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Abstract

Suppose we would like to know all answers to a set of statistical queries C on a data set up to small
error, but we can only access the data itself using statistical queries. A trivial solution is to exhaustively
ask all queries in C. Can we do any better?

1. We show that the number of statistical queries necessary and sufficient for this task is—up to
polynomial factors—equal to the agnostic learning complexity of C in Kearns’ statistical query
(SQ) model. This gives a complete answer to the question when running time is not a concern.

2. We then show that the problem can be solved efficiently (allowing arbitrary error on a small fraction
of queries) whenever the answers to C can be described by a submodular function. This includes
many natural concept classes, such as graph cuts and Boolean disjunctions and conjunctions.

While interesting from a learning theoretic point of view, our main applications are in privacy-
preserving data analysis: Here, our second result leads to the first algorithm that efficiently releases
differentially private answers to all Boolean conjunctions with 1% average error. This presents significant
progress on a key open problem in privacy-preserving data analysis. Our first result on the other hand
gives unconditional lower bounds on any differentially private algorithm that admits a (potentially non-
privacy-preserving) implementation using only statistical queries. Not only our algorithms, but also most
known private algorithms can be implemented using only statistical queries, and hence are constrained by
these lower bounds. Our result therefore isolates the complexity of agnostic learning in the SQ-model as
a new barrier in the design of differentially private algorithms.
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1 Introduction

Consider a data set D ⊆ {0, 1}d in which each element corresponds to an individual’s record over d attributes.
The goal of privacy-preserving data analysis is to enable rich statistical analyses on the data set while
respecting individual privacy. The formal privacy guarantee we study is differential privacy [DMNS06].
Differential privacy is a rigorous notion of privacy which guarantees that the outcome of a statistical analysis
is nearly indistinguishable on any two data sets that differ only in a single individual’s data.

One of the most important classes of statistical queries on the data set are Boolean conjunctions, sometimes
called contingency tables or marginal queries. See, for example, [BCD+07, BLR08, KRSU10, UV10]. A
boolean conjunction corresponding to a subset S ⊆ [d] counts what fraction of the individuals have each
attribute in S set to 1. A major open problem in privacy-preserving data analysis is to efficiently create a
differentially private synopsis of the data set that accurately encodes answers to all Boolean conjunctions. In
this work we give the first algorithm with runtime polynomial in d which outputs a differentially private data
structure that represents all Boolean conjunctions up to an average error of 1%.

Our result is significantly more general and applies to any collection of queries that can be described by
a low sensitivity submodular function. Submodularity is a property that often arises in data analysis and
machine learning problems [KG07], including in problems for which privacy is a first order design constraint1.
Imagine, for example, a social network on d vertices. A data analyst may wish to analyze the size of the cuts
induced by various subsets of the vertices. Here, our result provides a data structure that represents all cuts
up to a small average error. Another important example of submodularity is the set-coverage function, which
given a set system over elements in some universe U, represents the number of elements that are covered by
the union of any collection of the sets.

The size of our data structure grows exponentially in the inverse error desired, and hence we can represent
submodular functions only up to constant error if we want polynomial query complexity. Can any efficient
algorithm do even better? We give evidence that in order to do better, fundamentally new techniques are
needed. Specifically, we show that no polynomial-time algorithm can do substantially better if the algorithm
permits an implementation that only accesses the database through statistical queries. A statistical query is
given by a function q : {0, 1}d → {0, 1} and the answer is �x∈D q(x).

Independent of any privacy concerns we therefore raise the natural question: How many statistical queries
to a data set are necessary and sufficent in order to approximately answer all queries in a class C?

We show that the number of statistical queries necessary and sufficient for this task is up to a factor of O(d)
equal to the agnostic learning complexity of C (over arbitrary distributions) in Kearns’ statistical query (SQ)
model [Kea98]. In particular, this connection allows us to infer that no polynomial-time algorithm operating
in the SQ-model can release even monotone conjunctions to subconstant error, due to an SQ lower bound
for agnostically learning monotone conjunctions shown by Feldman [Fel10]; since releasing submodular
functions is more general, the lower bound carries over to that setting as well.

While our characterization above is independent of privacy concerns, it has two immediate implications
for private data release:

• Firstly, it also characterizes what can be released in the very natural local privacy model of Ka-
siviswanathan et al. [KLN+08]; this follows from the fact that [KLN+08] showed that SQ algorithms
are precisely what can be computed in the local privacy model.

• Secondly, and perhaps even more importantly, it gives us unconditional lower bounds on the running
time of any query-release algorithm that permits an implementation using only statistical queries—
regardless of whether its privacy analysis can be carried out in the local privacy model. To our

1For example, Kempe, Kleinberg, and Tardos show that for two common models of influence propagation on social networks, the
function capturing the “influence” of a set of users (perhaps the targets of a viral marketing campaign) is a monotone submodular
function [KKT03].
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knowledge, this class includes almost all privacy preserving algorithms developed to date, including
the recently introduced Median Mechanism [RR10] and Multiplicative Weights Mechanism [HR10]2.
Note that these mechanisms cannot be implemented in the local privacy model while preserving their
privacy guarantees, because they will have to make too many queries. Indeed, they are capable of
releasing conjunctions to subconstant error! Yet, they can be implemented using only statistical queries,
and so our lower bounds apply to their running time.

To summarize, our results imply that if we want to develop efficient algorithms to solve the query release
problem for classes as expressive as monotone conjunctions (itself an extremely simple class!), we need to
develop techniques that are able to sidestep this statistical query barrier. On a conceptual level, our results
present new reductions from problems in differential privacy to problems in learning theory.

1.1 Overview of our results

In this section we give an informal statement of our theorems with pointers to the relevant sections. Our
theorem on approximating submodular functions is proved in Section 3. The definition of submodularity is
found in the Preliminaries (Section 2).

Informal Theorem 1.1 (Approximating submodular functions). Let α > 0, β > 0. Let f : {0, 1}d → [0, 1]
be a submodular function. Then, there is an algorithm with runtime dO(log(1/β)/α2) which produces an
approximation h : {0, 1}d → [0, 1] such that �rx∈{0,1}d {| f (x) − h(x)| ≤ α} ≥ 1 − β.

In Section 4 we then show how this algorithm gives the following differentially private release mechanism
for Boolean conjunctions. The definition of differential privacy is given in Section 2.

Informal Theorem 1.2 (Differentially private query release for conjunctions). Let α > 0, β > 0. There is an
ε-differentially private algorithm with runtime dO(log(1/β)/α2) which releases the set of Boolean conjunctions
with error at most α on a 1 − β fraction of the queries provided that |D| ≥ dO(log(1/β)/α2)/ε .

The guarantee in our theorem can be refined to give an α-approximation to a 1 − β fraction of the set
of w-way conjunctions (conjunctions of width w) for all w ∈ {1, ..., d}. Nevertheless, our algorithm has the
property that the error may be larger than α on a small fraction of the queries. We note, however, that for
β ≤ αp/2 our guarantee is stronger than error α in the Lp-norm which is also a natural objective that has been
considered in other works. For example, Hardt and Talwar study error bounds on mechanisms with respect to
the Euclidean norm across all answers [HT10]. From a practical point of view, it also turns out that some
privacy-preserving algorithms in the literature indeed only require the ability to answer random conjunction
queries privately, e.g., [JPW09].

Finally, in Section 5, we study the general query release problem and relate it to the agnostic learning
complexity in the Statistical Query model.

Informal Theorem 1.3 (Equivalence between query release and agnostic learning). Suppose there exists an
algorithm that learns a class C up to error α under arbitrary distributions using at most q statistical queries.
Then, there is a release mechanism for C that makes at most O(qd/α2) statistical queries.

Moreover, any release mechanism for C that makes at most 2q statistical queries implies an agnostic
learner that makes at most q queries.

While both reductions preserve the query complexity of the problem neither reduction preserves runtime.
We also note that our equivalence characterization is more general than what we stated: the same proof
shows that agnostic learning of a class C is (up to small factors) information theoretically equivalent to

2A notable exception is the private parity-learning algorithm of [KLN+08], which explicitly escapes the statistical query model.
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releasing the answers to all queries in a class C for any class of algorithms that may access the database only
in some restricted manner. The ability to make only SQ queries is one restriction, and the requirement to
be differentially private is another. Thus, we also show that on a class by class basis, the privacy cost of
releasing the answers to a class of queries using any technique is not much larger than the privacy cost of
simply optimizing over the same class to find the query with the highest value, and vice versa.

Our techniques. Our algorithm is based on a structural theorem about general submodular functions
f : 2U → [0, 1] that may be of independent interest. Informally, we show that any submodular function has a

“small” “approximate” representation. Specifically, we show that for any α > 0, there exist at most |U |2/α

submodular functions gi such that each gi satisfies a strong Lipschitz condition, and for each S ⊂ U, there
exists an i such that f (S ) = gi(S ). We then take advantage of Vondrak’s observation that Lipschitz-continuous
submodular functions are self-bounding, which allows us to apply recent dimension-free concentration bounds
for self-bounding functions [Von10]. These concentration results imply that if we associate each function gi

with its expectation, and respond to queries f (S ) with �[gi(S )] for the appropriate gi, then most queries are
answered to within only α additive error. This yields an algorithm for learning submodular functions over
product distributions, which can easily be made privacy preserving.

Our characterization of the query complexity of the release problem in the SQ model uses the multiplica-
tive weights method [LW94, AHK05] similar to how it was used recently in [HR10]. That is we maintain
a distribution over the universe on which the queries are defined. What is new is the observation that an
agnostic learning algorithm for a class C can be used to find a query from C that distinguishes between the
true data set and our distribution as much as possible. Such a query can then be used in the multiplicative
weights update to reduce the relative entropy between the true data set and our distribution significantly.
Since the relative entropy is nonnegative there can only be a few such steps before we find a distribution
which provides a good approximation to the true data set on all queries in the class C.

1.2 Related Work

Learning Submodular Functions. The problem of learning submodular functions was recently introduced
by Balcan and Harvey [BH10]; their PAC-style definition was different from previously studied point-wise
learning approaches [GHIM09, SF08]. For product distributions, Balcan and Harvey give an algorithm for
learning monotone, Lipschitz continuous submodular functions up to constant multiplicative error using only
random examples. [BH10] also give strong lower bounds and matching algorithmic results for non-product
distributions. Our main algorithmic result is similar in spirit (and inspired by their concentration-of-measure
approach). Our model is different from theirs, which makes our results incomparable. We introduce a
decomposition that allows us to learn arbitrary (i.e. potentially non-Lipschitz, non-monotone) submodular
functions to constant additive error. Moreover, our decomposition makes value queries to the submodular
function, which are prohibited in the model studied by [BH10].

Information Theoretic Characterizations in Privacy. Kasiviswanathan et al. [KLN+08] introduced the
centralized and local models of privacy and gave information theoretic characterizations for which classes
of functions could be learned in these models: they showed that information theoretically, the class of
functions that can be learned in the centralized model of privacy is equivalent to the class of functions that
can be agnostically PAC learned, and the class of functions that can be learned in the local privacy model is
equivalent to the class of functions that can be learned in the SQ model of Kearns [Kea98].

Blum, Ligett, and Roth [BLR08] considered the query release problem (the task of releasing the ap-
proximate value of all functions in some class) and characterized exactly which classes of functions can
be information theoretically released while preserving differential privacy in the centralized model of data
privacy. They also posed the question: which classes of functions can be released using mechanisms that
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have running time only polylogarithmic in the size of the data universe and the class of interest? In particular,
they asked if conjunctions were such a class.

In this paper, we give an exact information theoretic characterization of which classes of functions can
be released in the SQ model, and hence in the local privacy model: we show that it is exactly the class of
functions that can be agnostically learned in the SQ model. We note that the agnostic SQ learnability of
a class C (and hence, by our result, the SQ releasability of C) can also be characterized by combinatorial
properties of C, as done by Blum et al. [BFJ+94] and recently Feldman [Fel10].

Lower bounds and hardness results. There are also several conditional lower bounds on the running
time of private mechanisms for solving the query release problem. Dwork et al. [DNR+09] showed that
modulo cryptographic assumptions, there exists a class of functions that can be privately released using the
mechanism of [BLR08], but that no mechanism which outputs a data set and which runs in polynomial
time (in the dimension of the data space) can privately release. Ullman and Vadhan [UV10] extended this
result to the class of conjunctions: they showed that modulo cryptographic assumptions, no polynomial time
mechanism which outputs a data set can answer even the set of d2 conjunctions of size 2!

Both of these lower bounds apply only to the class of mechanisms which output data sets, rather than
some other data structure encoding their answers. In fact, because there are only d2 conjunctions of size 2
in total, the hardness result of [UV10] does not hold if the mechanism is allowed to output some other data
structure – such a mechanism can simply privately query each of the d2 questions.

We circumvent the hardness result of [UV10] by outputting a data structure rather than a synthetic data
set. We also prove a new unconditional (information theoretic) lower bound on algorithms for privately
releasing monotone conjunctions that applies to the class of algorithms that interact with the data using
only SQ queries: no such polynomial time algorithm can release monotone conjunctions with o(1) average
error. We note that our lower bound does not depend on the output representation of the algorithm. Because
almost all known private algorithms can indeed be implemented using statistical queries, this provides a new
perspective on sources of hardness for private query release. We note that information theoretic lower bounds
on the query complexity imply lower bounds on the running time of such differentially private algorithms.

Kasiviswanathan et. al. [KRSU10] show that average error of Ω(1/
√

n) is necessary from a privacy point
of view (i.e. independent of running time) for mechanisms which answer all conjunctions of constant size,
extending work by Dinur and Nissim [DN03] who showed average error Ω(1/

√
n) is necessary for random

queries.

Interactive private query release mechanisms. Recently, Roth and Roughgarden [RR10] and Hardt and
Rothblum [HR10] gave interactive private query release mechanisms that allow a data analyst to ask a large
number of questions, while only expending their privacy budgets slowly. Their privacy analyses depend
on the fact that only a small fraction of the queries asked necessitate updating the internal state of the
algorithm. However, to answer large classes of queries, these algorithms need to make a large number of
statistical queries to the database, even though only a small number of statistical queries result in update
steps! Intuitively, our characterization of the query complexity of the release problem in the SQ model is
based on two observations: first, that it would be possible to implement these interactive mechanisms using
only a small number of statistical queries if the data analyst was able to ask only those queries that would
result in update steps, and second, that finding queries that induce large update steps is exactly the problem of
agnostic learning.
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2 Preliminaries

Differential privacy and counting queries. We study the question of answering counting queries over a
database while preserving differential privacy. Given an arbitrary domain X, we consider databases D ⊂ X of
size |D| = n. Two databases D and D′ are called adjacent if one can be obtained from the other by adding a
single data item, i.e., D′ = D ∪ {x} for some x ∈ X. We are interested in algorithms (or mechanisms) that map
databases to some abstract range R while satisfying ε-differential privacy:

Definition 2.1 (Differential Privacy [DMNS06]). A mechanismM : X∗ → R satisfies ε-differential privacy
if for all S ⊂ R and every pair of two adjacent databases D,D′, we have �r(M(D) ∈ S ) ≤ eε �r(M(D′) ∈ S ) .

A counting query is specified by a predicate q : X → [0, 1]. We will denote the answer to a count query
(with some abuse of notation) by q(D) = 1

n
∑

x∈D q(X) . Note that a count query can differ by at most 1/n on
any two adjacent databases. In particular, adding Laplacian noise of magnitude 1/εn, denoted Lap(1/εn),
guarantees ε-differential privacy on a single count query (see [DMNS06] for details).

The statistical query model and its connection to differential privacy. We will state our algorithms in
Kearns’ statistical query (SQ) model. In this model an algorithm AO can access a distribution D over a
universe X only through statistical queries to an oracle O. That is, the algorithm may ask any query q : X →
[0, 1] and the oracle may respond with any answer a satisfying |a − �x∼D q(x)| ≤ τ . Here, τ is a parameter
called the tolerance of the query.

In the context of differential privacy, the distribution D will typically be the uniform distribution over
a data set of size n. A statistical query is then just the same as a counting query as defined earlier. Since
SQ algorithms are tolerant to noise it is not difficult to turn them into differentially private algorithms using
a suitable oracle. This observation is not new, and has been used previously, for example by Blum et al.
[BDMN05] and Kasiviswanathan et al. [KLN+08].

Proposition 2.1. Let A denote an algorithm that requires k queries of tolerance τ. LetO denote the oracle that
outputs �x∼D q(x) + Lap(k/nε). Then, the algorithm AO satisfies ε-differential privacy and with probability at
least 1 − β, the oracle answers all q queries with error at most τ provided that n ≥ k(log k+log(1/β))

ετ .

Proof. The first claim follows directly from the properties of the Laplacian mechanism and the composition
property of ε-differential privacy. To argue the second claim note that �r(|Lap(σ)| ≥ τ) ≤ exp(−τ/σ) . Using
that σ = k/nε and the assumption on n, we get that this probability is less than β/k. The claim now follows
by taking a union bound over all k queries. �

Query release. A concept class (or query class) is a distribution over concepts (or predicates) from
X → [0, 1], e.g., the uniform distribution over a finite set of predicates.

Definition 2.2 (Query Release). Let C be a concept class. We say that an algorithm A (α, β)-releases C over
a data set D if �rq∼C{|q(D) − A(q)| ≤ α} ≥ 1 − β .

Specifically, we are interested in algorithms which release C using few statistical queries to the underlying
data set. We will study the query release problem when the function q 7→ q(D) can be described by a
submodular function defined next.

Submodularity. Given a universe U, a function f : 2U → � is called submodular if for all S ,T ⊂ U it
holds that f (S ∪ T ) + f (S ∩ T ) ≤ f (S ) + f (T ) . We define the marginal value of x (or discrete derivative) at
S as ∂x f (S ) = f (S ∪ {x}) − f (S ).
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Fact 2.1. A function f is submodular if and only if ∂x f (S ) ≥ ∂x f (T ) for all S ⊆ T ⊆ U and all x ∈ U.

Definition 2.3. We say that an algorithm A (α, β)-approximates a function f : 2U → [0, 1] over a distribution
P if �rS∼P{| f (S ) − A(S )| ≤ α} ≥ 1 − β .

3 Approximating Submodular Functions

Our algorithm for approximating submodular functions is based on a structural theorem, together with some
strong concentration inequalities for submodular functions (see Section A). In this section, we prove our
structure theorem, present our algorithm, and prove its correctness. We begin with a simpler version of the
structure theorem:

Lemma 3.1. For every submodular function f : 2U → [0, 1] and every α ≥ 0, there is a collection of
submodular functions G with the following properties:

1. for every S ⊆ U there is VS ⊆ U and gS : 2VS → [0, 1] ∈ G such that S ⊆ VS and f (S ) = gS (S ),

2. every g ∈ G satisfies supx∈VS ,S⊆VS
∂xg(S ) ≤ α,

3. given oracle access to f , we can construct G in time O(|G|) together with the mapping S 7→ gS .

Moreover, we always have |G| ≤ O(|U |1/α).

Proof. We give a proof by construction. We analyze a collection of sets I generated by the following
(non-deterministic) procedure:

i← 0, B0 ← ∅

I ← {B0}

while there exists an xi ∈ U such that ∂xi f (B) > α do
Bi+1 ← Bi ∪ {xi}

I ← I ∪ {Bi+1}, i← i + 1.
The procedure is nondeterministic because it does not specify which x to choose, but we may construct the
entire collection of sets I that it might ever generate by merely exploring its computation tree using depth
first search. First observe that |I| ≤ O(|U |1/α), and so we can construct the entire set in time O(|U |1/α). This
is because for any i:

1 ≥ f (Bi) =

|Bi |−1∑
j=0

∂x j f (B j) ≥ |B| · α . (1)

Therefore, it must be that |Bi| ≤ 1/α, and there are only at most O(|U |1/α) such sets over |U | elements.
Consider any Bi ∈ I and let VBi = {x ∈ U : ∂x f (Bi) ≤ α} be the elements that have “low” marginal

increase with respect to the set Bi. Define the function gBi : 2VBi → [0, 1] as gBi(S ) = f (S ∪ Bi). First observe
that gB is a submodular function since it is a shifted version of f .

Claim 3.2. supx∈VBi ,S⊆VBi
∂xg

Bi(S ) ≤ α

Proof. By definition, we have ∂xg
Bi(S ) = ∂x f (Bi ∪ S ) for all S ⊆ VBi . But ∂x f (Bi ∪ S ) ≤ ∂x f (Bi), by the

submodularity of f , and ∂x f (Bi) ≤ α for every x ∈ VBi , by the definition of VBi . �

The previous claim justifies putting G = {gBi : Bi ∈ I}. It only remains to argue that for every S ⊆ U
we have a gBi ∈ G such that S ⊆ VBi and f (S ) = gBi(S ). Indeed, let Bi denote a maximal set in I such
that Bi ⊆ S . Note that such a set must exist because ∅ ∈ I, and that this set can be obtained efficiently by
following the construction of B using the greedy procedure described above while maintaining B ⊆ S . By
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construction, Bi ⊆ S , and we have S ⊆ VBi by the maximality of Bi within S : indeed, if there existed an x ∈ S
such that x < VBi , then by definition, ∂x(Bi) > α. However, such an x would have been selected by our greedy
procedure, and so Bi would not have been a maximal set in S . We now have gBi(S ) = f (Bi ∪ S ) = f (S ) as
desired. �

For non-monotone functions, we need a more refined argument. Our main structure theorem replaces
Condition 2 in Lemma 3.1 by the stronger guarantee, namely that |∂xg(S )| ≤ α for all g ∈ G, even for
non-monotone submodular functions. Observe that for a submodular function f : 2V → �, the function
f : 2V → � defined as f (S ) = f (V\S ) is also submodular; moreover

inf
x,S

∂x f (S ) = − sup
x,S

∂x f (S ) . (2)

Given these two facts, we can now prove our main structure theorem.

Theorem 3.3. For every submodular function f : 2U → [0, 1] and every α ≥ 0, there is a collection of
submodular functions G of size at most O(|U |2/α) such that

1. For every S ⊆ U there is gS : 2VS → [0, 1] ∈ G such that S ⊆ VS ⊆ U and f (S ) = gS (S )

2. every g ∈ G satisfies supx∈VS ,S⊆VS
|∂xg(S )| ≤ α,

3. given oracle access to f , we can construct G in time O(|G|) together with the mapping S 7→ gS .

Proof. First apply Lemma 3.1 to obtain a collection of functions G( f ) satisfying the conditions of the lemma.
Hence, for every gB ∈ G( f ), we have supx∈VB,S⊆VB

∂xg
B(S ) ≤ α, but not necessarily ∂xg

B(S ) ≥ −α. Consider
instead the function gB. This is submodular since gB was submodular, and moreover, ∂xgB(S ) ≥ −α for every
x ∈ VB, S ⊆ VB.

We now apply Lemma 3.1 again to each gB ∈ G( f ), and hence obtain a collection of functions for
each gB denoted by G(gB). Since each hC ∈ G(gB) is a shift of gB, and gB is submodular, we have
infx∈VC ,S⊆VC ∂xhC(S ) ≥ −α. But moreover by the statement of the lemma, supx∈VC ,S⊆VC

∂xhC(S ) ≤ α.

Consequently,
∣∣∣∂xhC(S )

∣∣∣ ≤ α for every x ∈ VC , S ⊆ VC , and (13) implies the same for hC too. Moreover,
using Property 1 for the two invocations of Lemma 3.1, we get that for every S , there is an hC such that
f (S ) = hC(S ). Therefore take G = ∪gB∈G( f ){hC | hC ∈ G(gB)} completes the proof of the theorem. �

We now present our algorithm for learning arbitrary submodular functions over product distributions. For
a subset of the universe V ⊆ C, letDV denote the distributionD restricted to the variables in V . Note that if
D is a product distribution, then DV remains a product distribution and is easy to sample from. To avoid

Algorithm 1 Learning a submodular function
Learn( f ,α, β,D)

Let α′ = α2

log(2/β)(5α/3+2) .

Construct the collection of functions G given by Theorem 3.3 with parameter α′.
Estimate the value µgB = �S∼DVB

[gB(S )] for each gB ∈ G.

Output the data structure h which maps a given query S ⊆ U to the value µg where g is the function in G
that is assigned to S .

notational clutter, throughout this section we will not consider the details of how we construct our estimate
µg. However, it is an easy observation that this quantity can be estimated to a sufficiently high degree of
accuracy using a small number of random samples.
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Theorem 3.4. For any α > 0, β > 0, Algorithm 1 (α, β)-approximates any submodular function f : 2U →

[0, 1] under any product distribution in time |U |O(α−2 log(1/β)) using oracle queries to f .

Proof. For a set S ⊆ V , we let gB(S ) denote the function that’s assigned to S by our algorithm. We claim that

�r
S∼D
{| f (S ) − h(S )| > α} = �r

S∼DVB(S )

{∣∣∣gB(S )(S ) − µg
∣∣∣ > α} . (3)

To see this, recall that each gB ∈ G is defined by a set B ⊆ V so that g(S ) = f (S ∪ B) for all S , and that S is
associated with gB only if B is a maximal set such that S ⊆ VB. Hence, the distribution of gB(S ) for S ∼ DVB

does not change under the condition that S ⊇ B. On the other hand, Theorem 3.3 with Lemma A.2 implies
that each g is a self-bounding function. Applying the concentration inequality for submodular functions
stated as Corollary A.3, we get

�r
S∼D

{∣∣∣g(S ) − µg
∣∣∣ ≥ α′t} ≤ 2 exp

(
−

t2

2(1/α′ + 5/6t)

)
. (4)

Plugging in t = α/α′ =
log(2/β)(5α/3+2)

α and simplifying we get �r
{∣∣∣gS (S ) − µg

∣∣∣ > α} ≤ β . Combining this
with Equation 3, the claim follows. �

Approximating submodular functions from queries with tolerance. In the above we assumed that we
have an exact query oracle to the submodular function f . For our applications we need that the algorithm
works when each query is answered with tolerance τ.

Theorem 3.5 (Theorem 3.4 with tolerance). For any α > 0, β > 0, Algorithm 1 (α, β)-approximates any
submodular function f : 2U → [0, 1] under any product distribution in time |U |O(α−2 log(1/β)) using oracle
queries to f of tolerance α/4.

Proof (sketch). The proof works the same way as that of Theorem 3.4 and Theorem 3.3 except we need to
take into account an additive error of α/4 on each oracle query. Since each value ∂x f (S ) consists of two
queries to the oracle our estimate of ∂x f (S ) is correct up to an error of α/2. We can therefore follow the proof
Theorem 3.3 with error parameter α/2. This will guarantee that every g ∈ G satisfies ∂xg(S ) ≤ α. From there
on the proof is identical. �

Generalized submodular functions and certain non-product distributions. For our main application
to Boolean conjunctions we need Theorem 3.5 to hold for somewhat generalized submodular functions as
well as certain non-product distributions.

Consider an alphabet [p] = {0, . . . , p − 1} of size p and a universe U as before. Identify an element
S ∈ [p]U with a function S : U → [p] in the usual way. We define a partial order on [p]U by putting S ⊆ T
if and only if S (x) , 0 ⇒ S (x) = T (x). (All other elements are incomparable.) We say that S ∈ [p]U has
weight w if S (x) , 0 for exactly w elements x ∈ U. Finally, for a function f : [p]U → � and x ∈ U, i ∈ [p]
Finally, let ∂x,i f (S ) = f (S [x 7→ i]) − f (S ) . Here, S [x 7→ i] is the function that maps x to i and agrees with S
everywhere else. We then call f submodular if and only if ∂x,i f (S ) ≥ ∂x,i(T ) for all S ⊆ T, all i ∈ [p] and all
x ∈ U satisfying S (x) = 0. We call f monotone if f (T ) ≥ f (S ) for all S ⊆ T. Note that for p = 2 this is the
same as before.

We have the following theorem.

Theorem 3.6. For any α, β > 0, p ∈ � and w ∈ {1, . . . , d}, Algorithm 1 (α, β)-approximates any submodular
function f : [p]U → [0, 1] under the uniform distribution over strings of weight w in time (p|U |)O(α−2 log(1/β))

using oracle queries to f of tolerance α/4.
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Proof (sketch). We repeat the construction of Theorem 3.3. At every step we now explore all p possibilities
of choosing an elment that we add to the set B we’re maintaining. Hence the resulting tree is now of size
at most (p|U |)2/α. We then repeat the proof of Theorem 3.5 where we choose the uniform distribution over
strings of weight w (rather than a product distribution). For this to work we need that the function f has
sufficient concentration properties under this distribution. This is demonstrated in Appendix A by combining
Lemma A.4 with Lemma A.5. �

4 Applications to privacy-preserving query release

In this section, we show how to apply our algorithm from section 3 to the problem of releasing conjunctions
over a boolean database. In Appendix C, we also show how our mechanism can be applied to release the cut
function of an arbitrary graph.

Given our previous results, we only need to argue that conjunctions can be described by a submodular
function. While this is not directly true for conjunctions it is true for disjunctions and submodular functions
over a ternary alphabet. Indeed, every element S ∈ {0, 1, 2}d naturally corresponds to a Boolean conjunction
cS : {0, 1}d → {0, 1} as follows cS (x) =

(∧
i : S (i)=1 xi

)
∧

(∧
i : S (i)=2 ¬xi

)
. (Note that in contrast to Section 3

here we use x to denote an element of {0, 1}d.) Similarly, the disjunction predicate dS : {0, 1}d → {0, 1} is
defined to be dS (x) =

(∨
i : S (i)=1 xi

)
∨

(∨
i : S (i)=2 ¬xi)

)
. For S ∈ {0, 1, 2}d, let S̄ denote the string such that

S̄ (i) = 1 if S (i) = 2, S̄ (i) = 2 if S̄ (i) = 1, and S̄ (i) = 0 if S (i) = 0
It is easy to see that for any data set D ⊆ {0, 1}d, cS (D) = 1 − dS̄ (D). Therefore, to release the class of

conjunctions, it is sufficient to release the class of disjunctions. Let FDisj : {0, 1, 2}d → [0, 1] be the function
such that FDisj(S ) = dS (D). Then:

Lemma 4.1. FDisj(D) is a monotone submodular function.

Proof. Let X+
i denote the set of elements x ∈ D such that xi = 1, and let X−i denote the set of elements

x ∈ D such that xi = 0. Consider the set system U = {X+
i , X

−
i }

d
i=1 over the universe of elements x ∈ D. Then

there is a natural bijection between FDisj(D) and the set coverage function Cov : 2U → [0, |D|] defined to be
Cov(S ) = |

⋃
X∈U X|, which is a monotone submodular function. �

We therefore obtain the following corallary directly by combining Theorem 3.6 with Proposition 2.1.

Corollary 4.2. Let α, β, ε > 0, 1 ≤ w ≤ d. There is an ε-differentially private algorithm that (α, β)-releases
the set of all Boolean conjunction of width w in time dt(α,β) for any data set of size |D| ≥ dt(α,β)/ε where
t(α, β) = O(α−2 log(1/β)).

Of course, we can instantiate the theorem for every w ∈ {1, . . . , k} to obtain a statement for conjunctions
of any width.

In the next section we give a lower bound for releasing all conjunctions with small error from SQ queries.
Our theorem here gives only an upper bound on the error for almost all conjunctions. In Appendix B, however,
we extend the lower bound from Section 5 to hold for average error as well. This makes our upper and lower
bounds directly comparable.

5 Equivalence between agnostic learning and query release

In this section we show an information-theoretic equivalence between agnostic learning and query release in
the statistical queries model. In particular, given an agnostic learning algorithm for a specific concept class
we construct a query release algorithm for the same concept class.

9



Consider a distribution A over X × {0, 1} and a concept class C. An agnostic learning algorithm (in
the strong sense) finds the concept q ∈ C that approximately maximizes �r(x,b)∼A {q(x) = b} to within an
additive error of α. Our reduction from query release to agnostic learning actually holds even for weak
agnostic learning. A weak agnostic learner is not required to maximize �r(x,b)∼A {q(x) = b}, but only to find a
sufficiently good predicate q provided that one exists.

Definition 5.1 (Weak Agnostic SQ-Learning). Let C be a concept class and γ, τ > 0 and 0 < β < α ≤ 1/2.
An algorithm A with oracle access to STATτ(A) is an (α, β, γ, τ)-weak agnostic learner for C if for every
distribution A such that there exists q∗ ∈ C satisfying �r(x,b)∼A {q∗(x) = b} ≥ 1/2 +α ,A(A) outputs a predicate
q : X → {0, 1} such that �r(x,b)∼A {q(x) = b} ≥ 1/2 + β , with probability at least 1 − γ.

Note that if we can agnostically learn C in the strong sense from queries of tolerance τ to within additive
error α − β with probability 1 − γ, then there is also an (α, β, γ, τ)-weak agnostic learner.

We are now ready to state the main result of this section, which shows that a weak agnostic SQ-learner
for any concept class is sufficient to release the same concept class in the SQ model.

Theorem 5.1. Let C be a concept class. LetA be an algorithm that (α/2, β, γ, τ) weak agnostic-SQ learns
C with τ ≤ β/8. Then there exists an algorithm B that invokes A at most T = 8 log |X|/β2 times and
(α, 0)-releases C with probability at least 1 − Tγ.

Algorithm 2 Multiplicative weights update
Let D0 denote the uniform distribution over X.
For t = 1, ...,T = d8 log |X|/β2e + 1:

Consider the distributions

A+
t = 1/2(D, 1) + 1/2(Dt−1, 0) A−t = 1/2(D, 0) + 1/2(Dt−1, 1) .

Let q+
t = A(A+

t ) and q−t = A(A−t ). Let v+t be the value returned by STATτ(A+
t ) on the query q+

t and v−t be
the value returned by STATτ(A−t ) on the query q−t . Let vt = max{v+t , v

−
t } − 1/2 and qt be the corresponding

query.
If:

vt ≤
β

2
− τ , (5)

proceed to “output” step.
Update: Let Dt be the distribution obtained from Dt−1 using a multiplicative weights update step with
penalty function induced by qt and penalty parameter η = β/2 as follows:

D′t(x) = exp(ηqt(x)) · Dt−1(x)

Dt(x) =
D′t∑

x∈X D′t(x)

Output ac = �x∼DT c(x) for each c ∈ C.

The proof strategy is as follows. We will start from D0 being the uniform distribution over X. We will
then construct a short sequence of distributions D1,D2, . . . ,DT such that no concept in C can distinguish
between D and DT up to bias α. Each distribution Dt is obtained from the previous one using a multiplicative
weights approach as in [HR10] and with the help of the learning algorithm that’s given in the assumption
of the theorem. Intuitively, at every step we use the agnostic learner to give us the predicate qt ∈ C which
distinguishes the most between Dt and D. In order to accomplish this we feed the agnostic learner with the
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distribution At that labels elements sampled from D by 1 and elements sampled from Dt by 0. For a technical
reason we also need to consider the distribution with 0 and 1 flipped. Once we obtained qt we can use it as a
penalty function in the update rule of the multiplicative weights method. This has the effect of bringing D
and Dt closer in relative entropy. A typical potential argument then bounds the number of update steps that
can occur before we reach a distribution Dt for which no good distinguisher in C exists.

5.1 Proof of Theorem 5.1

Proof. We start by relating the probability that qt predicts b from x on the distribution A+
t to the difference in

expectation of qt on D and Dt−1.

Lemma 5.2. For any q : X → {0, 1},

�r
(x,b)∼A+

t

{q(x) = b} −
1
2

=
1
2

(
�

x∼D
q(x) − �

x∼Dt−1
q(x)

)
(6)

Proof. If qt = q+
t then

�r
(x,b)∼A+

t

{q(x) = b} =
1
2
�r
x∼D
{q(x) = 1} +

1
2
�r

x∼Dt−1
{q(x) = 0}

=
1
2
�

x∼D

[
q(x)

]
+

1
2
�

x∼Dt−1

[
1 − q(x)

]
=

1
2

+
1
2

(
�

x∼D
q(x) − �

x∼Dt−1
q(x)

)
Note that �r(x,b)∼A−t {q(x) = b} = 1 − �r(x,b)∼A−t {q(x) = (1 − b)} = 1 − �r(x,b)∼A+

t
{q(x) = b}, so if qt = q−t then

�r
(x,b)∼A+

t

{q(x) = b} = 1 − �r
(x,b)∼A−t

{q(x) = b} = 1 −
(
1
2
−

1
2

(
�

x∼D
q(x) − �

x∼Dt−1
q(x)

))
=

1
2

+
1
2

(
�

x∼D
q(x) − �

x∼Dt−1
q(x)

)
�

The proof closely follows [HR10]. For two distributions P,Q on a universe X we define the relative
entropy to be RE(P||Q) =

∑
x∈X P(x) log(P(x)/Q(x)). We consider the potential

Ψt = RE(D||Dt) .

Fact 5.1. Ψt ≥ 0

Fact 5.2. Ψ0 ≤ log |X|

We will argue that in every step the potential drops by at least β2/4 Hence, we know that there can be at
most 4 log |X|/α2 steps before we reach a distribution that satisfies (5).

The next lemma gives a lower bound on the potential drop in terms of the concept, qt, returned by the
learning algorithm at time t. Recall, that η (used below) is the penalty parameter used in the multiplicative
weights update rule.

Lemma 5.3 ([HR10]).
Ψt−1 − Ψt ≥ η

∣∣∣∣∣ �x∼D
qt(x) − �

x∼Dt−1
qt(x)

∣∣∣∣∣ − η2 (7)
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Let

optt = sup
q∈C

∣∣∣∣∣∣ �r
(x,b)∼A+

t

{q(x) = b} −
1
2

∣∣∣∣∣∣ .
Note that �r(x,b)∼A−t {q(x) = b} = 1 − �r(x,b)∼A+

t
{¬q(x) = b}. For the remainder of the proof we treat the two

cases symmetrically and only look at how far from 1/2 these probabilities are. The next lemma shows that
either optt is large or else we are done in the sense that Dt is indistinguishable from D for any concept from
C.

Lemma 5.4. Let α > 0. Suppose
optt ≤

α

2
.

Then, for all q ∈ C, ∣∣∣∣∣ �x∼D
q(x) − �

x∼Dt
qt(x)

∣∣∣∣∣ ≤ α (8)

Proof. From Lemma 5.2 we have that for every q ∈ C

α

2
≥ optt ≥ �r

(x,b)∼A+
t

{q(x) = b} −
1
2

=
1
2

(
�

x∼D
q(x) − �

x∼Dt
qt(x)

)
Thus α ≥

(
�x∼D q(x) − �x∼Dt qt(x)

)
. Similarly,

α

2
≥ optt ≥ �r

(x,b)∼A−t
{q(x) = b} −

1
2

=
1
2

(
�

x∼Dt
q(x) − �

x∼D
qt(x)

)
Thus −α ≤

(
�x∼D q(x) − �x∼Dt qt(x)

)
. So we conclude α ≥

∣∣∣�x∼D q(x) − �x∼Dt qt(x)
∣∣∣ . �

We can now finish the proof of Theorem 5.1. By our assumption, we have that so long as optt ≥ α/2 the
algorithmA produces a concept qt such that with probability 1 − γ∣∣∣∣∣∣ �r

(x,b)∼A+
t

{qt(x) = b} −
1
2

∣∣∣∣∣∣ ≥ β . (9)

For the remainder of the proof we assume that our algorithm returns a concept satisfying Equation 9 in
every stage for which optt ≥ α/2. By a union bound over the stages of the algorithm, this event occurs with
probability at least 1 − Tγ.

Assuming Equation 5 is not satisfied we have that

β

4
≤
β

2
− 2τ ≤ vt − τ ≤

∣∣∣∣∣∣�r
A+

t

{qt(x) = b}

∣∣∣∣∣∣ .
The leftmost inequality follows because τ ≤ β/8. We then get

Ψt−1 − Ψt ≥ η

∣∣∣∣∣�D qt(x) − �
Dt−1

qt(x)
∣∣∣∣∣ − η2 (Lemma 5.3)

≥ η

∣∣∣∣∣4�r
At
{qt(x) = b} − 2

∣∣∣∣∣ − η2 (Lemma 5.2)

≥ η · β − η2 (Equation 5 not satisfied)

≥
β2

2
−
β2

4
(η = β/2)

=
β2

4
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Hence, if we put T ≥ 4 log |X|/β2, we must reach a distribution that satisfies (5). But at that point, call it t,
the subroutineA outputs a concept qt such that∣∣∣∣∣∣ �r

(x,b)∼A+
t

(qt(x) = b) −
1
2

∣∣∣∣∣∣ ≤ vt + τ <
β

2
+ τ < β

In this case, by our assumption that Equation 9 is satisfied whenever optt ≥ 1/2 + α/2, we conclude that
optt < 1/2 + α/2. By Lemma 5.4, we get

sup
q∈C

∣∣∣∣∣ �x∼D
q(x) − �

x∼Dt
qt(x)

∣∣∣∣∣ ≤ α .
But this is what we wanted to show, since it means that our output on all concepts in C will be accurate up to
error α. �

We remark that for clarity, we let the failure probability of the release algorithm grow linearly in the
number of calls we made to the learning algorithm (by the union bound). However, this is not necessary:
we could have driven down the probability of error in each stage by independent repetition of the agnostic
learner.

This equivalence between release and agnostic learning also can easily be seen to hold in the reverse
direction as well.

Theorem 5.5. Let C be a concept class. If there exists an algorithm B that (α, 0)-releases C with probability
1 − γ and accesses the database using at most k oracle accesses to STATτ(A), then there is an algorithm
that makes 2k queries to STATτ(A) and agnostically learns C in the strong sense with accuracy 2α with
probability at least1 − 2γ.

Proof. Let Y denote the set of examples with label 1, and let N denote the set of examples with label 0. We
use STATτ(A) to simulate oracles STATτ(Y) and STATτ(N) that condition the queried concept on the label.
That is, STATτ(Y), when invoked on concept q, returns an approximation to �rx∼A{q(x) = 1 ∧ (x ∈ Y)} and
STATτ(N) returns an approximation to �rx∼A{q(x) = 1 ∧ (x ∈ Y)]. We can simulate a query to either oracle
using only one query to STATτ(A).

Run B(Y) to obtain answers aY
1 , . . . , a

Y
|C|, and run B(N) to obtain answers aN

1 , . . . , a
N
|C|. Note that this

takes at most 2k oracle queries, using the simulation described above, by our assumption on B. By the
union bound, except with probability 2γ, we have for all qi ∈ C: |qi(Y) − aY

i | ≤ α and |qi(B) − aN
i | ≤ α. Let

q∗ = arg maxqi∈C(aY
i − aN

i ). Observe that q∗(D) ≥ maxq∈C q(D) − 2α, and so we have agnostically learned C
up to error 2α. �

Feldman proves that even monotone conjunctions cannot be agnostically learned to subconstant error
with polynomially many SQ queries:

Theorem 5.6 ([Fel10]). Let C be the class of monotone conjunctions. Let k(d) be any polynomial in d, the
dimension of the data space. There is no algorithmA which agnostically learns C to error o(1) using k(D)
queries to STAT1/k(d).

Corollary 5.7. For any polynomial in d k(d), no algorithm that makes k(d) statistical queries to a database
of size k(d) can release the class of monotone conjunctions to error o(1).

Note that formally, Corollary 5.7 only precludes algorithms which release the approximately correct
answers to every monotone conjunction, whereas our algorithm is allowed to make arbitrary errors on a small
fraction of conjunctions. However, in appendix B we prove from first principles that in fact, no polynomial
time algorithm making only SQ queries can release monotone conjunctions to α error even if it is allowed to
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make arbitrary errors on an α fraction of conjunctions of each size k. This lower bound applies in particular
to our algorithm, and shows that the difficulty of agnostic learning in the SQ model cannot be circumvented
in the release setting by algorithms that make arbitrary errors on a fraction of their output. Combined
with theorem 5.1, this also provides a new proof of the impossibility of agnostically learning monotone
conjunctions to subconstant error in the SQ model.

We remark that the proofs of Theorems 5.1 and 5.5 are not particular to the statistical queries model: we
showed generically that it is possible to solve the query release problem using a small number of black-box
calls to a learning algorithm, without accessing the database except through the learning algorithm. This has
interesting implications for any class of algorithms that may make only restricted access to the database. For
example, this also proves that if it is possible to agnostically learn some concept class C while preserving
ε-differential privacy (even using algorithms that do not fit into the SQ model), then it is possible to release
the same class while preserving T ε ≈ log |X|ε-differential privacy.
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A Concentration properties of submodular functions

In this section we present the concentration inequalities for submodular functions that were needed in the
analysis of our main algorithm. We will employ “dimension-free” concentration bounds which apply to
self-bounding functions (i.e., those whose concentration does not explicitly depend on the number of random
variables):

Definition A.1 (Self Bounding Functions [DP09]). Let Ω =
∏d

i=1 Ωi be an arbitrary product space. A
function f : Ω → � is (a, b)-self-bounding if there are functions fi :

∏
j,i Ωi → � such that if we denote

x(i) = (x1, . . . , xi−1, xi+1, . . . , xd), then for all x ∈ Ω, i,

0 ≤ f (x) − fi(x(i)) ≤ 1 (10)

and
d∑

i=1

( f (x) − fi(x(i))) ≤ a f (x) + b (11)

Self-bounding functions satisfy the following strong concentration properties:

Theorem A.1 ([BLM00, BLM09]). If f is a (a, b)-self-bounding function for a > 1/3, and Z = f (X1, . . . , Xd)
where each Xi taking values in Ωi is independently random, then:

�r {|Z − �Z| ≥ t} ≤ 2 exp
(
−

t2

2(�Z + b + ct)

)
, (12)

where c = (3a − 1)/6 .

We remark that Theorem A.1 is dimension-free: it shows that f (Z) is concentrated around �[Z] with
standard deviation O(

√
�[Z]), rather than merely O(

√
d), which holds for any Lipschitz function. This tighter

concentration is crucial to our application.
Submodular functions satisfying a Lipschitz condition are in fact self-bounding. This was observed by

Vondrak [Von10] for p = 2.

Lemma A.2 (Vondrak [Von10]). If f : 2U → � is a submodular function such that

sup
S ,x
|∂x f (S )| ≤ 1 , (13)

then f is (2, 0)-self-bounding.
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Corollary A.3 (Concentration for submodular functions). If f : 2U → � be a submodular function satisfying
the Lipschitz condition 13. Then for any product distribution S over 2U , we have

�r {| f (S ) − � f (S )| ≥ t} ≤ 2 exp
(
−

t2

2(�Z + 5t/6)

)
, (14)

The above bounds are all that are needed for our algorithm for approximating submodular functions over
product distributions.

For application to Boolean conjunctions, we need a generalization to p > 2. However, we only need this
claim for monotone submodular functions.

Lemma A.4 (Concentration for generalized monotone submodular functions). Let f : [p]U → � be a
monotone submodular function satisfying the Lipschitz condition

sup
S ,x,i

∣∣∣∂x,i f (S )
∣∣∣ ≤ 1 . (15)

Then for any product distribution S over [p]U , we have

�r {| f (S ) − � f (S )| ≥ t} ≤ 2 exp
(
−

t2

2(�Z + t/3)

)
, (16)

Proof. Using Theorem A.1 it suffices to show that the function is (1, 0)-self bounding.
To argue this claim it will be convenient to use the notation from Theorem A.1. We will therefore denote

an element from [p]U by a string x ∈ [p]d. In this notation we write ∂i,a f (x) = f (x[i := a]) − f (x) whenever
xi = 0 and a ∈ [p]. For each x ∈ [p]d, denote by x(i) (as above) the vector (x1, . . . , xi−1, xi+1, . . . xd) ∈ [p]d−1

and by x(i) the vector (x1, . . . , xi−1, 0, . . . , 0) ∈ [p]d. Put fi(x(i)) = f (x1, . . . , xi−1, 0, xi+1, . . . , xu). We then
have:

d∑
i=1

f (x) − fi(x(i)) =

d∑
i=1

∂i,xi f (x(i))

≤

u∑
i=1

∂i,xi f (x(i))

=

u∑
i=1

f (x1, . . . , xi, 0, . . . , 0) − f (x1, . . . , xi−1, 0, . . . , 0)

≤ f (x) �

We now show that we have roughly the same concentration bounds when we choose elements of
weight w randomly rather than elements from a related product distribution over [p]U . While this doesn’t use
submodularity, it does require the function to be monotone. Indeed, given a monotone submodular function
f : [p]U → �, let S ∈ [p]U be the random variable where S (x) = 0 with probability 1 − (w/d), and with
probability w/d we choose S (x) uniformly at random from {1, . . . , p − 1}. On the other hand, let T ∈ [p]d

denote the uniform distribution over strings in [p]d of weight w. The following claim can be found in [BH10].

Lemma A.5. Assume f : [p]U → � is monotone function, and S and T are chosen at random as above.
Then,

�r[ f (T ) ≥ τ] ≤ 2�r[ f (S ) ≥ τ] (17)

�r[ f (T ) ≤ τ] ≤ 2�r[ f (S ) ≤ τ] (18)
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Proof. First we prove inequality 17.

�r[ f (S ) ≥ τ] =

d∑
i=0

�r[ f (S ) ≥ τ | |S | = i] · �r[|S | = i]

=

d∑
i=w

�r[ f (S ) ≥ τ | |S | = i] · �r[|S | = i]

≥

d∑
i=w

�r[ f (T ) ≥ τ] · �r[|S | = i] (monotonicity)

= �r[ f (T ) ≥ τ] · �r[|S | ≥ w]

≥ 1/2�r[ f (T ) ≥ τ]

The proof of (18) works the same way. �

B A Comparable Lower Bound

In this section, we prove directly that no polynomial time algorithm that can be implemented in the SQ model
(or any algorithm that operates in the local privacy model) can release conjunctions to subconstant error α,
even if it is allowed to make arbitrary errors on a fraction of conjunctions of each size, as our algorithm does.
That is, we prove a lower bound that is directly comparable to our algorithm.

Definition B.1. Let C be a class of boolean predicates f : {0, 1}n → {0, 1}, and let D be a distribution over
{0, 1}n. The SQ-Dimension of C with respect to D is defined to be SQ-DIM(C,D) = d, where d is the largest
integer such that C contains d functions f1, . . . , fd with the property that for all i , j we have:

|�r
D

[ fi(x) = f j(x)] − �r
D

[ fi(x) , f j(x)]| ≤
1
d3

Theorem B.1 ([BFJ+94]). Let C be a class of boolean functions over {0, 1}n and D be a distribution such
that SQ-DIM(C,D) = d ≥ 16. Then any algorithm that makes statistical queries with tolerance 1/d1/3 must
make at least d1/3/2 queries to learn C to error less than 1/2 − 1/d3.

Definition B.2. For each S ⊆ [d] there exists a parity function χS (x) : {0, 1}d → {0, 1} defined as follows:

χS (x) =

∑
i∈S

xi

 mod 2

The class of parity functions is defined to be Cp = {χS : S ⊆ [d]}. Note that |Cp| = 2d.

We first observe that any subset of the parity functions C′p ⊆ Cp has SQ-Dimension |C′p| with respect to
the uniform distribution:

Observation B.1. Let C′p ⊆ Cp be some subset of the parity functions, and let U be the uniform distribution
over {0, 1}n. Then we have SQ-DIM(C′p,D) = |C′p|.

This follows since every two distinct parity functions χT (x), χT ′(x) contain some variable xi in their
symmetric difference, and so have no correlation over the uniform distribution.

In this section, we prove from first principles that no algorithm that makes only polynomially many SQ
queries can release even monotone conjunctions to subconstant error, even if it allowed to make arbitrary
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errors on a small fraction of conjunctions of each size. We remark that combined with Theorem 5.1, this
gives a new proof that no algorithm operating in the SQ model can strongly agnostically learn monotone
conjunctions to subconstant error.

First, let us say that an algorithm is (α, β)-useful with respect to a class C if it correctly releases the
answers to every query in C up to additive error α, except with probability β: That is, with probability 1 − β,
it releases a1, . . . , a|C| such that maxi∈C | f (D) − ai| ≤ α.

We first observe that absent computational constraints, the problem of learning parity functions is strictly
easier than the problem of usefully releasing the class of parity functions. We may view the bitstring/label
pairs (x, y) in the database as single bitstrings x ∈ {0, 1}d+1, with xd+1 = y. Let S ⊆ [d] be the set that defines
some parity function χS (x) over {0, 1}d, and consider χS∪{d+1}(x), a parity function over {0, 1}d+1. We have:

χS∪{d+1}(D) =
1
n

∣∣∣{x ∈ D : χS∪{d+1}(x) = 1}
∣∣∣

=
1
n
|{x ∈ D : χS (x) , xd+1}|

=
1
n
|{x ∈ D : χS (x) , y}|

= err(χS (x))

If we have an (α, β)-useful mechanism with respect to a subset of parity queries, we therefore also have an
(α, β) learning algorithm: we simply exhaustively search through the set of all parity queries χS such that
y ∈ S , and select the one with the lowest value, which as we have shown, corresponds to the parity query
with lowest error up to an additive ε.

We therefore have the following corollary:

Corollary B.2. Let C′P ⊂ CP be any subset of parity functions with superpolynomial cardinality: |C′P| ≥ dω(1).
There does not exist an algorithm in the statistical query model model that makes only polynomially many
queries and is (α, β) useful with respect to C′P, for any α bounded away from 1/2 by a non-negligible factor.

We will now show how Corollary B.2 precludes a locally private release algorithm for monotone
conjunctions to subconstant error.

Definition B.3. For each S ⊆ [d] there exists a monotone conjunction cS (x) : {0, 1}d → {0, 1} defined as
follows:

cS (x) =
∏
i∈S

xi

The class of conjunctions is defined to be Cc = {cS : S ⊆ [d]}. Note that |Cc| = 2d. If |S | = w, then we say
that cS has width w.

Note that monotone conjunctions are a very simple class, contained within the class of conjunctions,
disjunctions, decision lists, halfplanes, and other standard predicate classes of interest. Therefore a lower
bound for the class of monotone conjunctions is a serious impediment to locally-private data release. Moreover,
unlike parity functions, conjunctions are easy to learn in the SQ-model (and therefore in the local privacy
model). Therefore, our result shows a formal separation between what is possible to learn in the local privacy
model, and what is possible to release.

We first observe that for each parity function χS (x), we can define a real valued polynomial fS (x) : �d →

� such that for every x ∈ {0, 1}d, fS (x) = χS (x): We do this in the natural way, using multilinear polynomial
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interpolation:

fS (x) =
∑

y∈{0,1}d
χS (y) ·

 ∏
i:yi=1

xi

 ·
 ∏

i:yi=0

(1 − xi)


=

∑
y:
∑

i∈S yi mod 2=1

 ∏
i:yi=1

xi

 ·
 ∏

i:yi=0

(1 − xi)


=

|S |∑
i=1

∑
T⊆S :|T |=i

(−2)i−1 ·

∏
j∈T

x j


=

|S |∑
i=1

∑
T⊆S :|T |=i

(−2)i−1 · cT (x)

By restricting the above derivation to the domain {0, 1}d and by invoking linearity, it is therefore also easy to
see:

χS (D) =

|S |∑
i=1

∑
T⊆S :|T |=i

(−2)i−1 · cT (D) (19)

for any database D.
That is, we have shown how to express parities over sets of size |S | as linear combinations of conjunctions

over sets of size at most |S |. Suppose for point of contradiction that there exists a mechanism that simulta-
neously (α, α)-releases width w monotone conjunctions for each w ∈ [d] (i.e. one that may make arbitrary
errors on an α fraction of conjunctions of size k, for each k – note that our mechanism makes exponentially
fewer errors than this), for some α = o(1). Then using equation 19, we could compute the approximate value
of each parity function χS (x):

|S |∑
i=1

∑
T⊆S :|T |=i

(−2)i−1 · aT ≤

|S |∑
i=1

∑
T⊆S :|T |=i

(−2)i−1 · (cT (D) + (−1)i−1α) +

|S |∑
i=1

2i−1α

=

|S |∑
i=1

∑
T⊆S :|T |=i

(−2)i−1 · cT (D) +

|S |∑
i=1

∑
T⊆S :|T |=i

2i−1 · α +

|S |∑
i=1

2i−1α

= χS (D) + α ·

 S∑
i=1

(
|S |
i

)
· 2i−1

 + α(2|S | − 1)

= χS (D) +

(
3|S | − 1

2
+ 2|S | − 1

)
· α

where the first inequality follows from the hypothesized usefulness of the release mechanism, and the second
equality follows from equation 19. We can similarly derive:

|S |∑
i=1

∑
T⊆S :|T |=i

(−2)i−1 · aT ≥ χS (D) −
(
3|S | − 1

2
+ 2|S | − 1

)
· α

Together, we have shown that a mechanism that (α, α)-releases conjunctions with up to s variables yields an
(α′, β)-useful mechanism for parities of up to s variables, with α′ = O(3s · α).

By setting s = O(log 1
α ), we can take α′ to be 1/4. However, since α = o(1) by assumption, we have

that log 1
α = ω(1). Let C′p = {χS ∈ Cp : |S | ≤ s}. We have: |C′p| = dω(1). By Corollary B.2, we know that α′

cannot be bounded away from 1/2 by a constant, and so we have derived a contradiction. We have therefore
proven the following theorem:
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Theorem B.3. No release mechanism in the SQ model that makes only dO(log(1/α)) queries can simultaneously
(α, α)-release monotone conjunctions of width w for each w ∈ d1/αe variables.

This has several implications. Recall that Kasiviswanathan et al. showed that their Local Privacy model
is polynomially equivalent to the SQ model [KLN+08]. Therefore we have:

Corollary B.4. No release mechanism in the SQ model with a database of poly(d) many individuals can
release even monotone conjunctions to subconstant error.

Because we also proved the polynomial equivalence between SQ agnostic learning and SQ release, by
applying Theorem 5.1 we also get the following corollary, originally due to Feldman [Fel10], proven here in
a novel way:

Corollary B.5. No agnostic learning algorithm operating in the SQ model can learn monotone conjunctions
to subconstant error, even over the uniform distribution.

C Releasing the cut function of a graph

Consider a graph G = (V, E) in which the edge-set represents the private database (We assume here that each
individual is associated with a single edge in G. The following discussion generalizes to the case in which
individuals may be associated with multiple edges, with a corresponding increase in sensitivity). The cut
function associated with G is fG : 2V → [0, 1], defined as:

fG(S ) =
1
|V |2
· |{(u, v) ∈ E : u ∈ S , v < S }|

We observe that the graph cut function encodes a collection of counting queries over the database E and so
has sensitivity 1/|V |2.

Fact C.1. For any graph G, fG is submodular.

Lemma C.1. The decomposition from Theorem 3.3 constructs a collection of functions G of size |G| ≤ 22/α.

Proof. Let u ∈ V , and S ⊂ V such that |∂u fG(S )| ≥ α. It must be that the degree of u in G is at least α · |E|.
But there can be at most 2/α such high-influence vertices, and therefore at most 22/α subsets of high influence
vertices. �

Corollary C.2. Algorithm 1 can be used to privately (α, β)-release the cut function on any graph over any
product distribution in time t(α, β, ε) for any database of size |D| ≥ t(α, β, ε), while preserving ε-differential
privacy, where:

t(α, β, ε) =
2O(α−2 log(1/β))

ε

Proof. This follows directly from a simple modification of Theorem 3.5, by applying Lemma C.1 and
plugging in the size of the decomposition G. The algorithm can then be made privacy preserving by applying
proposition 2.1. �
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