their definition

of the AHT-complexity of a braid (named after Agol, Hass, and Thurston). Dehornoy

et al. [56, page 196] draw a similar analogy between their approach and the fast

Euclidean algorithm.

6.6.1 Abstract tracing

In each phase of our tracing algorithm, the crossing length of the active street

increases by the sum of the crossing lengths of the other traversed streets, counted

with appropriate multiplicity. The algorithm ABSTRACTTRACE, shown in Figure 6.7,

abstractly models this growth.

ABSTRACTTRACE(N):
for j← 1 to N

x[ j]← 1
a← 1

while not done
choose an integer m ∈ [N]
choose an integer ` ≥ m
choose a vector (i0, i1, . . . , im−1) ∈ [N]m

d ← d`/me − 1

for j← 0 to m− 1
x[a]← x[a] + d · x[i j]

for j← 0 to (`− 1)mod m
x[a]← x[a] + x[i j]

a← i(`−1)mod m

Figure 6.7. Our abstract tracing algorithm.

ABSTRACTTRACE maintains an array x[1 .. N] of positive integers, corresponding

to the crossing lengths of the streets maintained in our tracing algorithm, along

with the index a of the current active street. Each iteration of the outer loop of

ABSTRACTTRACE models a phase of our tracing algorithm. The inner loops update the

crossing length x[a] of the active street as the curve traverses a spiral of length ` and

depth d, containing m distinct streets whose indices are in the vector (i0, i1, . . . , im−1).
The last street traversed in the current phase becomes the active street for the next

phase. For purposes of analysis, we assume that the termination condition for

the outer loop and the parameters `, m, and (i0, i1, . . . , im−1) of each iteration are

determined by a malicious adversary instead of the topology of the input curve.

To prove an upper bound on the number of phases of ABSTRACTTRACE, we can

assume conservatively that m= 1 in every phase; equivalently, we can ignore the

contribution to the active street’s crossing length from all but the last street in every

spiral. Thus, we consider the simpler algorithm SIMPLETRACE shown in Figure 6.8.

The new variable δ is the number of times the last street in the spiral is traversed;

79



specifically, δ = d if `/m is an integer and δ = d + 1 otherwise. The other new

variable ∆ is used only in the analysis.

SIMPLETRACE(N):
for j← 1 to N

x[ j]← 1
∆← 0
a← 1

while not done
choose an index i ∈ [N]
choose an integer δ ≥ 1
x[a]← x[a] +δ · x[i]
∆←∆+ lg(δ+ 1)
a← i

Figure 6.8. A simplified tracing algorithm for analysis.

Lemma 6.6.1. At the end of each iteration of SIMPLETRACE, we have∆≤ 2
∑N

i=1 lg x[i].

Proof: Consider the potential function Φ := 2
∑N

i=1 lg x[i]− lg x[a]. Initially we

have Φ = 0. There are two cases to consider, depending on whether x[a] is smaller

or larger than x[i] at the start of each iteration of the loop.

• If x[a]≤ x[i], then the assignment x[a]← x[a] +δ · x[i] increases Φ by at

least lg(δ+ 1), and the assignment a← i does not decrease Φ.

• If x[a]≥ x[i], then the assignment x[a]← x[a]+δ · x[i] does not decrease

Φ, and the assignment a← i increases Φ by at least lg(δ+ 1).

In both cases, Φ increases by at least lg(δ+ 1) in each iteration. It immediately

follows by induction that ∆≤ Φ≤ 2
∑N

i=1 lg x[i] at the end of every iteration. �

Lemma 6.6.2. ABSTRACTTRACE(N) runs for at most 2L = O(N log X ) phases, where

L is the final value of
∑N

i=1 lg x[i] and X is the final value of
∑N

i=1 x[i].

Proof: To maximize the number of phases, we assume that ` = 1 in every phase.

This assumption allows us to simplify the execution to an instance of SIMPLETRACE

where δ = 1 in every phase, and therefore ∆ is simply the number of phases.

Lemma 6.6.1 implies that the algorithm terminates after at most 2L phases. The

parameter L is maximized as a function of N and X when x[i] = X/N for all i. (Our

assumption that X = Ω(n2) implies that log(X/N) = Θ(log X ).) �

The trivial inequality m≤ N now implies the following time bound:

Corollary 6.6.3. ABSTRACTTRACE(N) runs in O(N L) = O(N2 log X ) time, where L is

the final value of
∑N

i=1 lg x[i] and X is the final value of
∑N

i=1 x[i].

Theorem 6.6.4. Let Σ be a surface composed of n triangles, and let γ be a con-

nected normal curve in Σ with total crossing number X . Given the normal coordin-

ates of γ, we can trace γ in O(n2 log X ) time.

80



There is an interesting tension between the two steps of our analysis. To bound

the number of phases in Lemma 6.6.2, we conservatively assume that each phase

traverses only a constant number of streets; however, to bound the total number

of steps in Corollary 6.6.3, we conservatively assume that each phase traverses a

constant fraction of the streets. Despite this tension, both bounds are asymptotically

tight in the worst case, at least when X is sufficiently large.

Lemma 6.6.5. ABSTRACTTRACE(N) executes Ω(N log X ) phases in the worst case.

Proof: Suppose the adversary chooses i = (a mod n) + 1 and δ = 1 in every phase

of SIMPLETRACE. An easy inductive argument implies that for any integer r ≥ 1, at

the end of r · (n− 1) phases we have x[i] ≤ 2r for all i. Thus, SIMPLETRACE must

perform at least (N − 1) lg(X/N) = Ω(N log X ) iterations before
∑

i x[i] = X . �

Lemma 6.6.6. ABSTRACTTRACE(N) runs in Ω(N2 log X ) time in the worst case, as-

suming X = Ω(N2+ε) for some ε > 0.

Proof: Suppose N = 2k for some integer k ≥ 2, and in every phase of AB-

STRACTTRACE, the adversary chooses ` = m = k + 1 (and therefore d = 0) and

(i0, i1, . . . , ik) = (k+ 1, k+ 2, . . . , 2k, (a mod k)− 1). In other words, the adversary

mimics the strategy described in the previous proof in the lower half x[1 .. k] of the

array, but uses the upper half x[k+ 1 .. 2k] to add k additional steps to each phase.

The values in x[k+ 1 .. 2k] never change; at all times, x[i] = 1 for all i > k. Thus,

the additional steps have very little impact on the growth of the sum
∑

i x[i].
A straightforward inductive argument implies that for any integer r ≥ 1, at

the end of r · (k − 1) phases, we have
∑k

i=1 x[i] < (2r − 1)k2 + k < 2r k2 − k

and therefore
∑N

i=1 x[i] < 2r n2/4. Thus, ABSTRACTTRACE must execute at least

(N − 1) lg(4X/N2) = Ω(N log X ) phases before
∑N

i=1 x[i] = X . Each phase requires

Ω(N) time. �

We leave open the possibility that our analysis is not tight for instances that

actually arise from tracing normal curves on triangulated surfaces. We conjecture

that Lemma 6.6.2 is still tight in this context, but that Corollary 6.6.3 is not.

6.6.2 Tracing reduced curves

Now consider the more general case where γ is a reduced curve, possibly with

more than one component. (For the applications we describe in Section 6.8, this

is the most general case we need to consider.) Our tracing algorithm requires

little modification to handle these curves; we simply trace the components one

at a time, in arbitrary order. Each component refines the street complex defined

by the previous components. Lemma 6.4.3 immediately implies that the resulting

algorithm runs in O(n3 log X ) time, but this time bound can be improved with more

careful analysis.

81



Theorem 6.6.7. Let Σ be a surface composed of n triangles, and let γ be a reduced

normal curve in Σ with total crossing number X . Given the normal coordinates of γ,

we can trace every component of γ in O(n2 log X ) time.

Proof: Consider the effect of ending one component and starting another on the

vector of crossing lengths modeled by the array x[1 .. N] in SIMPLETRACE. When we

begin tracing a new cycle component, we split some street into three smaller streets

by introducing a fork; one of the three new streets becomes the active street for the

first phase of the new component. This update can be modeled in SIMPLETRACE by

adding the following lines:

if starting a cycle:

choose an index i ∈ [N]
choose an integer y ∈

�

x[i]
�

x[i]← x[i]− y + 1

x[N + 1]← y

x[N + 2]← y

N ← N + 2

a← N + 2

When we finish tracing a cycle component, we merge the four streets adjacent to

the initial fork into two longer streets; see the center of Figure 6.4. This update can

be modeled in SIMPLETRACE by adding the following lines:

if ending a cycle:

choose an index j ∈ [N]
choose an index k ∈ [N]
x[ j]← x[ j] + x[N − 1]− 1

x[k]← x[k] + x[N]− 1

N ← N − 2

Similarly, when we begin tracing a new arc component, we split some street (ending

on the boundary of Σ) into two narrower streets. This update can be modeled in

SIMPLETRACE by adding the following lines:

if starting an arc:

choose an index i ∈ [N]
x[N + 1]← x[i]

N ← N + 1

a← N + 1

No additional changes are necessary when we end an arc component. Again, for

purposes of analysis, we assume that the decision of when to end one component

and begin another, whether each new component is an arc or a cycle, and the array

elements involved in starting or ending a component are all chosen adversarially

instead of being determined by the topology of a curve.

Altogether, ending one component and starting a new one decreases the potential

function Φ by at most O(log X ). An easy modification of the proof of Lemma 6.6.1

now implies that after each iteration of SIMPLETRACE, we have ∆≤ 2
∑N

i=1 lg x[i] +

82



O(t lg X ), where t is the number of components we have completely traced so far.

Lemma 6.4.1 implies that any reduced normal curve has O(n) components. We

conclude that SIMPLETRACE(N) executes at most O(N log X ) = O(n log X ) phases;

each phase trivially requires O(n) time. �

When we trace curves with multiple components, we also record the start and

end of each component in the tracing history. We omit the straightforward but

tedious details.

6.7 Untracing

Several of the problems we consider ask for the normal coordinates of one or more

components of the input curve, with respect to the input triangulation. These coor-

dinates can be recovered from the street complex and some additional information,

essentially by running the tracing algorithm backward. We emphasize that recover-

ing the normal coordinates of a curve from the street complex alone is impossible;

two curves may have combinatorially isomorphic street complexes even if they are

not normal isotopic.

6.7.1 Untracing from history

The simplest method to untrace a curve uses the full history of the street complex,

as defined in Section 6.5.3. The normal coordinates of any normal curve γ can be

recovered from a straight-line program of length T encoding the crossing sequences

of γ’s components, by straightforward dynamic programming, in O(nT) time [90,

166,179].
Our untracing algorithm maintains the street coordinates of the already-untraced

components in the devolving street complex. Initially, all street coordinates are

equal to zero; when the curve is completely untraced, the streets degenerate to

edges, and the street coordinates are the required edge coordinates. We can then

easily recover the corner coordinates in O(n) time.

Lemma 6.7.1. Let Σ be a surface composed of n triangles, let γ be a reduced normal

curve in Σ with total crossing number X , and let λ be the union of any subset of

components of γ. Given the street complex S(T,γ) and its history, we can compute

the normal coordinates of λ with respect to T in O(n2 log X ) time.

Proof: Our untracing algorithm maintains an array st[1 .. N] of street coordinates,

initially all equal to zero, and a bit φ that indicates whether we are currently

untracing a component of λ. We consider the phases stored in the history in reverse

order. To undo a phase with parameters (a;`; m; i0, i1, . . . , im−1), we update the

street coordinates as follows:

83



d ← d`/me − 1

for j← 0 to m− 1

st[i j]← st[i j] + d · (st[a] +φ)

for j← 0 to (`− 1)mod m

st[i j]← st[i j] + (st[a] +φ)

(Compare with the ABSTRACTTRACING algorithm in Figure 6.7.) Some additional

bookkeeping is required at the beginning and end of each component of γ; we omit

the straightforward but tedious details. Note that the street coordinates st[· · · ] do

not actually change until we start untracing a component of λ. When the algorithm

ends, the array st[· · · ] contains the edge coordinates of λ; we can then easily recover

the corner coordinates of λ in O(n) time.

Since we spend O(m) time untracing each phase, the total time to untrace the

entire curve is the same as the time spent tracing the curve, up to small constant

factors. The O(n2 log X ) time bound now follows directly from Theorem 6.6.7. �

6.7.2 Untracing without history

Even without the complete tracing history, we can untrace a curve γ given only the

crossing lengths of every street in street complex S(T,γ). In fact, it is not necessary

to follow the tracing algorithm backward; we can untrace the components of γ in

any order, starting each cycle component at any crossing.

Lemma 6.7.2. Let Σ be a surface composed of n triangles, let γ be a reduced normal

curve in Σ with total crossing number X , and let λ be the union of any subset of

components of γ. Given the street complex S(T,γ) and the crossing length of

every street, we can compute the normal coordinates of λ with respect to T in

O(n2 log X ) time.

Proof: Our untracing algorithm maintains the devolving street complex, its associ-

ated street and junction coordinates (all initially zero), and an array x[1 .. N] storing

the crossing lengths of each street. Our algorithm untraces every component of γ\λ
(in arbitrary order), resets all street and junction coordinates to 0, and then untraces

the components of λ (again in arbitrary order). When the algorithm terminates, all

crossing lengths are equal to 1, and the street and junction coordinates are just the

normal coordinates of λ.

First consider the untracing process for a single component of γ. Following the

intuition of the tracing algorithm, we maintain a normal subpath π that is shrinking

from one end toward the other. The last segment of π either separates two streets

or separates a street and a junction. We can easily remove the last segment of and

update the appropriate street coordinates and crossing lengths in O(1) time, by

time-reversing the case analysis in Figures 6.4 and 6.5.

To complete the proof, it remains only to prove that we can untrace any spiral of

any depth through m distinct streets in O(m) time. The last segment of π is a spiral

84



if and only if the junction incident to the end of the active street is also incident to

the active street along another edge; see Figures 6.6 and 6.9. This condition can be

tested easily in constant time at each step.

Figure 6.9. After tracing a spiral, the active street is incident to itself at the terminal junction.

Without loss of generality, suppose the street to the left of the last segment of π

has greater crossing length than the street to the right, as in Figure 6.9. The active

street a is left of the last segment of π, and the m directed streets and junctions

traversed by the spiral are incident to the right side of the active street. Thus, we

can recover the number m and indices i0, i1, . . . , im−1 of the relevant streets in O(m)
time by traversing π backward until some edge is incident on the left. The depth of

the spiral is

d :=









x[a]
∑m−1

j=0 x[i j]







 .

To untrace d complete turns of the spiral, we add d · (st[a]+ 1) to the m relevant

street and junction coordinates (where st[a] is the street coordinate of the active

street) and subtract d ·
∑m−1

j=0 x[i j] from the active crossing length x[a]. We then

untrace the last `mod m steps of the spiral by brute force in constant time each.

Although computing the length ` of the spiral is straightforward, it is not actually

necessary. The total time to untrace the entire spiral is O(m), as required. �

6.7.3 Abstract untracing

We can also analyze our tracing algorithm directly by considering the growth of

the street coordinates, just as we analyzed the forward tracing algorithm by the

evolution of crossing lengths. Moreover, our tracing and untracing algorithms have

the same running time (up to constant factors), we obtain a new analysis of our

tracing algorithm. Although our backward analysis leads to the same asymptotic

time bound O(n2 log X ), we obtain more refined bounds for connected normal curves

in terms of the bit-complexity of the normal coordinates. As in Section 6.6, N = Θ(n)
denotes the number of streets in the current street complex.

First, suppose we are untracing a connected normal curve. Again, we ignore the

actual topology of the curve and consider instead the abstract algorithm shown in

Figure 6.10.

The values in the array st[1 .. N] correspond to the street coordinates of the N

streets. At the end of each backward phase, the current active street becomes one

of the streets traversed (and therefore widened) in the next phase; we re-index

85



ABSTRACTUNTRACE(N):
for j← 1 to N

st[ j]← 0
i0← 1

while not done
choose an integer a ∈ [N]
choose an integer m ∈ [N]
choose an integer ` ≥ m
choose a vector (i1, . . . , im−1) ∈ [N]m−1

d ← d`/me − 1

for j← 0 to m− 1
w[i j]← w[i j] + d · (st[a] + 1)

for j← 0 to (`− 1)mod m
w[i j]← w[i j] + (st[a] + 1)

i0← a

Figure 6.10. Our abstract untracing algorithm.

the streets in each spiral so that i0 is always the index of the previous active street.

As in the forward analysis, we conservatively assume that the parameters of each

phase and the termination condition for the main loop are determined adversarially

instead of by the topology or tracing history of the curve.

As in the forward analysis, to maximize the number of phases, we can assume

conservatively that m = 1 in every phase, which simplifies the abstract algorithm

to the form shown in Figure 6.11. To simplify the algorithm further, we work with

an array w[1, .. N] of street widths, where w[i] = st[i] + 1 for all i. Again, we

introduce a new variable ∆ strictly for purposes of analysis. Except for variable

names, SIMPLEUNTRACE is identical to our earlier algorithm SIMPLETRACE, so our

earlier analysis applies immediately.

SIMPLEUNTRACE(n):
for j← 1 to n

w[ j]← 1
∆← 0
i← 1

while not done
choose an index a ∈ [n]
choose an integer δ ≥ 1
w[i]← w[i] +δ ·w[a]
∆←∆+ lg(δ+ 1)
i← a

Figure 6.11. Our simplified abstract untracing algorithm; compare with Figure 6.8.

Lemma 6.7.3. ABSTRACTUNTRACE(N) runs for at most 2W = O(N log X ) phases

and O(nW ) = O(n2 log X ) total time, where W is the final value of
∑N

i=1 lg w[i] and

X is the final value of
∑N

i=1 w[i].

Again, both bounds in Lemma 6.7.3 are tight in the worst case.

Ignoring lower-order terms, the parameter W is the number of bits needed to

store the edge coordinates of the traced curve γ; Schaefer et al. [163, 166, 179]

86



call W the normal complexity of γ. Recall from Section 6.6.1 that L is the total

number of bits needed to store the crossing lengths in the street complex S(T,γ).
Both W and L are between Ω(n+ log X ) and O(n log X ), which implies the crude

bounds W = O(nL) and L = O(nW ). In fact, these crude bounds are tight in the

worst case, even for actual curves; we leave the proof as an amusing exercise for

the reader.

Corollary 6.7.4. Let Σ be a surface composed of n triangles, and let γ be a con-

nected normal curve in Σ. Given the normal coordinates of γ, we can trace γ in

O(n ·min{L, W}) time, where W is the total bit-length of the normal coordinates of

γ, and L is the total bit-length of all crossing lengths in the resulting street complex

S(T,γ).

The backward analysis can be extended to disconnected reduced curves, exactly

as in Section 6.6. However, since the resulting time bound does not improve our

earlier analysis, we omit further details.

6.8 Normal coordinate algorithms

In this section, we describe efficient algorithms for several problems involving

normal curves represented by their normal coordinates. For each of our algorithms,

the input consists of a surface Σ composed of n triangles and the edge and corner

coordinates of either one or two normal curves with total crossing length at most X .

6.8.1 One component

Theorem 6.8.1. Let Σ be a surface composed of n triangles, and let γ be a normal

curve in Σ with total crossing length X , represented by its normal coordinates. We

can determine whether γ is connected in O(n2 log X ) time.

Proof: The input curve γ is connected if and only if, after tracing an arbitrary

component of γ, every street coordinate in the resulting street complex is equal

to zero. Because we need only trace one component of γ, the result now follows

immediately from Theorem 6.6.4. �

Štefankovic described an algorithm to test whether a normal curve γ is con-

nected in O(W ) = O(n log X ) time, where W is the bit-complexity of γ’s normal

coordinates [179, Observation 3.3.1]. Our backward analysis in Section 6.7.3 ac-

tually implies that our algorithm actually runs in O(nW ′) time, where W ′ is the

bit-complexity of the normal coordinates of just the traced component of γ.

Theorem 6.8.2. Let Σ be a surface composed of n triangles; let γ be a normal curve

in Σ with total crossing length X , represented by its normal coordinates; and let x

be any intersection point of γ with an edge of Σ, represented by its index along that

edge. We can compute the normal coordinates of the component of γ containing x

in O(n2 log X ) time.

87



Proof: Suppose x is the ith crossing point along some edge e; let γ(e) denote

the number of crossings between γ and e; and let γx denote the component of γ

containing x . We trace γx starting at x , by splitting e into two smaller edges with

street coordinates i − 1 and γ(e)− i; these two new edges and e define a fork. If

γx is a cycle, the tracing algorithm eventually reaches x again. Otherwise, when

the tracing algorithm reaches an endpoint y of γx , we continue the trace from x

to the other endpoint, as if starting a new component of γ. (Alternatively, we can

simply start over and trace γx from y to the other endpoint.) In all cases, tracing γx

requires O(n2 log X ) time. Finally, to recover the normal coordinates of γx , we reset

all the street and junction coordinates in S(Σ,γx) to zero and then untrace γx , using

either Lemma 6.7.1 or Lemma 6.7.2. �

Štefankovic described an algorithm for this problem that runs in O(nW ) =
O(n2 log X ) time; see the proof of Lemma 3.3.3 in his thesis [179]. Like the previous

theorem, more careful analysis implies that our algorithm runs in O(nW ′) time,

where W ′ is the bit-complexity of the normal coordinates of γx .

6.8.2 Forward and reverse indexing

Let x be a point of intersection between γ with an edge e of the surface triangulation.

The edge-index of x is the position of x in the sequence of intersection points along

e (directed arbitrarily). Similarly, if x lies on an arc component of γ, the arc-index

of x is the position of x in the sequence of intersection points along that arc (again,

directed arbitrarily). Schaefer et al. [163] describe an algorithm to compute the

arc-index of an intersection point from its edge-index in time polynomial in n log X .

We can more efficiently transform either index into the other using our tracing and

untracing algorithms.

Theorem 6.8.3. Let Σ be a surface composed of n triangles; let γ be a normal arc

in Σ with total crossing length X , represented by its normal coordinates; and let x

be any intersection point of γ with an edge e of Σ, represented by its edge-index.

We can compute the arc-index of x in O(n2 log X ) time.

Proof: We trace γ against its chosen indexing direction, starting at x . As we trace γ,

we maintain the crossing lengths of all streets in the evolving street complex. Also,

whenever we traverse a street, we add its crossing length to a running counter. Then

the trace reaches the boundary of Σ, the counter contains the arc-index of x . �

Theorem 6.8.4. Let Σ be a surface composed of n triangles; let γ be a normal arc

in Σ with total crossing length X , represented by its normal coordinates; and let x

be any intersection point of γ with an edge of Σ, represented by its arc-index. We

can compute the edge containing x and the index of x along that edge in O(n2 log X )
time.

Proof: We trace γ along its chosen indexing direction, starting at one boundary

point, maintaining the crossing lengths of all streets. Whenever the tracing algorithm

88



traverses a street, we add its crossing length to a running counter. When the counter

reaches the curve-index of x , we stop the tracing algorithm and add a fork to the

street complex at the point x . Note that x may lie in the interior of the last street

traversed by the trace. We then untrace the traced subpath of γ, again starting at

the boundary endpoint and untracing toward x . When the untracing algorithm

reaches x , the desired edge-index is one of the street coordinates of the fork. �

6.8.3 Normal isotopy classes

Theorem 6.8.5. Let Σ be a surface composed of n triangles, and let γ be a normal

curve in Σ with total crossing length X , represented by its normal coordinates. We

can compute the number of normal isotopy classes of components of γ and the

number of components in each normal isotopy class in O(n2 log X ) time.

Proof: We begin by counting and deleting the trivial components of γ. The number

of trivial components that separate any vertex v from the other vertices is just the

minimum of the corner coordinates incident to v. Thus, we can easily count all

trivial components and delete them from γ, by reducing the appropriate normal

coordinates, in O(n) time. We separately record the number of trivial cycles and the

number of trivial arcs with endpoints on each boundary cycle.

Next, we repeatedly trace one component of γ and then count and remove

all other components in the same normal isotopy class, as follows. Suppose we

have already traced components γ1, . . . ,γi−1. Let γ̂<i denote the reduced normal

curve γ1 ∪ · · · ∪ γi−1, and let γ≥i denote the union of all components of γ that are

not normal-isotopic to any component of γ̂<i . In particular, we have γ̂<1 = ∅ and

γ≥1 = γ. By assumption, we have computed the street complex S(T, γ̂<i) as well

as the street and junction coordinates of γ≥i . Let x be the leftmost intersection

point between γ≥i and some non-redundant port p in S(T, γ̂<i), and let γi denote

the component of γ≥i that contains x . We trace γi through S(T, γ̂<i) to produce

the street complex S(T, γ̂<(i+1)), along with the street and junction coordinates of

γ≥i \ γi . The number of other components of γ that are normal isotopic to γi is

the minimum of the junction coordinates just to the right of γi in the new street

complex S(T, γ̂<(i+1)). Thus, we can easily count these components and reduce the

appropriate street and junction coordinates in O(n) time, thereby computing the

street and junction coordinates of γ≥(i+1).

Theorem 6.6.7 implies that the total time spent tracing all components γi is

O(n2 log X ). Lemma 6.4.1 implies that there are at most O(n) normal-isotopy

classes of components in γ, so the total time spent counting and removing parallel

components of γ is only O(n2). �

The output of the above algorithm is the street complex S(Σ, γ̂). Štefankovic

described an algorithm to count normal isotopy classes in O(n3 log2 X ) time [179,

Lemma 3.3.3]; his algorithm actually computes the normal coordinates of one

component in each class. We can compute the same output representation by

89



independently untracing each component of γ̂, using either Lemma 6.7.1 or Lemma

6.7.2. Corollary 6.4.2 implies that the total time to untrace all components is

O(n3 log X ), which is still slightly faster than Štefankovic’s algorithm.

Corollary 6.8.6. Let Σ be a surface composed of n triangles, and let γ be a normal

curve in Σ with total crossing length X , represented by its normal coordinates. We

can compute the normal coordinates of each normal-isotopy class of components of

γ in O(n3 log X ) time.

Theorem 6.8.5 also implies immediately that we can compute the number of

components of a given normal curve in O(n2 log X ). Štefankovic described an

algorithm that solves this problem in O(n log X ) time [179, Observation 3.3.1].

Corollary 6.8.7. Let Σ be a surface composed of n triangles, and let γ be a normal

curve in Σ with total crossing length X , represented by its normal coordinates. We

can compute the number of components of γ in O(n2 log X ) time.

6.8.4 Isotopy classes

Theorem 6.8.8. Let Σ be a surface composed of n triangles, and let γ be a normal

curve in Σ with total crossing length X , represented by its normal coordinates. We

can compute the number of isotopy classes of components of γ and the number of

components in each isotopy class in O(n2 log X ) time.

Proof: We begin by computing the number and multiplicities of the normal isotopy

classes of components of γ in O(n2 log X ) time, as described in the proof of Theorem

6.8.5. Let γ̂ be the reduced curve containing one component of γ in each non-trivial

normal isotopy class, and let γ1,γ2, . . . denote the components of γ̂. The rest of the

algorithm requires only O(n) time.

Next we compute the Euler characteristic of the components of Σ \ γ̂; to avoid

confusion, we will refer to the components of Σ \ γ̂ as pieces. Because each curve

γi is a simple arc or cycle in the 1-skeleton of the street complex S(T, γ̂), we can

compute the Euler characteristic of every piece in O(n) time using a depth-first

search in the dual graph of S(T, γ̂) [76]. In particular, we can identify which pieces

are disks (χ = 1) and annuli (χ = 0).

We can now cluster the components of γ̂ into isotopy classes as follows. Call a

cycle or arc γi obviously contractible if it is the only component of γ̂ on the boundary

of a disk piece. Call any two arcs γi and γj obviously isotopic if they are the only

components of γ̂ on the boundary of a disk piece. Finally, call any two cycles γi and

γj obviously isotopic if they comprise the boundary of an annulus piece. Let G be the

graph whose nodes are the components of γ̂ and whose edges connect obviously

isotopic components. This graph has O(n) nodes and O(n) edges, and we can easily

construct in O(n) time.

An arc or cycle in γ̂ is contractible if and only if it lies in the same component of

G as an obviously contractible arc or cycle, and two arcs or cycles in γ̂ are isotopic

90



if and only if they lie in the same component of G. Thus, we can easily cluster the

components of γ̂ into isotopy classes in O(n) time. We can also compute the number

of components of γ in each isotopy class in O(n) time by adding the sizes of the

appropriate normal-isotopy classes. �

Schaefer et al. [163] describe an algorithm to compute isotopy classes of normal

curves in time polynomial in n log X .3 Their algorithm actually computes the normal

coordinates of one component in each isotopy class. We can compute these normal

coordinates by untracing one component in each isotopy class; Lemma 6.4.1 implies

that there are at most O(g + b) classes to consider.

Corollary 6.8.9. Let Σ be a surface composed of n triangles, and let γ be a normal

curve in Σ with total crossing length X , represented by its normal coordinates. We

can compute the normal coordinates of each isotopy class of components of γ in

O((g + b)n2 log X ) time.

6.8.5 Algebraic intersection numbers

Finally, suppose γ+ and δ+ are directed normal curves that intersect only transversely

and only at a finite number of points. We call an intersection point in γ∩δ a positive

(resp. negative) crossing if γ+ crosses δ+ from left to right (resp. from right to left)

at that point; see Figure 6.12. The algebraic intersection number ι̂(γ+,δ+) is the

number of positive crossings minus the number of negative crossings. We easily

observe that ι̂(γ+,δ+) = −ι̂(δ+,γ+) = −ι̂(γ−,δ+), where γ− is the reversal of γ+.

Algebraic intersection numbers are invariant under isotopy. In fact, the algebraic

intersection number is an invariant of the integer homology classes of the two curves;

think about a curve as a flow (or circulation), see Chapter 4.

−

δ

γ+

δ

γ

Figure 6.12. Positive and negative crossings.

The signed edge coordinates of a directed normal curve γ+ are a list of the

algebraic intersection numbers of γ+ with each (arbitrarily oriented) edge in the

triangulation. Similarly, the signed corner coordinates of γ+ record, for each corner

of the triangulation, the number of counterclockwise elementary segments in that

corner, minus the number of clockwise segments. Reversing the direction of a

normal curve negates all of its signed normal coordinates.

3In their second paper [166], Schaefer et al. claim to have an algorithm to list the isotopy classes of
components of a given normal curve in O(gn2 log2 X ) time (in our notation); however, no such result
appears in any of their papers [163,166,179]. In particular, it is unclear how to determine whether two
components of γ̂ are isotopic using Štefankovic’s techniques [179].

91



Signed normal coordinates do not determine a unique curve up to normal

isotopy; nevertheless, given the signed normal coordinates of γ+ and δ+, we can

compute ı̂(γ+,δ+) in O(n) time by choosing an appropriate drawing of the two

curves [163]. For each edge of the triangulation, we move all intersections with γ+

close to one of the endpoints, chosen arbitrarily, and all intersections with δ+ close

to the other endpoint, and we then draw every elementary segment as a straight

line segment, as shown in Figure 6.13. Then it is easy to compute the number of

positive and negative crossings within each triangle in constant time, by multiplying

at most six pairs of signed corner coordinates.

Figure 6.13. Intersection patterns of two normal curves within a single triangle.

Given the (unsigned) normal coordinates of an undirected normal arc or cycle

γ, we can compute the signed normal coordinates of some orientation γ+ of γ as

follows. We begin by tracing γ in the chosen direction. We give each street in the

resulting street complex S(Σ,γ) an arbitrary reference direction. Then we untrace γ,

maintaining signed street coordinates. Thus, in each untracing step, we either add

or subtract the active street coordinates, depending on whether the directions of

the active streets on either side of γ agree or disagree. The additional bookkeeping

increases the running time of the untracing algorithm by only a small constant factor.

When the untracing algorithm ends, we have the signed edge coordinates of γ+;

computing the signed corner coordinates in O(n) additional time is straightforward.

Theorem 6.8.10. Let Σ be a surface composed of n triangles, and let γ be a con-

nected normal curve in Σ with total crossing length X , represented by its unsigned

normal coordinates. We can compute the signed normal coordinates of some orien-

tation of γ in O(n2 log X ) time.

The algebraic intersection number of two undirected normal curves γ and δ is

well-defined only if both curves are connected, and then only up to a sign change.

Formally, we define ι̂(γ,δ) = |̂ι(γ+,δ+)|, where the directions of γ+ and δ+ are

chosen arbitrarily.

Corollary 6.8.11. Let Σ be a surface composed of n triangles, and let γ and δ be

connected normal curves in Σ with total crossing length at most X , represented by

their normal coordinates. We can compute the algebraic intersection number ι̂(γ,δ)
in O(n2 log X ) time.

Štefankovic described algorithms to compute signed normal coordinates and

algebraic intersection numbers in O(n log X ) time [179, Observation 3.6.1], which

is a factor of O(n) faster than our algorithms.

92



References

[1] R. Agarwala and D. Fernández-Baca. Weighted multidimensional search and
its application to convex optimization. SIAM J. Comput. 25:83–99, 1996.

[2] P. K. Agarwal and M. Sharir. Efficient algorithms for geometric optimization.
ACM Comput. Surv. 30:412–458, 1998.

[3] P. K. Agarwal, M. Sharir, and S. Toledo. An efficient multi-dimensional
searching technique and its applications. Tech. Rep. CS-1993-20, Dept. Comp.
Sci., Duke Univ., August 1993. 〈ftp://ftp.cs.duke.edu/pub/dist/techreport/
1993/1993-20.ps.gz〉.

[4] I. Agol, J. Hass, and W. P. Thurston. The computational complexity of knot
genus and spanning area. Trans. Amer. Math. Soc. 358(9):3821–3850, 2006.

[5] R. K. Ahuja, T. L. Magnanti, and J. Orlin. Network Flows: Theory, Algorithms,
and Applications. Prentice Hall, 1993.

[6] H. Alt and M. Buchin. Semi-computability of the Fréchet distance between
surfaces. Proc. 21st Euro. Workshop on Comput. Geom., 45–48, 2005.

[7] H. Alt and M. Godau. Computing the Fréchet distance between two polygonal
curves. Internat. J. Comput. Geom. Appl. 5:75–91, 1995.

[8] C. Bennis, J.-M. Vézien, G. Iglésias, and A. Gagalowicz. Piecewise surface
flattening for non-distorted texture mapping. Proc. SIGGRAPH ’91, 237–246,
1991. vol. 25. 〈citeseer.nj.nec.com/bennis91piecewise.html〉.

[9] M. D. Berg, M. V. Kreveld, and S. Schirra. A new approach to subdivision
simplification. Proc. 12th International Symp Symp. Comp. Assist. Cartog.,
79–88, 1995.

[10] S. Bespamyatnikh. Computing homotopic shortest paths in the plane. J.
Algorithms 49(2):284–303, 2003.

[11] J. S. Birman and C. Series. Geodesics with bounded intersection number on
surfaces are sparsely distributed. Topology 24(2):217–225, 1985.

[12] J. S. Birman and C. Series. Algebraic linearity for an automorphism of a
surface group. J. Pure Appl. Algebra 52:227–275, 1988.

[13] R. V. Book. Dehn’s algorithm and the complexity of word problems. Amer.
Math. Monthly 95(10):919–925, 1988.

[14] G. Borradaile. Exploiting Planarity for Network Flow and Connectivity Problems.
Ph.D. thesis, Brown University, May 2008. 〈http://www.cs.brown.edu/
research/pubs/theses/phd/2008/glencora.pdf〉.

93

ftp://ftp.cs.duke.edu/pub/dist/techreport/1993/1993-20.ps.gz
ftp://ftp.cs.duke.edu/pub/dist/techreport/1993/1993-20.ps.gz
citeseer.nj.nec.com/bennis91piecewise.html
http://www.cs.brown.edu/research/pubs/theses/phd/2008/glencora.pdf
http://www.cs.brown.edu/research/pubs/theses/phd/2008/glencora.pdf


[15] G. Borradaile and P. Klein. An O(n log n)-time algorithm for maximum st-
flow in a directed planar graph. Proc. 17th Ann. ACM-SIAM Symp. Discrete
Algorithms, 524–533, 2006.

[16] G. Borradaile and P. Klein. An O(n log n) algorithm for maximum st-flow in
a directed planar graph. J. ACM 56(2): 9:1–30, 2009.

[17] G. Borradaile, P. N. Klein, S. Mozes, Y. Nussbaum, and C. Wulff-Nilsen.
Multiple-source multiple-sink maximum flow in directed planar graphs in
near-linear time. Proceedings of the 2011 IEEE 52nd Annual Symposium on
Foundations of Computer Science, 170–179, 2011. FOCS ’11, IEEE Computer
Society. 〈http://dx.doi.org/10.1109/FOCS.2011.73〉.

[18] S. Brakatsoulas, D. Pfoser, R. Salas, and C. Wenk. On map-matching vehicle
tracking data. Proc. 31st VLDB Conference, 853–864, 2005. VLDB Endowment.

[19] G. R. Brightwell and P. Winkler. Submodular percolation. SIAM J. Discret.
Math. 23(3):1149–1178. Society for Industrial and Applied Mathematics,
2009. 〈http://dx.doi.org/10.1137/07069078X〉.

[20] K. Buchin, M. Buchin, and J. Gudmundsson. Detecting single file movement.
Proc. 16th ACM SIGSPATIAL Int. Conf. Adv. GIS, 288–297, 2008.

[21] K. Buchin, M. Buchin, J. Gudmundsson, M. L., and J. Luo. Detecting commut-
ing patterns by clustering subtrajectories. Proc. 19th Annu. Internat. Sympos.
Algorithms Comput., 644–655, 2008.

[22] C. Buehler, S. J. Gortler, M. F. Cohen, and L. McMillan. Minimal surfaces for
stereo. Proc. 7th European Conf. Comput. Vision, 885–899, 2002. vol. 3.

[23] B. A. Burton. The complexity of the normal surface solution space. Proc.
26th Ann. Symp. Comput. Geom., 201–209, 2010.

[24] B. A. Burton and M. Ozlen. Computing the crosscap number of a knot using
integer programming and normal surfaces. ACM Trans. Math. Software (to
appear), 2012.

[25] B. Buttenfield. Treatment of the cartographic line. Cartographica 22:1–26,
1985.

[26] S. Cabello. Many distances in planar graphs. Proc. 17th Ann. ACM-SIAM
Symp. Discrete Algorithms, 1213–1220, 2006.

[27] S. Cabello and E. W. Chambers. Multiple source shortest paths in a genus g
graph. Proc. 18th Ann. ACM-SIAM Symp. Discrete Algorithms, 89–97, 2007.

[28] S. Cabello, É. Colin de Verdière, and F. Lazarus. Finding shortest non-trivial
cycles in directed graphs on surfaces. Proc. 26th Ann. Symp. Comput. Geom.,
156–165, 2010.

[29] S. Cabello, É. Colin de Verdière, and F. Lazarus. Finding cycles with topologi-
cal properties in embedded graphs. SIAM J. Discrete Math. 25:1600–1614,
2011.

[30] S. Cabello, Y. Liu, A. Mantler, and J. Snoeyink. Testing homotopy for paths in
the plane. Discrete Comput. Geom. 31:61–81, 2004.

[31] S. Cabello and B. Mohar. Finding shortest non-separating and non-
contractible cycles for topologically embedded graphs. Discrete Comput.
Geom. 37:213–235, 2007.

94

http://dx.doi.org/10.1109/FOCS.2011.73
http://dx.doi.org/10.1137/07069078X


[32] G. Carlsson, T. Ishkhanov, V. de Silva, and A. Zomorodian. On the local
bahavior of spaces of natural images. Int. J. Comput. Vision 76(1):1–12,
2008.

[33] E. Chambers, S. Cabello, and J. Erickson. Multiple-source shortest paths in
embedded graphs. , 2012.

[34] E. W. Chambers, E. Colin de Verdière, J. Erickson, S. Lazard, F. Lazarus, and
S. Thite. Homotopic fréchet distance between curves or, walking your dog in
the woods in polynomial time. Comput. Geom. Theory Appl. 43(3):295–311,
2010.

[35] E. W. Chambers, É. Colin de Verdière, J. Erickson, F. Lazarus, and K. Whittle-
sey. Splitting (complicated) surfaces is hard. Proc. 22nd Ann. Symp. Comput.
Geom., 421–429, 2006.

[36] E. W. Chambers, É. Colin de Verdière, J. Erickson, F. Lazarus, and K. Whit-
tlesey. Splitting (complicated) surfaces is hard. Comput. Geom. Theory Appl.
41(1–2):94–110, 2008.

[37] E. W. Chambers, J. Erickson, and A. Nayyeri. SIAM Journal of Computing.

[38] E. W. Chambers, J. Erickson, and A. Nayyeri. Homology flows, cohomology
cuts. Proc. 42nd Ann. ACM Symp. Theory Comput., 273–282, 2009.

[39] E. W. Chambers, J. Erickson, and A. Nayyeri. Minimum cuts and shortest
homologous cycles. Proc. 25th Ann. Symp. Comput. Geom., 377–385, 2009.

[40] E. W. Chambers and D. Letscher. On the height of a homotopy. Proc. 21st
Canad. Conf. Comput. Geom., 2009.

[41] E. W. Chambers and D. Letscher. Erratum for on the height of a homotopy.
〈http://mathcs.slu.edu/~chambers/papers/hherratum.pdf〉. http://mathcs.
slu.edu/~chambers/papers/hherratum.pdf, 2010.

[42] C. Chen and D. Freedman. Quantifying homology classes. Proc. 25th Ann.
Symp. Theoretical Aspects Comput. Sci., 169–180, 2008. Dagstuhl Seminar Pro-
ceedings 08001. 〈http://drops.dagstuhl.de/opus/volltexte/2008/1343/〉.

[43] C. Chen and D. Freedman. Hardness results for homology localization. Proc.
21st Ann. ACM-SIAM Symp. Discrete Algorithms, 1594–1604, 2010.

[44] E. Cohen. Efficient parallel shortest-paths in digraphs with a separator
decomposition. J. Algorithms 21:331–357, 1996.

[45] É. Colin de Verdière. Topological algorithms for graphs on surfaces. Preprint,
May 2012.

[46] É. Colin de Verdière and J. Erickson. Tightening non-simple paths and cycles
on surfaces. Proc. 17th Ann. ACM-SIAM Symp. Discrete Algorithms, 192–201,
2006.

[47] É. Colin de Verdière and J. Erickson. Tightening non-simple paths and cycles
on surfaces. SIAM J. Compu., 3784–3813, 2010.

[48] É. Colin de Verdière and F. Lazarus. Optimal system of loops on an orientable
surface. Discrete Comput. Geom. 33(3):507–534, 2005.

[49] É. Colin de Verdière and F. Lazarus. Optimal pants decompositions and
shortest homotopic cycles on an orientable surface. J. ACM 54(4), 2007.

95

http://mathcs.slu.edu/~chambers/papers/hherratum.pdf
http://mathcs.slu.edu/~chambers/papers/hherratum.pdf
http://mathcs.slu.edu/~chambers/papers/hherratum.pdf
http://drops.dagstuhl.de/opus/volltexte/2008/1343/


[50] A. Collins, A. Zomorodian, G. Carlsson, and L. J. Guibas. A barcode shape
descriptor for curve point cloud data. Comput. & Graphics 28(6):881–894,
2004.

[51] A. F. Cook, A. Driemel, S. Har-Peled, J. Sherette, and C. Wenk. Computing the
Fréchet distance between folded polygons. Proc. 12th Workshop Algorithms
Data Struct., 267–278, 2011.

[52] A. F. Cook and C. Wenk. Geodesic Fréchet distance inside a simple polygon.
ACM Trans. Algo. 7:9:1–9:19. ACM, 2010.

[53] M. Dehn. Über unendliche diskontinuierliche Gruppen. Math. Ann. 71(1):16–
144, 1911.

[54] M. Dehn. Transformation der Kurven auf zweiseitigen Flächen. Math. Ann.
72(3):413–421, 1912.

[55] M. Dehn. Die Gruppe der Abbildungsklassen (Das arithmetische Feld auf
Flächen). Acta Mathematica 69:135–206, 1938.

[56] P. Dehornoy, I. Dynnikov, D. Rolfsen, and B. Wiest. Ordering Braids. Math-
ematical Surveys and Monographs 148. American Mathematical Society,
2008.

[57] E. D. Demaine and J. O’Rourke. Geometric Folding Algorithms: Linkages,
Origami, Polyhedra. Cambridge Univ. Press, 2007.

[58] T. K. Dey. Curve and Surface Reconstruction: Algorithms with Mathematical
Analysis. Cambridge Univ. Press, 2007.

[59] T. K. Dey and S. Guha. Transforming curves on surfaces. J. Comput. System
Sci. 58:297–325, 1999.

[60] T. K. Dey, A. N. Hirani, and B. Krishnamoorthy. Optimal homologous cycles,
total unimodularity, and linear programming. Proc. 42nd Ann. ACM Symp.
Theory Comput., 221–230, 2010.

[61] T. K. Dey, A. N. Hirani, and B. Krishnamoorthy. Optimal homologous cycles,
total unimodularity, and linear programming. SIAM J. Comput. 40(4):1026–
1044, 2011.

[62] T. K. Dey and H. Schipper. A new technique to compute polygonal schema for
2-manifolds with application to null-homotopy detection. Discrete Comput.
Geom. 14(1):93–110, 1995.

[63] T. K. Dey, J. Sun, and Y. Wang. Approximating loops in a shortest homology
basis from point data. Proc. 26th Ann. Symp. Comput. Geom., 166–175, 2010.

[64] S. I. Diatch and D. A. Spielman. Faster lossy generalized flow via interior
point algorithms. Proc. 40th Ann. ACM Symp. Theory Comput., 451–460,
2008.

[65] V. Diekert and M. Kufleitner. A remark about quadratic trace equations. Proc.
6th Int. Conf. Devel. Language Theory, 59–66, 2003. Lecture Notes Comput.
Sci. 2450, Springer-Verlag.

[66] N. M. Dunfield and A. N. Hirani. The least spanning area of a knot and the
optimal bounding chain problem. Proc. 27th Ann. Symp. Comput. Geom.,
135–144, 2011.

96



[67] I. Dynnikov and B. Wiest. On the complexity of braids. J. Europ. Math. Soc.
9(4):801–840, 2007.

[68] H. Edelsbrunner and J. Harer. Computational Topology: An Introduction.
American Mathematical Society, 2010.

[69] A. Efrat, L. J. Guibas, S. Har-Peled, J. S. Mitchell, and T. Murali. New
similarity measures between polylines with applications to morphing and
polygon sweeping. Discrete Comput. Geom. 28:535–569, 2002.

[70] A. Efrat, S. G. Kobourov, and A. Lubiw. Computing homotopic shortest paths
efficiently. Comput. Geom. Theory Appl. 35(3):162–172, 2006.

[71] T. Eiter and H. Mannila. Computing discrete Fréchet distance. Tech. Report
CD-TR 94/64, Christian Doppler Lab. Expert Sys., TU Vienna, 1994.

[72] D. Eppstein. Dynamic generators of topologically embedded graphs. Proc.
14th Ann. ACM-SIAM Symp. Discrete Algorithms, 599–608, 2003.

[73] J. Erickson. Maximum flows and parametric shortest paths in planar graphs.
Proc. 21st Ann. ACM-SIAM Symp. Discrete Algorithms, 794–804, 2010.

[74] J. Erickson. Shortest non-trivial cycles in directed surface graphs. Proc. 27th
Ann. Symp. Comput. Geom., 236–243, 2011.

[75] J. Erickson. Combinatorial optimization of cycles and bases. Proceedings of
Simposia in Applied Mathematics, 2012. 70.

[76] J. Erickson and S. Har-Peled. Optimally cutting a surface into a disk. Discrete
Comput. Geom. 31(1):37–59, 2004.

[77] J. Erickson and A. Nayyeri. Shortest homologous cycles and minimum cuts
via homology covers. Proc. 22nd Ann. ACM-SIAM Symp. Discrete Algorithms,
1166–1176, 2011.

[78] J. Erickson and A. Nayyeri. Tracing compressed curves in triangulated
surfaces. , 2012.

[79] J. Erickson and K. Whittlesey. Greedy optimal homotopy and homology
generators. Proc. 16th Ann. ACM-SIAM Symp. Discrete Algorithms, 1038–
1046, 2005.

[80] J. Erickson and K. Whittlesey. Transforming curves on surfaces redux. ,
2012.

[81] J. Fakcharoenphol and S. Rao. Planar graphs, negative weight edges, shortest
paths, and near linear time. J. Comput. Syst. Sci. 72(5):868–889, 2006.

[82] A. Fathi, F. Laudenbach, and V. Poénaru. Travaux de Thurston sur les surfaces.
Astérisque 66-67. Soc. Math. de France, 1979. Séminaire Orsay. English
translation in [83].

[83] A. Fathi, F. Laudenbach, and V. Poénaru. Thurston’s Work on Surfaces. Mathe-
matical Notes. Princeton Univ. Press, 2011. Translated by Djun Kim and Dan
Margalit. English translation of [82].

[84] M. S. Floater. Parameterization and smooth approximation of surface trian-
gulations. Comput. Aided Geom. Design 14(4):231–250, 1997.

97



[85] K. Fox. Shortest non-trivial cycles in directed and undirected surface graphs.
, 2012.

[86] M. Frechét. Sur quelques points du calcul fonctionnel. Rendic. Circ. Mat.
Palermo 22:1–74, 1906.

[87] M. Frechét. Sur la distance de deux surfaces. Ann. Soc. Polonaise Math.
3:4–19, 1924.

[88] G. N. Frederickson. Fast algorithms for shortest paths in planar graphs with
applications. SIAM J. Comput. 16(6):1004–1004, 1987.

[89] M. L. Furst, J. L. Gross, and L. A. McGeoch. Finding a maximum-genus graph
imbedding. J. Assoc. Comput. Mach. 35(3):523–534, 1988.

[90] L. Gąsieniec, M. Karpinski, W. Plandowski, and W. Rytter. Efficient algorithms
for Lempel-Ziv encoding. Proc. 8th Scand. Workshop Algorithm Theory, 392–
403, 1996. Lecture Notes Comput. Sci. 1097, Springer.

[91] S. M. Gersten and H. B. Short. Small cancellation theory and automatic
groups. Invent. Math. 102:305–334, 1990.

[92] R. Ghrist. Configuration spaces, braids, and robotics. Unpublished
manuscript, July 2007. 〈http://www.math.uiuc.edu/~ghrist/preprints/
singaporetutorial.pdf〉.

[93] M. Godau. On the complexity of measuring the similarity between geometric
objects in higher dimensions. Ph.D. thesis, Free University of Berlin, 1999.

[94] A. V. Goldberg and S. Rao. Beyond the flow decomposition barrier. J. ACM
45(5):783–797, 1998.

[95] A. V. Goldberg and R. E. Tarjan. A new approach to the maximum-flow
problem. J. Assoc. Comput. Mach. 35(4):921–940, 1988.

[96] H. Gong, J. Sim, M. Likhachev, and J. Shi. Multi-hypothesis motion planning
for visual object tracking. Computer Vision, IEEE International Conference on
0:619–626. IEEE Computer Society, 2011.

[97] S. J. Gortler and D. Kirsanov. A discrete global minimization algorithm
for continuous variational problems. Comput. Sci. Tech. Rep. TR-14-04,
Harvard Univ., 2004. 〈http://gvi.seas.harvard.edu/sites/all/files/Gortler_
DiscreteGlobal.pdf〉.

[98] L. Grady. Computing exact discrete minimal surfaces: Extending and solving
the shortest path problem in 3D with applicaton to segmentation. Proc. IEEE
CS Conf. Comput. Vis. Pattern Recog., 67–78, 2006. vol. 1.

[99] L. Grady. Minimal surfaces extend shortest path segmentation methods to
3D. IEEE Trans. Pattern Anal. Mach. Intell. 32(2):321–334, 2010.

[100] J. L. Gross and T. W. Tucker. Topological graph theory. Wiley-Interscience,
1987. Reprinted by Dover Publ., 2001.

[101] M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its
consequences in combinatorial optimization. Combinatorica 1(2):169–197,
1981.

[102] W. Haken. Theorie der Normalflächen: Ein Isotopiekriterium für den
Kreisknoten. Acta Mathematica 105:245–375, 1961.

98

http://www.math.uiuc.edu/~ghrist/preprints/singaporetutorial.pdf
http://www.math.uiuc.edu/~ghrist/preprints/singaporetutorial.pdf
http://gvi.seas.harvard.edu/sites/all/files/Gortler_DiscreteGlobal.pdf
http://gvi.seas.harvard.edu/sites/all/files/Gortler_DiscreteGlobal.pdf


[103] S. Har-Peled, A. Nayyeri, M. Salavatipour, and A. Sidiropoulos. How to walk
your dog in the mountains with no magic leash. Proceedings of the 28th
symposuim on Computational Geometry, 121–130, 2012. SoCG ’12, ACM.
〈http://doi.acm.org/10.1145/2261250.2261269〉.

[104] S. Har-Peled and B. Raichel. The Fréchet distance revisited and extended.
Proc. 27th Annu. ACM Sympos. Comput. Geom., 448–457, 2011. http://www.
cs.uiuc.edu/~sariel/papers/10/frechet3d/.

[105] R. Hassin. Maximum flow in (s, t) planar networks. Inform. Proc. Lett. 13:107,
1981.

[106] R. Hassin and D. B. Johnson. An O(n log2 n) algorithm for maximum flow in
undirected planar networks. SIAM J. Comput. 14(3):612–624, 1985.

[107] J. Hass, J. C. Lagarias, and N. Pippenger. The computational complexity of
knot and link problems. J. ACM 46(2):185–211, 1999.

[108] A. Hatcher. Algebraic Topology. Cambridge Univ. Press, 2002. 〈http://www.
math.cornell.edu/~hatcher/AT/ATpage.html〉.

[109] M. R. Henzinger, P. Klein, S. Rao, and S. Subramanian. Faster shortest-path
algorithms for planar graphs. J. Comput. Syst. Sci. 55(1):3–23, 1997.

[110] J. Hershberger and J. Snoeyink. Computing minimum length paths of a given
homotopy class. Comput. Geom. Theory Appl. 4:63–98, 1994.

[111] J. M. Hochstein and K. Weihe. Maximum s-t-flow with k crossings in
O(k3n log n) time. Proc. 18th Ann. ACM-SIAM Symp. Discrete Algorithms,
843–847, 2007.

[112] H. Imai and K. Iwano. Efficient sequential and parallel algorithms for planar
minimum cost flow. Proc. SIGAL Int. Symp. Algorithms, 21–30, 1990. Lecture
Notes Comput. Sci. 450, Springer-Verlag.

[113] A. Itai and Y. Shiloach. Maximum flow in planar networks. SIAM J. Comput.
8:135–150, 1979.

[114] G. F. Italiano, Y. Nussbaum, P. Sankowski, and C. Wulff-Nilsen. Improved
algorithms for min cut and max flow in undirected planar graphs. Proc. 43rd
Ann. ACM Symp. Theory Comput., 313–322, 2011.

[115] W. Jaco, D. Letscher, and J. H. Rubinstein. Algorithms for essential surfaces
in 3-manifolds. Topology and Geometry: Commemorating SISTAG, 107–124,
2002. Contemporary Mathematics 314, American Mathematical Society.

[116] W. Jaco and J. H. Rubinstein. 0-efficient triangulations of 3-manifolds. J. Diff.
Geom. 65:61–168, 2003.

[117] L. Janiga and V. Koubek. Minimum cut in directed planar networks. Kyber-
netika 28(1):37–49, 1992.

[118] D. B. Johnson and S. M. Venkatesan. Partition of planar flow networks
(preliminary version). Proc. 24th IEEE Symp. Found. Comput. Sci., 259–264,
1983.

[119] M. Karpinski, W. Rytter, and A. Shinohara. An efficient pattern-matching
algorithm for strings with short descriptions. Nordic J. Comput. 4:172–186,
1997.

99

http://doi.acm.org/10.1145/2261250.2261269
http://www.cs.uiuc.edu/~sariel/papers/10/frechet3d/
http://www.cs.uiuc.edu/~sariel/papers/10/frechet3d/
http://www.math.cornell.edu/~hatcher/AT/ATpage.html
http://www.math.cornell.edu/~hatcher/AT/ATpage.html


[120] E. J. Keogh and M. J. Pazzani. Scaling up dynamic time warping to massive
dataset. Proc. of the Third Euro. Conf. Princip. Data Mining and Know. Disc.,
1–11, 1999.

[121] S. Khuller, J. Naor, and P. Klein. The lattice structure of flow in planar graphs.
SIAM J. Discrete Math. 477–490, 1993.

[122] J. C. Kieffer and E. Yang. Grammar based codes: A new class of universal
lossless source codes. IEEE Trans. Inform. Theory 46(3):737–754, 2000.

[123] M. Kim, S. Kim, and M. Shin. Optimization of subsequence matching under
time warping in time-series databases. Proc. ACM symp. Applied comput.,
581–586, 2005.

[124] D. Kirsanov. Minimal discrete curves and surfaces. Ph.D. thesis, Div. Engin.
Appl. Sci., Harvard Univ., September 2004. 〈http://www.eecs.harvard.edu/
~sjg/papers/danilthesis.pdf〉.

[125] P. Klein. Multiple-source shortest paths in planar graphs. Proc. 16th Ann.
ACM-SIAM Symp. Discrete Algorithms, 146–155, 2005.

[126] P. Klein, S. Mozes, and O. Weimann. Shortest paths in directed planar graphs
with negative lengths: A linear-space O(n log2 n)-time algorithm. ACM Trans.
Algorithms 6(2):article 30, 2010.

[127] H. Kneser. Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten.
Jahresbericht Deutschen Math.-Verein. 38:248–260, 1930.

[128] M. Kutz. Computing shortest non-trivial cycles on orientable surfaces of
bounded genus in almost linear time. Proc. 22nd Ann. Symp. Comput. Geom.,
430–438, 2006.

[129] J. Lacki, Y. Nussbaum, P. Sankowski, and C. Wulff-Nilsen. Single source - all
sinks max flows in planar digraphs.

[130] G. Lamé. Note sur la limite du monbre des divisions dans la recherche du
plus grand commun diviseur entre deux nombres entiers. Compt. Rend. Acad.
Sci., Paris 19:857–870, 1844.

[131] F. Lazarus and J. Rivaud. On the homotopy test on surfaces. Preprint, October
21, 2011.

[132] Y. Lifshits. Algorithms and Complexity Analysis for Processing Compressed Texts.
Ph.D. thesis, Steklov Inst. Math., May 2007. In Russian.

[133] Y. Lifshits. Processing compressed texts: A tractabiliity border. Proc. 18th Ann.
Symp. Combin. Pattern Matching, 228–240, 2007. Lecture Notes Comput. Sci.
4850, Springer-Verlag.

[134] R. J. Lipton, D. J. Rose, and R. E. Tarjan. Generalized nested dissection. SIAM
J. Numer. Anal. 16:346–358, 1979.

[135] L. A. Lyusternik. Shortest Paths: Variational Problems. Popular Lectures
Math. 13. Pergamon Press, 1964. Translated and adapted from the Russian
by P. Collins and Robert B. Brown.

[136] F. M. Maley. Single-Layer Wire Routing and Compaction. MIT Press, Cambridge,
MA, 1990.

100

http://www.eecs.harvard.edu/~sjg/papers/danilthesis.pdf
http://www.eecs.harvard.edu/~sjg/papers/danilthesis.pdf


[137] A. Mascret, T. Devogele, I. L. Berre, and A. Hénaff. Coastline matching
process based on the discrete Fréchet distance. Proc. 12th Int. Sym. Spatial
Data Handling, 383–400, 2006.

[138] S. T. McCormick, M. R. Rao, and G. Rinaldi. Easy and difficult objective
functions for max cut. Math. Program., Ser. B 94:459–466, 2003.

[139] G. L. Miller and J. Naor. Flow in planar graphs with multiple sources and
sinks. SIAM J. Comput. 24(5):1002–1017, 1995.

[140] J. S. B. Mitchell, D. M. Mount, and C. H. Papadimitriou. The discrete geodesic
problem. SIAM J. Comput. 16:647–668, 1987.

[141] M. Miyazaki, A. Shinohara, and M. Takeda. An improved pattern matching
algorithm for strings in terms of straight-line programs. J. Discrete Algorithms
[Hermes] 1(1):187–204, 2000.

[142] R. Moeckel. Geodesics on modular surfaces and continued fractions. Ergodic
Theory Dynam. Sys. 2:69–83, 1982.

[143] B. Mohar and C. Thomassen. Graphs on Surfaces. Johns Hopkins Univ. Press,
2001.

[144] S. Mozes and C. Wulff-Nilsen. Shortest paths in planar graphs with real
lengths in O(n log2 n/ log log n) time. Proc. 18th Ann. Europ. Symp. Algo-
rithms, 206–217, 2010. Lecture Notes Comput. Sci. 6347, Springer-Verlag.

[145] J. B. Orlin. A faster strongly polynomial minimum cost flow algorithm. Oper.
Res. 41(2):338–350, 1993.

[146] J. Pach and G. Tóth. Recognizing string graphs is decidable. Discrete Comput.
Geom. 28(4):593–606, 2001.

[147] V. Y. Pan and J. H. Reif. Fast and efficient parallel solution of sparse linear
systems. SIAM J. Comput. 22(6):1227–1250, 1993.

[148] M. Parizeau and R. Plamondon. A comparative analysis of regional cor-
relation, dynamic time warping, and skeletal tree matching for signature
verification. IEEE Trans. Pattern Anal. Mach. Intell. 12(7):710–717. IEEE
Computer Society, 1990. 〈http://dx.doi.org/10.1109/34.56215〉.

[149] R. C. Penner. The action of the mapping class group on curves in surfaces.
L’Enseignment Mathématique 30:39–55, 1984.

[150] R. C. Penner and J. L. Harer. Combinatorics of Train Tracks. Annals of Math.
Studies 125. Princeton Univ. Press, 1992.

[151] D. Piponi and G. Borshukov. Seamless texture mapping of subdivision surfaces
by model pelting and texture blending. Proc. SIGGRAPH 2000, 471–478,
2000.

[152] W. Plandowski and W. Rytter. Application of Lempel-Ziv encodings to the
solution of word equations. Proc. 25th Int. Conf. Automata Lang. Prog.,
731–742, 1998. Lecture Notes Comput. Sci. 1443, Springer-Verlag.

[153] H. Poincaré. Analysis Situs. J. École Polytechnique 1:1–121, 1895. Reprinted
in Ouvres VI:193–288. English translation in [155].

[154] H. Poincaré. Cinquième complement à l’analysis situs. Rendiconti del Circulo
Matematico di Palermo 18:45–110, 1904. English translation in [155].

101

http://dx.doi.org/10.1109/34.56215


[155] H. Poincaré. Papers on Topology: Analysis Situs and Its Five Supplements.
History of Mathematics 37. American Mathematical Society, 2010. Translated
from the French and with an introduction by John Stillwell.

[156] J. Reif. Minimum s-t cut of a planar undirected network in O(n log2 n) time.
SIAM J. Comput. 12:71–81, 1983.

[157] G. Ringel. Map Color Theorem. Springer-Verlag, 1974.

[158] G. Ringel and J. W. T. Youngs. Solution of the Heawood map-coloring problem.
Proc. Nat. Acad. Sci. USA 60:438–445, 1968.

[159] J. M. Robson and V. Diekert. On quadratic word equations. Proc. 16th Ann.
Conf. Theoretical Aspects Comput. Sci., 217–226, 1999. Lecture Notes Comput.
Sci. 1563, Springer-Verlag.

[160] J. M. Robson and V. Diekert. Quadratic word equations. Jewels are Forever,
Contributions on Theoretical Computer Science in Honor of Arto Salomaa,
314–326, 1999. Springer-Verlag.

[161] W. Rytter. Application of Lempel-Ziv factorization to the approximation of
grammar-based compression. Theoret. Comput. Sci. 302:211–222, 2003.

[162] A. D. abd S. Har-Peled and C. Wenk. Approximating the Fréchet distance for
realistic curves in near linear time. Discrete Comput. Geom. 48:94–127, 2012.

[163] M. Schaefer, E. Sedgwick, and D. Štefankovič. Algorithms for normal curves
and surfaces. Proc. 8th Int. Conf. Comput. Combin., 370–380, 2002. Lecture
Notes Comput. Sci. 2387, Springer-Verlag.

[164] M. Schaefer, E. Sedgwick, and D. Štefankovič. Recognizing string graphs in
NP. J. Comput. System Sci. 67(2):365–380, 2003.

[165] M. Schaefer, E. Sedgwick, and D. Štefankovič. Spiraling and folding: The
topological view. Proc. 19th Ann. Canadian Conf. Comput. Geom., 73–76,
2007.

[166] M. Schaefer, E. Sedgwick, and D. Štefankovič. Computing Dehn twists and
geometric intersection numbers in polynomial time. Proc. 20th Canadian Conf.
Comput. Geom., 111–114, 2008. Full version: Tech. Rep. 05–009, Comput.
Sci. Dept., DePaul Univ., April 2005, 〈http://facweb.cs.depaul.edu/research/
techreports/abstract05009.htm〉.

[167] M. Schaefer, E. Sedgwick, and D. Štefankovič. Spiraling and folding: The
word view. Algorithmica 60(3):609–626, 2011.

[168] H. Schipper. Determining contractibility of curves. Proceedings of the eighth
annual symposium on Computational geometry, 358–367, 1992. SCG ’92,
ACM. 〈http://doi.acm.org/10.1145/142675.142749〉.

[169] S. Schleimer. Sphere recognition lies in NP. Preprint, July 2004.

[170] A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Algorithms
and Combinatorics 24. Springer-Verlag, 2003.

[171] C. Series. The modular surface and continued fractions. J. London Math. Soc.
31:69–80, 1985.

[172] C. Series. Geometrical Markov coding of geodesics on surfaces of constant
negative curvature. Ergodic Theory Dynam. Sys. 6(4):601–625, 1986.

102

http://facweb.cs.depaul.edu/research/techreports/abstract05009.htm
http://facweb.cs.depaul.edu/research/techreports/abstract05009.htm
http://doi.acm.org/10.1145/142675.142749


[173] J. Serrà, E. Gómez, P. Herrera, and X. Serra. Chroma binary similarity and
local alignment applied to cover song identification. IEEE Transactions on
Audio, Speech & Language Processing 16(6):1138–1151, 2008.

[174] J. Shallit. Origins of the analysis of the Euclidean algorithm. Hist. Math.
21:401–419, 1994.

[175] A. Sheffer and E. de Sturler. Surface parameterization for meshing by
triangulation flattening. Proc. 9th International Meshing Roundtable, 161–172,
2000.

[176] V. de Silva, R. Ghrist, and A. Muhammad. Blind swarms for coverage in 2-d.
Robotics: Science and Systems’05, 335–342, 2005.

[177] D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. J. Comput.
Syst. Sci. 26(3):362–391, 1983.

[178] E. Sriraghavendra, K. K., and C. Bhattacharyya. Fr&#233;chet distance
based approach for searching online handwritten documents. Proceedings
of the Ninth International Conference on Document Analysis and Recognition
- Volume 01, 461–465, 2007. ICDAR ’07, IEEE Computer Society. 〈http:
//dl.acm.org/citation.cfm?id=1304595.1304769〉.

[179] D. Štefankovič. Algorithms for simple curves on surfaces, string graphs, and
crossing numbers. Ph.D. thesis, Dept. Comput. Sci., Univ. Chicago, June 2005.

[180] J. Stillwell. Classical Topology and Combinatorial Group Theory, 2nd edition.
Graduate Texts in Mathematics 72. Springer-Verlag, 1993.

[181] J. M. Sullivan. A Crystalline Approximation Theorem for Hypersurfaces. Ph.D.
thesis, Princeton Univ., October 1990. 〈http://torus.math.uiuc.edu/jms/
Papers/thesis/thesis.pdf〉.

[182] S. Tazari and M. Müller-Hannemann. Shortest paths in linear time on minor-
closed graph classes, with an application to Steiner tree approximation.
Discrete Appl. Math. 157:673–684, 2009.

[183] C. Thomassen. Embeddings of graphs with no short noncontractible cycles.
J. Comb. Theory Ser. B 48(2):155–177, 1990.

[184] W. P. Thurston. On the geometry and dynamics of diffeomorphisms of surfaces.
Bull. Amer. Math. Soc. 19(2):417–431, 1988. Circulated as a preprint in 1976.

[185] P. M. Vaidya. Speeding-up linear programming using fast matrix multiplica-
tion. Proc. 30th IEEE Symp. Found. Comput. Sci., 332–337, 1989.

[186] S. M. Venkatesan. Algorithms for network flows. Ph.D. thesis, The Pennsylvania
State University, 1983. Cited in [118].

[187] Y. Wang. Measuring similarity between curves on 2-manifolds via minimum
deformation area. , 2008.

[188] K. Weihe. Edge-disjoint (s, t)-paths in undirected planar graphs in linear
time. J. Algorithms 23(1):121–138, 1997.

[189] K. Weihe. Maximum (s, t)-flows in planar networks in O(|V | log |V |)-time. J.
Comput. Syst. Sci. 55(3):454–476, 1997.

103

http://dl.acm.org/citation.cfm?id=1304595.1304769
http://dl.acm.org/citation.cfm?id=1304595.1304769
http://torus.math.uiuc.edu/jms/Papers/thesis/thesis.pdf
http://torus.math.uiuc.edu/jms/Papers/thesis/thesis.pdf


[190] C. Wenk, R. Salas, and D. Pfoser. Addressing the need for map-matching
speed: Localizing global curve-matching algorithms. Proc. 18th Int. Conf. Sci.
Statis. Database Manag., 879–888, 2006.

[191] A. Zomorodian. Topology for Computing. Cambridge Univ. Press, 2005.

104


	Chapter 1 Introduction
	History
	New results

	Chapter 2 Background
	Graphs
	Surfaces
	Auxiliary directed graph
	Graph embedding
	Duality
	Homotopy and isotopy
	Chains, circulations, and flows
	Homology
	Piecewise linear surfaces
	Curve similarity
	Frechét distance
	Homotopic Frechét distance and homotopy height
	Discrete problems


	Chapter 3 Z2-homologous cycles
	Related results
	Equivalent cycles
	Shortest non-trivial cycles
	Flows in sparse graphs
	Flows and cuts in planar graphs
	Generalizations of planar cuts

	Undirected minimum cut and directed non-separating cycle
	Forest-cotree construction and greedy system of arcs
	Homology signatures and homology test
	Z-homology
	Z2-homology

	Minimum homologous subgraph and the Z2-homology cover
	The Z2-homology cover
	Computing Z2-minimal cycles
	Computing Z2-minimal even subgraphs

	NP-hardness

	Chapter 4 Flows and Z-homology
	Introduction
	Homology flows
	Overview
	Homologous feasible flows
	Shortest paths with negative edges
	Basic flows and optimization

	Cohomology cuts
	Homology-invariant values
	Minimum-cost homologous circulation


	Chapter 5 Homotopic Frechét distance
	Introduction
	Related results
	Motivation and overview
	Why are these measures interesting?
	Overview of the algorithms

	Geodesic paths, an overview
	Homotopy height
	Settings
	The discrete algorithm
	The continuous algorithm
	Homotopy height if edges are short
	Breaking the disk into strips, pockets and chunks
	Analysis

	Homotopy height if there are long edges
	The result


	Homotopic Frechét distance
	Approximating the regular Frechét distance
	The continuous case

	The discrete case
	Without mountains
	With mountains, a decision procedure
	On the left and right geodesics
	The decision algorithm

	A strongly polynomial approximation algorithm
	The algorithm
	Analysis
	The algorithm



	Chapter 6 Tracing compressed curves
	Introduction
	Related results
	Overview
	Tracing
	Applications
	Computational assumptions

	Normal coordinates vs. street complex
	Normal curves, normal isotopy, and normal coordinates
	Ports, blocks, junctions, and streets
	Reduced curves

	Tracing connected normal curves
	Steps
	Phases and spirals
	History

	Analysis
	Abstract tracing
	Tracing reduced curves

	Untracing
	Untracing from history
	Untracing without history
	Abstract untracing

	Normal coordinate algorithms
	One component
	Forward and reverse indexing
	Normal isotopy classes
	Isotopy classes
	Algebraic intersection numbers


	References

