
On the Sensitivity of Cooperative Caching Performance to
Workload and Network Characteristics

Kang-Won Lee Khalil Amiri Sambit Sahu Chitra Venkatramani
IBM Thomas J. Watson Research Center

Email: {kangwon, amirik, sambits, chitrav}@us.ibm.com

1. INTRODUCTION
A rich body of literature exists on several aspects of cooperative
caching [1, 2, 3, 4, 5], including object placement and replacement
algorithms [1], mechanisms for reducing the overhead of coopera-
tion [2, 3], and the performance impact of cooperation [3, 4, 5].
However, while several studies have focused on quantifying the
performance benefit of cooperative caching, their conclusions on
the effectiveness of such cooperation vary significantly. The source
of this apparent disagreement lies mainly in their different assump-
tions about workload and network characteristics, and about the
degree of cooperation among caches.

To more comprehensively evaluate the practical benefit of coop-
erative caching, we explore the sensitivity of the benefit of coop-
eration to workload characteristics such as object popularity dis-
tribution, temporal locality, one time referencing behavior, and to
network characteristics such as latencies between clients, proxies,
and servers. Furthermore, we identify a critical workload charac-
teristic, which we call average access density, and show that it has
a crucial impact on the effectiveness of cooperative caching.

In this extended abstract, we report on a few important results se-
lected from our extensive study reported in [6]. In particular, as-
suming an LFU-based cache management policy, we arrive at the
following conclusions. First, cooperative caching is only effective
when the average access density (defined as the ratio of the number
of requests to the number of distinct objects in a time window) is
relatively high. Second, the effectiveness of cooperative caching
decreases as the skew in object popularity increases. Higher skew
means that only a small number of objects are most frequently ac-
cessed reducing the benefit of larger caches, and therefore of coop-
eration.

2. COOPERATIVE CACHING TAXONOMY
In this study, we consider a cluster of proxy caches, each serving a
fixed client population, and employing a replacement policy driven
by the objective of minimizing the average access latency across a
particular group of clients. We classify cooperative caching algo-
rithms according to two key aspects: (a) the level of cooperation

in serving a requested object, and (b) the level of cooperation in
object replacement decisions. Based on these two aspects, we can
organize cooperative caching algorithms into three broad classes.
Under the first class, or No cooperation (NC), if a requested ob-
ject is not available in the local proxy, it is fetched from the origin
server. Under the second class, called Cooperative lookup/selfish
replacement (CSR), proxies cooperate in serving a request, but
not in making object replacement decisions. If a requested object
is not found in the local proxy, it is fetched from a neighboring
proxy if possible. Otherwise, the request is directed to the origin
server [2, 4, 5]. Replacement decisions at a proxy, however, strive
to minimize object access latency only for a proxy’s own clients.
Finally, under the third class, referred to as Cooperative lookup
with cooperative replacement (CCR), proxies cooperate in serv-
ing requests as in CSR above. In addition, object replacement de-
cisions at a proxy attempt to minimize average access latency for
clients served by all proxies in the cluster [1, 3].

3. ANALYSIS
In this analysis, we assume that the proxies employ an LFU re-
placement policy and that the access frequency is homogeneous
across proxies. That is, we assume that the access frequency of
an object is the same across all proxies, i.e., fx(i) = fy(i), where
fx(i) represents the popularity of object i at proxy x, calculated
considering only the clients directly served by proxy x. We fur-
ther assume that each proxy can store up to k objects. Denoting
the access latency between clients and their local proxies by τl,
between neighboring proxies by τc, and between proxies and the
origin server by τs, we can compute the steady state object ac-
cess latency for a special case of a two-proxy cluster as follows: In
steady state, NC ideally caches the k most popular objects at each
proxy. Because of the homogeneity assumption, the two proxies
would contain the exact same set of k objects. Furthermore, CSR,
which is simply NC augmented with the ability to redirect misses
to the other proxy, would observe no additional benefit over NC.
The average latency for NC and CSR is therefore given by:

LCSR = LNC = τl

n∑

i=1

f(i) + τs

n∑

i=k+1

f(i) (1)

Computing the average access latency under CCR is much more
involved since it requires knowledge of the cache contents under
CCR in steady state. Unlike NC or CSR, the CCR policy may
bring in a less popular object to replace one of the duplicates in ei-
ther proxy. In this way, the total space available for caching in the
cluster gets expanded. CCR performs such expansion only when
the average access latency would decrease. To compute the cache
content under CCR, our approach relies on an imaginary process



0

20

40

60

80

0 0.2 0.4 0.6 0.8 1

La
te

nc
y 

ga
in

 (
%

)

Cache size

alpha = 0.6

alpha = 0.8

alpha = 1.0

0

20

40

60

80

0 0.2 0.4 0.6 0.8 1

La
te

nc
y 

ga
in

 (
%

)

Cache size

alpha = 0.8

alpha = 1.0

alpha = 0.6

(a) Analysis (CCR/NC) (b) Simulation (CCR/NC)

Figure 1: Latency gain vs. Zipf parameter α.

which starts from the steady state contents of a two-proxy cluster
under CSR, with identical objects in both caches, and proceeds by
replacing some duplicates with other objects to minimize the ag-
gregate latency across all cluster clients. We call this the duplicate
removal process (DRP). We then estimate the latency reduction due
to CCR by aggregating the savings induced by DRP. After replacing
j duplicates with the most accessed uncached objects, the latency
with CCR or LCCR is:

L(j) = τl

n∑

i=1

f(i) +
τc

2

k+j∑

i=k−j+1

f(i) + τs

n∑

i=k+j+1

f(i). (2)

Several empirical studies have shown that the popularity of HTTP
objects follows a Zipf-like distribution [7], i.e., the frequency of re-
quest to the ith popular object is proportional to 1

iα , where α is the
parameter that determines the slope of the popularity distribution
curve. When α = 1, we can predict the upper bound on the latency
gain of CCR over NC, which we define as the latency improvement
due to CCR normalized by LNC , as follows:

THEOREM 1 (UPPER BOUND ON CCR BENEFIT). The latency
gain of CCR over NC defined as Γ CCR

NC
= LNC−LCCR

LNC
for user

access pattern that follows a Zipf object popularity distribution is
upper-bounded by

Γ CCR
NC

=
τs

∑k+j
i=k+1 f(i) − τc

2

∑k+j
i=k−j+i f(i)

τl

∑n
i=1 f(i) + τs

∑n
i=k+1 f(i)

where j = k − τc
τs

(k + 0.5) + 1.

Note that 0 ≤ Γ ≤ 1, where Γ = 0 when there is no benefit, and
Γ = 1 when there is maximum benefit, or the resulting latency is
zero.

4. PERFORMANCE EVALUATION
In this section, we evaluate the effectiveness of cooperative caching
through simulation and compare our results against those predicted
by the analytical model presented above. The simulation presumes
a network configuration where τs/τc = 10, and τs/τl = 20. To
generate client request traces, we used the ProWGen workload gen-
erator [7]. We select two key results from our study that we focus
on here: (a) our simple analysis makes a reasonably good predic-
tion of the performance benefit of cooperation, and (b) cooperative
caching benefit is sensitive to the average access density.

Figure 1 shows the results predicted by our analysis and those pro-
duced by the simulation. The y-axis represents the latency gain
and the x-axis represents the normalized cache size with respect to

0

20

40

60

80

0 0.2 0.4 0.6 0.8 1

La
te

nc
y 

ga
in

 (
%

)

Cache size

N/n = 100

N/n = 30

N/n = 10

N/n = 3

0

20

40

60

80

0 0.2 0.4 0.6 0.8 1

La
te

nc
y 

ga
in

 (
%

)

Cache size

N/n = 100

N/n = 30

N/n = 10

N/n = 3

(a) Simulation(CCR/NC) (b) Simulation(CSR/NC)

Figure 2: Latency gain vs. average access density.

the number of distinct objects. The plots show that the analytical
results approximately agree with the simulation results for CCR,
despite the simplifying assumptions made in our analysis. Further-
more, the plots indicate that the potential gain due to cooperative
caching is significant, reaching 70%. Lower values of α represent
less skew in the popularity distribution and suggest a larger work-
ing set size. Since cooperation is most effective when the working
set is large, its gain is greatest when α is lowest. Note that the gain
from cooperation is substantial even under large cache sizes. This
is because cooperation reduces the cost of compulsory misses by
fetching the missed objects from a neighbor rather than the origin
server.

Figure 2 plots the latency gain against access density, which is de-
fined as N/n, where N is the number of requests in a given time
window (about a day in our experiments), and n is the number of
distinct objects referenced in that window. From the figure, we ob-
serve that the gain from cooperation decreases as the access density
decreases. The empirical values of N/n vary widely from 2 or 3 (in
Web proxy traces) to 100 or more (in Web server environments).

We therefore conclude that the benefits of cooperative caching will
be most pronounced in an environment where the access density is
high and the popularity distribution does not exhibit a high skew.
In particular, cooperative caching will be marginally beneficial in a
Web proxy environment since the access density is low, because of
the diversity in user interests and the expiration of cached objects
when new versions are continuously published by origin sites.

5. REFERENCES
[1] M. Rabinovich, J. Chase, and S. Gadde, “Not all hits are created equal:

cooperative proxy caching over a wide-area network,” Computer
Networks and ISDN Systems, vol. 30, no. 22–23, 1998.

[2] L. Fan, P. Cao, J. Almeida, and A. Broder, “Summary Cache: A
Scalable Wide-Area Web Cache Sharing Protocol,” in Proc. of ACM
SIGCOMM, September 1998.

[3] M. R. Korupolu and M. Dahlin, “Coordinated Placement and
Replacement for Large-Scale Distributed Caches,” in Proc. of the
IEEE Workshop on Internet Applications, July 1999.

[4] A. Wolman, G. Voelker, N. Sharma, N. Cardwell, A. Karlin, and H.
Levy, “On the scale and performance of cooperative Web proxy
caching,” in Proc. of ACM SOSP, December 1999.

[5] S. G. Dykes and K. A. Robbins, “A Viability Analysis of Cooperative
Proxy Caching,” in Proc. of IEEE INFOCOM, April 2001.

[6] K.-W. Lee, K. Amiri, S. Sahu, and C. Venkatramani, “Understanding
the Potential Benefits of Cooperation among Proxies: Taxonomy and
Analysis,” RC22173, IBM Research Report, September 2001.

[7] M. Busari and C. Williamson, “On the Sensitivity of Web Proxy
Cache Performance to Workload Characteristics,” in Proc. of IEEE
INFOCOM, April 2001.


