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Abstract. Off-road autonomous navigation is one of the most difficult automation challenges from the point of
view of constraints on mobility, speed of motion, lack of environmental structure, density of hazards, and typical
lack of prior information. This paper describes an autonomous navigation software system for outdoor vehicles
which includes perception, mapping, obstacle detection and avoidance, and goal seeking. It has been used on sev-
eral vehicle testbeds including autonomous HMMWV’s and planetary rover prototypes. To date, it has achieved
speeds of 15 km/hr and excursions of 15 km. 

We introduce algorithms for optimal processing and computational stabilization of range imagery for terrain map-
ping purposes. We formulate the problem of trajectory generation as one of predictive control searching trajectories
expressed in command space. We also formulate the problem of goal arbitration in local autonomous mobility as an
optimal control problem. We emphasize the modeling of vehicles in state space form. The resulting high fidelity
models stabilize coordinated control of a high speed vehicle for both obstacle avoidance and goal seeking purposes.

An intermediate predictive control layer is introduced between the typical high-level strategic or artificial intelli-
gence layer and the typical low-level servo control layer. This layer incorporates some deliberation, and some envi-
ronmental mapping as do deliberative AI planners, yet it also emphasizes the real-time aspects of the problem as do
minimalist reactive architectures.

Keywords: mobile robots, autonomous vehicles, rough terrain mobility, terrain mapping, obstacle avoidance, goal-
seeking, trajectory generation, requirements analysis

1.     Introduction

In our companion paper in this issue (Kelly and
Stentz, 1998), the authors derived a set of require-
ments for autonomous off-road mobility that also sug-
gest an approach to meeting those requirements. This
paper is concerned with the design and implementa-
tion of a system that learns from the results of our ear-
lier theoretical analysis. We have called this system
RANGER - for Real-Time Autonomous Navigator
with a Geometric Engine1. 

We emphasize the real-time nature of high speed
autonomous mobility and, as a result, have been very
concerned with such matters as efficiency, speed,
throughput, and response time. 

Our approach is based fundamentally on the state
space representation of a multi-input / multi-output
dynamical system and is a departure from precedent in
the following ways:

• We use an active and adaptive approach to percep-
tion that minimizes the amount of perceptual data

processed.
• We use a predictive control formulation of trajec-

tory generation and search.
• We use an optimal control formulation of goal

arbitration.

1.1.   Overview

The paper is organized into five more sections fol-
lowed by a summary and conclusions section. Section
2 presents the problem and our approach at a systems
and architectural level of detail. We discuss autono-
mous mobility from a historical perspective and
attempt to define it. 

Then, we introduce two views of the overall architec-
ture of our solution - a hierarchical (layered) view, and
a data flow (object-oriented) view and state our high
level results for two very different vehicles. The major
subsystems of the design are identified as perception,
terrain mapping, path planning, and goal seeking and
arbitration, and each of these is covered in subsequent
sections.

Section 3 deals with our active approach to perception.
We show how a few well-justified assumptions make
it possible to implement an efficient test for member-

1. The name RANGER is also being used currently for an unrelated
free-flying space vehicle under development by David Akin at the
University of Maryland. 
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ship of range pixels in a region of interest on the
ground. 

We then introduce a three part generic algorithm for
near optimal active vision for terrain mapping in sta-
tionary environments and state our results when we
implement it for both laser rangefinders and stereo
vision. In the latter case, the algorithm is embedded
inside the stereo algorithm so that it also significantly
improves the efficiency of range image generation.

Section 4 covers terrain mapping - the process of mod-
eling the environment based on the range imagery
generated and processed by perception. Our experi-
ence with this problem had identified map traversal,
copying, and interpolation as expensive and largely
unnecessary operations which ultimately limit vehicle
performance. 

We introduce an abstract data structure and an
approach to obstacle detection which make it possible
to avoid all of the above expensive operations. Our
results indicate a mapping overhead that is now an
insignificant component of run-time. Further, we show
a composite terrain map generated from a few hundred
stereo range images.

Section 5 deals with path planning and obstacle avoid-
ance. We formulate this problem in terms of forward
simulation based on a state space vehicle model and
identify certain advantages associated with this
approach. The nonlinear vehicle model is formulated
and then used in a predictive control context to accu-
rately test candidate vehicle trajectories for relative
safety. Our results include a simulation that demon-
strates that 97% of C space is kinematically and
dynamically infeasible for our vehicle in typical situa-
tions.

Section 6 deals with goal seeking and goal arbitration.
We formulate the former as a model reference control
problem and the latter as a standard optimal control
problem. We identify the advantages of forward simu-
lation in path tracking performance and introduce an
active perception approach to searching the terrain
map based on knowledge of vehicle maneuverability. 

2.   Local Autonomous Mobility

Our system  addresses what we will call the local nav-
igation problem for autonomous vehicles. That is, the
problem of deciding what to do based only on what
can be seen at the moment within the field of view of
the environmental sensors. The problem of global
planning is outside our scope in this paper.

2.1.   Introduction

Consider the task of path planning for an autonomous
vehicle travelling cross country over rough terrain at
high speeds.

Scope of Problem. We can scope the problem in terms
of several parameters:

• Overall Goal. In general, the vehicle must achieve
some useful goal. The goal may be to move from
an initial position to some other distant position, to
map an entire area, or to search an area for objects.

• Degree of Optimization. Standards for what con-
stitutes achievement of the goal may vary from
satisfaction of certain constraints (e.g. avoid colli-
sion with obstacles) to optimization of an arbitrary
utility function (e.g. fuel consumption or distance
travelled).

• Difficulty of Terrain. In realistic terrain, the vehi-
cle is challenged by regions that would cause
tipover, trapped wheels, or loss of traction. Some
regions are not traversable at all and others may
cause disastrous system failures such as falling
into an abyss.

• Depth of Prior Knowledge. Both the goal to be
achieved and the characteristics of the environ-
ment may be expressed and/or known to varying
degrees of detail. The goal may be expressed as a
point to achieve, a path to follow, an object to find,
or something much more abstract. The environ-
ment may be completely known or partially
mapped at various levels of detail and richness of
expression.

Problem. Within these parameters, we can character-
ize the problem we have addressed in the following
terms:

• The overall goal is to follow a predefined path
that, because our goal trajectory is specified out-
side our system, is assumed to be free of local
planning minima.

• We attempt to follow this path as closely as possi-
ble while travelling as fast as possible and avoid-
ing any obstacles that may appear.

• We attempt to operate on barren, rolling terrain
that may contain ravines, cliffs, and regions that
would tip the vehicle.

• We have no prior knowledge of the environment
beyond the path we are to follow.

Previous Work. Groundbreaking work on this problem
has been conducted at Hughes (Daily et. al., 1988;
Keirsey et. al., 1988; Chang et. al., 1986), Lockheed-
Martin (Dunlay and Morgenthaler, 1986a, 1986b), JPL
(Thompson, 1997; Matthies, 1992), CMU (Feng et.
al., 1990; Gowdy et. al. 1990; Hebert et. al., 1988,
1991), INRIA (Hotz, Zhang and Fua, 1993) and
LAAS-CNRS (Chatila and Lacroix, 1995), among
many others. Generally speaking, early systems were
slower than later ones, and speed, excursion, and run
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time have improved with the general improvement in
component technology and algorithms. In 1978, the
Stanford Cart thought more than it moved (Moravec,
1980). In 1988, the ALV achieved continuous motion
(Olin and Tseng, 1991). In 1994 the vehicles of the
ARPA UGV program achieved a few meters per sec-
ond of speed (Brumitt et. al., 1992).

While speed is but one measure of performance,
attempting to navigate successfully at high speed
requires that many other performance issues be
resolved as well. Work on the related problem of road-
following has also been conducted for a decade in the
U.S. and Europe (Dickmanns, 1986, 1995). The Ger-
man UBM group has achieved speeds of 130 km/hr on
the autobahn. This work has addressed dynamic mod-
eling issues in order to achieve high speeds just as we
do in this paper.

Solution. Our general architectural approach to the
problem has been to insert an architectural layer
between strategic planning and actuator control which
we will call tactical control. This layer, being faster
than planning yet more intelligent than control will be
able to understand vehicle maneuverability suffi-
ciently well for robust path tracking and will be able to
react fast enough for robust obstacle avoidance.

We will describe this technique in the context of
mobile robot layered architectures, and the delibera-
tive / reactive architectural spectrum. However, such
techniques as model-referenced adaptive control and
trajectory tracking (Kaufman et. al., 1994), model-
based predictive control (Clark, 1994), optimal control
(Kirk, 1970), and state-space modeling (Ogata, 1967)
are well-known in the control engineering literature.
An excellent reference on all of these topics is
(Levine, 1996). 

None of the control techniques we propose are new.
However, as the emphasis in mobile robot research
begins to shift from answering fundamental formula-
tion questions to achieving real-life performance, clas-
sical control engineering techniques promise to point
part of the way. 

2.2.   Preliminaries

Conventions. The paper will introduce many new
terms as a device to foster brevity and precision. New
terms will be defined in their first appearance in the
text. They will generally be highlighted thus.

The angular coordinates of a pixel will be expressed in
terms of horizontal angle or azimuth , and vertical
angle or elevation . Three orthogonal axes are con-

sidered to be oriented along the vehicle body axes of
symmetry. Generally, we will arbitrarily choose z up, y
forward, and x to the right:

• x - crossrange, in the groundplane, normal to the
direction of travel.

• y - downrange, in the groundplane, along the
direction of travel.

• z - vertical, normal to the groundplane.

We will carefully distinguish range,  measured in 3D
from a range sensor, and the projection of range 
onto the groundplane. Generally, both will be mea-
sured forward from the sensor unless otherwise noted.

Certain vehicle dimensions that will be important are
summarized in the following figure. One distinguished
point on the vehicle body will be designated the vehi-
cle control point. The position of this point and the ori-
entation of the associated coordinate system is used to
designate the pose of the vehicle. 

The wheelbase is , and the wheel radius is . The
height of the sensor above the groundplane is desig-
nated  and its offset rear of the vehicle nose is . The
height of the undercarriage above the groundplane is

. Range measured from the sensor is designated .

Terminology. Any vehicle which attempts to navigate
autonomously in the presence of unknown obstacles
must exhibit performance that satisfies a basic set of
requirements. At the highest level, if the system is to
survive on its own, the vehicle control system must
implement a policy of guaranteed safety.

This requirement to guarantee safety can be further
broken down into four other requirements on perfor-
mance and functionality expressed in terms of timing,
speed, resolution, and accuracy. In order to survive on
its own, an autonomous vehicle must implement the
four policies of:

• guaranteed response: It must respond fast enough
to avoid an obstacle once it is perceived.

• guaranteed throughput: It must update its model of
the environment at a rate commensurate with its
speed.
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Figure 1: Important Vehicle Dimensions. Many
of these dimensions will be used throughout
the  paper.
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• guaranteed detection: It must incorporate high
enough resolution sensors and computations to
enable it to detect the smallest event or feature that
can present a hazard.

• guaranteed localization: It must incorporate suffi-
ciently high fidelity models of itself and the envi-
ronment to enable it to make correct decisions and
execute them sufficiently accurately.

Subproblems. Analysis shows [Kelly, 1995] that tradi-
tional configuration space planning techniques applied
to cross-country navigation suffer from problems of
poor reliability and stability, and poor computational
efficiency. Indeed, our experience has demonstrated
regular collisions with obstacles that were seen and
reacted to. There were two general reasons for this
behavior:

• computational inefficiency: there was not enough
time to decide what to do.

• command following problem: the specific trajec-
tory used to avoid the obstacle could not be exe-
cuted reliably or stably.

Yet another common problem is the well-known local
minimum problem. It arises from the use of local rather
than global optimization strategies. This problem is
considered outside the scope of our work here, though
one of the authors [Stentz, 1995] addresses this prob-
lem in our target environment in other writings. 

2.3.   Standard Architectural Model

Consider the following hierarchical architectural
model. This is a convenient view for organizing the
description of the system.

Spectrum of Characteristics. Higher levels of the
hierarchy tend to be characterized by computation that
is more symbolic, logical, search-oriented, sequential,
deliberative and abstract than lower layers. Lower lay-
ers tend to be characterized by computation that is
more spatial or temporal, arithmetic, repetitive, paral-
lel, reactive, and concrete than higher layers. As a gen-
eral rule, higher layers exhibit longer reaction times
and longer cycle times.

The policy layer concerns itself with the generation
and monitoring of mission level objectives such as
“stay alive’, “find the bomb”, etc. Generally, the goals
of this level are not subject to much compromise. Pol-
icy does not change often and is usually constant over
the duration of a mission. Policy is often imparted per-
manently to a system by its human designers.

The strategic layer corresponds to the deliberative,
logical, goal-generating component of autonomous
systems. It concerns itself with the larger picture
within the confines of policy; with avoiding local
planning minima, with overall optimality, and with
modeling and memory of the environment. Relative to
lower layers, it is often obliged to consume more time
in its deliberations of longer term strategic concerns.

By contrast, the control layer corresponds to the real-
time command following component of autonomous
systems. It concerns itself with the immediate low
level issues of doing exactly what it is told to do to the
best of its ability. Relative to higher layers, it is often
obliged to consume more bandwidth as it reacts almost
instantly to short term immediate concerns.

It is clear that both longer term strategic and shorter
term reactive concerns will contend for computational
resources. Plainly, there are limits to the degree to
which any system can be both smart and fast. Faced
with this reality, the design problem becomes one of
making the best use of available resources.

2.4.   Tactical Control Layer

Much of our work resides in the layer we are calling
tactical control. We identify this layer in order to more
effectively connect the strategic and control layers,
and to provide a place to solve many of the problems
mentioned earlier.

Strategic - Control Connection. A direct connection
of the strategic layer (say, the global path planner) to
the control layer (actuator control) becomes less feasi-
ble as speeds increase. Further, there are times when
one or the other generates incorrect output and the

Figure 2: Standard Model. This type of hierarchical
architecture is common. Higher layers tend to be
more deliberative etc. whereas lower layers tend to
be more reactive etc. Our control formulation of
mobility fits in at the “tactical” level.
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other is either not intelligent enough or not fast enough
to compensate.

There are certainly times when the goals specified by
the strategic layer must be ignored because it is not
aware of the immediate environment but the control
layer is not intelligent enough to compensate. There
are also times when the control layer is unable to fol-
low its commands but the strategic layer is too slow to
alter the command.

Our solution to this problem is to have a third layer
more intelligent than control and faster than planning.
This layer:

• Views the goals from the strategic layer as recom-
mendations that it may be overridden when the sit-
uation demands it.

• Incorporates sufficient bandwidth to ensure vehi-
cle survival at the coordinated actuator control
level.

• Incorporates a sufficiently accurate model of vehi-
cle dynamics that it understands and adapts to the
inability of the controller to follow its commands.

This three-layer architecture imparts a degree of
autonomy to the layer below the strategic to allow it to
implement basic survival and temporarily disregard
strategic imperatives.

Intelligent Predictive Control. We characterize the
navigator as an intelligent predictive controller
because it closes the overall perceive-think-act loop
for a robot vehicle based on intelligent assessment of
both the surrounding environment and the predicted
abilities of the vehicle to maneuver.

The system shares many characteristics with strategic
planning:

• It performs an amount of search and heuristics are
employed to reduce that search. 

• It models the environment and responds to it, so it
merits the designation intelligent. 

• It considers alternatives in an abstract space that is
a transformation of reality - in this case, command
space instead of the configuration space com-
monly used in strategic motion planning.

• It considers the consequences of its actions using
time continuous precedence information in the
form of a system dynamics model. 

• It employs some memory of the state of the envi-
ronment and of the vehicle.

Likewise, the system also shares characteristics with
controllers.

• It models the vehicle with a multivariate differen-
tial equation.

• It is very concerned with response time and
throughput management as is common of real-time
systems. 

• It is concerned with latencies and time tags and the
precise timing of events.

• It concerns itself with command following -
although it may temporarily override its strategic
level commands in order to ensure survival.

2.5.   Architecture

At the highest level, the system can be considered to
consist of 5 modules as shown in the following data
flow diagram:

Position Estimator. The Position Estimator is respon-
sible for integrating diverse navigation sensor indica-
tions into a single consistent indication of vehicle
state. Vehicle state information includes the positions
of all actuators and some of their derivatives, and the
3D state of motion of the vehicle body. This module
may be the built-in navigation Kalman filter or another
system which generates the same output. 

Map Manager. The Map Manager integrates discrete
samples of terrain geometry or other properties into a
consistent terrain map which can be presented to the
vehicle controller as the environmental model. It
maintains a current record of the terrain immediately
in front of the vehicle which incorporates all images
necessary, and which automatically scrolls as the vehi-
cle moves. 

Vehicle. The Vehicle object is both the control loop
system model element and an abstract data structure
which encapsulates the vehicle state. It incorporates
FIFO queues which store a short time history of vehi-
cle states and commands. Old state information is
required by the map manager in order to register
images in space. The current vehicle state and old
commands are used in the dynamic simulation.

Controller. The Controller object is responsible for
coordinated control of all actuators. This module
includes regulators for sensor head control, an obstacle
avoidance tactical controller and a path following stra-
tegic controller. It also incorporates an arbiter to

Figure 3: System Data Flow: Five components make
up the tactical control layer. 
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resolve disagreements between the latter two control-
lers.

Perception. The Perception module is responsible for
understanding or interpreting input images and putting
them in a form suitable for the Map Manager to pro-
cess. Examples of perceptual preprocessing include
stereoscopy (stereo vision) which computes range
from two or more images taken from disparate view-
points, and terrain-typing which labels each pixel in an
image as rock, road, shrubbery or tree. Stereo vision is
the only perception that is currently supported,
although laser range images can be fed directly to the
map manager.

2.6.   Results

The system has been tested on the vehicles shown in
the following figure. We have used laser range data
and stereo range data to build maps of the terrain over
which the vehicle must travel. In the former case,
excursions of 15 kilometers and instantaneous speeds
of 15 km/hr have been achieved while tracking a
coarsely specified path. Average speed was on the
order of 7 km/hr. 

3.   Perception

This section discusses the motivation behind, and
implementation of the 3D perception algorithm for
extracting relevant geometry from a range image
sequence. We propose a relatively simple method of
approaching the minimum required perceptual
throughput in a terrain mapping system, and hence the
fastest possible update of the environmental model.
The technique proposed will be relevant to any appli-
cation that models the environment with a terrain map
or other 2-1/2 D representation.

3.1.   Introduction

The surface of the surrounding terrain can be sensed
by any number of means, but the two most commonly
used ones in outdoor scenarios are laser rangefinders
and stereo vision. We represent the surface of the sur-

rounding terrain by a sampled, uniform density data
structure often called a terrain map or cartesian eleva-
tion map. 

Problem. When attempting to navigate over rough ter-
rain, few assumptions about the shape of the terrain
ahead can be made. It can be necessary to convert
images into a full description of the geometry of the
scene at relatively high rates. As a result, the speed of
rough terrain navigation is typically limited by the
throughput of the perception system. We will call this
predicament the perceptual throughput problem. Per-
ceptual throughput can be expressed in units of range
or intensity pixels measured per second, or its equiva-
lent. 

We address here this typical performance limitation of
autonomous outdoor vehicles. Our companion analy-
sis suggests (Kelly and Stentz, 1998) that much of the
computational resources used to image and interpret
the environment can be a waste of resources in mobil-

Figure 4: Some Navigation Testbeds: A modified military HMMWV and a RATLER Planetary Rover prototype.
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ity scenarios. This waste occurs for three principle rea-
sons:

• The vertical field of view is often too wide from a
throughput perspective. Obstacles and other haz-
ards normally appear in the field of view long
before they can be resolved, and long after they
cannot be avoided.

• Sensor frame rate is often too fast. The sensor ver-
tical field of view is normally aligned with the
direction of travel so that image sequences nor-
mally contain much redundant information.

• Square pixels are not optimally shaped. The pro-
jection of image pixels on the groundplane is nor-
mally elongated in the wrong direction for robust
obstacle detection and minimum throughput.

From the days of the Stanford Cart to the Autonomous
Land Vehicle, vehicle speed has been limited, at least
in part, by limited perceptual throughput. We will
show how to eliminate much of this inefficiency in
order to easily meet the perceptual throughput require-
ments.

Solution. One approach to reducing redundant infor-
mation is the use of laser and video line scanners.
These have seen use in specialized high-speed inspec-
tion applications for some time. In satellite applica-
tions, synthetic aperture radar has used vehicle motion
to provide the scanning motion of the sensor along the
direction of travel. The essential principle involved in
these examples is to avoid scanning the sensor when
either the motion of the vehicle or the motion of the
environment already accomplish the scanning.

However, the use of line-scanned sensors is difficult
on rough terrain because abrupt attitude changes of the
vehicle body cause holes in the coverage of the sensor.
Software adaptation provides the best of both worlds
because it gives the ideally focussed attention neces-
sary for high speed and the wide field of view neces-
sary for rough terrain.

In our companion paper, we have showed that required
perceptual throughput is polynomial in the reaction
distance. We have also shown that straightforward
techniques promise to significantly increase the over-
all efficiency of terrain mapping perception algo-
rithms. This improvement can be accomplished by
exploiting constraints and several assumptions that are
valid in most outdoor mobility scenarios.

The basic idea is to selectively process only the data
that matters in range imagery. Known here as adaptive
perception, the technique also has the beneficial side-
effects of automatically adapting to changes in vehicle
speed and attitude, and to the local slope of the imaged
terrain. Through this technique we achieve near mini-

mum perceptual throughput and hence, near maximum
safe vehicle speeds. 

A fundamental tenet of active vision (Aliomonos et.
al., 1988; Bajcsy, 1988) is to direct attention to the part
of the scene that is relevant to the task at hand, rather
than to interpret and model the scene. Our work pro-
vides a concrete example of at least one aspect of
active vision. Although we do model the scene, we
actively search for the data we need.

3.2.   Preliminaries

We will use two primary techniques for reduction of
the perceptual inefficiencies mentioned above:

• We will actively maintain a focus of attention and
process perceptual data only in a region of interest
that contains the most useful information.

• We will actively and intelligently subsample the
data within that region of interest for adequate -
but not unnecessarily high - resolving power.

These two strategies will be referred to collectively as
adaptive perception - the organizing principle of our
approach to terrain mapping for high speed mobility.

Terminology. We will call a region of space for which
sensory data is required a region of interest, abbrevi-
ated ROI. 

It also will be important to distinguish the coordinate
system implied by the sensor image - called the image
plane from a set of coordinates attached to the terrain -
called the ground plane.

An ROI defined on the groundplane will be called a
ground plane ROI. Such a region will have an image
in the image plane which will be called an image plane
ROI. 

Let  and  be the elevation and azimuth coordinates
of an image pixel. Computing derivatives of the range
image of flat terrain leads to the differential relation-
ships between groundplane (x,y) resolution and image
plane resolution ( , ):

Figure 5: Regions of Interest. A region of interest in
the ground plane forms a corresponding image in
the image plane.
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The completely correct transformations also depend
on the local terrain gradients. These are unknown a
priori because terrain geometry is the very thing the
sensor is supposed to measure. 

A quantity of central concern to us will be the distance
that the vehicle requires to react to an external event
such as the appearance of an obstacle in the sensor
field of view. This distance will be called the response
distance and its precise value will depend on:

• the speed of the vehicle when the event happens
• when the response is considered to be complete
• the maneuver chosen as the response

Subproblems. We have, at this point, nominated adap-
tive perception as a solution to the perceptual through-
put problem. Unfortunately, this leads to a new set of
problems, but we will be able to solve them with addi-
tional strategies and clearly identified assumptions.

From the point of view of responding robustly to
obstacles, it is best to detect obstacles early, or equiva-
lently, at high range from the vehicle. However, from
the point of view of sensor resolving power, it is best
to detect obstacles as close as possible to the vehicle
where data quality and spatial resolution tends to be
highest. In other words, the farther away an obstacle is
detected, the easier it is to avoid, but the harder it is to
detect it robustly. When either resolution or range is
limited, we can detect an obstacle robustly or avoid it
robustly, but not both. This is the response-resolution
tradeoff. 

We will manage this tradeoff by explicitly computing
the minimum distance required for robust obstacle
avoidance and looking for obstacles only beyond this
distance. This technique will be called adaptive looka-
head.

The mapping from the groundplane ROI to the image
plane ROI is both nonlinear (a projective transform)
and a function of the unknown shape of the terrain. It
seems, therefore, that it is not at all straightforward to
efficiently find the image plane ROI. Consider, for
example, the straightforward solution of converting
coordinates of all pixels in the image and then compar-
ing their positions to the groundplane ROI. After pix-
els that are not in the groundplane ROI are eliminated,
one is left with the image plane ROI. While this would
certainly work, it can be far too inefficient to be use-
ful.

For terrain mapping, the largest computational cost of
a range pixel is the conversion of its coordinates from
the image plane to the ground plane. In attempting to
select only the data of interest by converting the coor-
dinates of all pixels, one has already done most of the

perception task anyway. Any straightforward attempt
to selectively process data in a region of interest
apparently falters because the problem of selection is
as difficult as the problem of perception.

We will use assumptions to decouple these problems.
When the assumptions are combined with an appropri-
ate choice of the groundplane ROI, we will be able to
partially infer the shape of the image plane ROI and
compute its position by very efficient image plane
search. The algorithm for doing this will be called
adaptive sweep.

The sampling problem is the nonuniform and anisotro-
pic distribution of pixels on the groundplane which
corresponds to a uniform and isotropic distribution of
the corresponding pixels in the image plane. The Jaco-
bian matrix which relates the two distributions
depends on both the image projective transform and
the local terrain slope at each point. The impact of this
problem is that not only is the shape of the image
plane ROI distorted and of unknown position but the
local pixel density required to sample the groundplane
uniformly is both unknown and different everywhere
in the image plane ROI. 

This variation in pixel density is shown below for flat
terrain. Each ellipse represents the footprint of a pixel.
It is the variation in density which we are illustrating,
not the density itself, so the images were subsampled
to avoid clutter.

We will solve this problem to some degree by choos-
ing the best compromise and, at other times, by
actively computing the required image plane resolu-
tion from extrapolation. The algorithm for doing this
will be called adaptive scan.

Assumptions. Certain assumptions will be key compo-
nents of our approach - either because they must be
made or because they can be made with little or no
loss of generality.

Figure 6: Sampling Problem. Equally spaced image
pixels are not equally spaced on the groundplane -
even for flat terrain. The situation is worse for rough
terrain.
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One of our most fundamental assumptions will be that
the environment is self stationary. That is, the environ-
ment will be supposed to consist of rigid bodies whose
relative positions are fixed - at least while they are in
the field of view of the environmental sensor. While
the bodies comprising the environment are self sta-
tionary, our vehicle is in motion with respect to them.
The value of this assumption is that it allows us to
image a point in the environment only once and,
because only the vehicle moves, its subsequent posi-
tion relative to the vehicle at any later time can be
inferred solely from the vehicle motion.

We will use the term small incidence angle assump-
tion to refer to the situation where image pixels inter-
sect a theoretical flat world at glancing angles. This is
guaranteed to be the case if:

• the sensor is mounted on the vehicle roof, and
• pixels inside the response distance are ignored,

and
• the vehicle speed is relatively high

because, under these conditions, the sensor height is
small relative to the range of any pixel.

In the figure above, this assumption implies the valid-
ity of the following approximations:

We will call  the range and  the range projection.
It is easy to show that the relative error incurred in
assuming that these two quantities are the same is the
square of the ratio . 

A final important assumption is the assumption that
the environment is 2-1/2 dimensional with respect to
the direction of gravity. That is, at all points, a line
aligned with gravity pierces the first reflecting surface
of the environment at most once. This assumption jus-
tifies a terrain map representation and it also allows us
to assume that range is a near monotonic function of
image elevation angle. If we eliminate vegetation
which overhangs its own supports from consideration,
the worst case violation of this monotone range
assumption is the reduction in range that occurs when
a vertical surface is scanned as shown below.

The computational advantage of the assumption is that
once the maximum range is found in an image, all pix-
els above it in the same column of the image can be
safely assumed to be beyond that range. It will turn out
later that this assumption will only be used in laser
rangefinder implementations of adaptive perception.
Stereo vision will not require it.

Design. Our basic technique for  efficient extraction of
the groundplane ROI data is to convert the member-
ship test to image coordinates, rather than to convert
each data point to world coordinates. The relationships
involved are nonlinear. Constant thresholds in one
space are functions when transformed to the other as
shown below:

However, if we are willing to incur a small error and
allocate safety margins appropriately, constant mini-
mum and maximum thresholds can easily be com-
puted for range, azimuth, and elevation which
correspond to a given cube in world coordinates.

The fact that the small incidence angle assumption is
valid implies several things of importance:

• the extra volume of the world coordinate ROI
shown above is minimal

• the vertical field of view required to image the
groundplane ROI is small1

• range almost equals range projection

h
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h
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2

=

R

Figure 7: Imaging Geometry. The height of the
sensor above the ground plane is normally small
compared to the ranges measured.
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1. It is not necessary to scan for obstacles that are higher than the
smallest height which will be considered hazardous, so the vertical
angular width can remain small. Plainly, after the bottom few feet of
a tree are percieved, the question of whether there is more tree above
is irrelevant.
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Figure 8: Nonmonotone Range. Range is a
nonmonotone function of image elevation angle at a
vertical or near-vertical surface.
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Figure 9: Converting Membership Test Coordinates.
It is much more efficient to convert coordinates of
the ROI membership test from world to image
coordinates than to convert the coordinates of all
range data from image to world coordinates.
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These derived assumptions allow us to inexpensively
decouple the problem of selection from that of percep-
tion because reasonably accurate constant thresholds
can be derived in image space. Only those pixels
which satisfy the resulting inexpensive image plane
ROI membership test need have their coordinates con-
verted for mapping purposes.

Our adaptive perception algorithm confines the pro-
cessing of range geometry in any cycle of computa-
tions to an image plane ROI with the following
properties:

• It extends beyond the vehicle response distance.
• Its size is the distance moved since the last cycle.

The algorithm has three conceptual parts as outlined
below.

Adaptive lookahead means the process of adapting the
position of the groundplane ROI to assure that there is
sufficient time to react to hazards. There is some mini-
mum range inside of which it is unnecessary to look
because the vehicle is already committed to travel
there. Also, there is some maximum range beyond
which it is unnecessary to look because there will be
time to look there later. In detail implementation, the
algorithm can set the minimum range to the response
distance, or alternately, set the maximum range to
response distance plus the distance travelled per cycle.

Adaptive sweep is the process of adapting the width of
the groundplane ROI to assure that there are no holes
or excessive overlaps in the coverage of the sensor.
The ROI width is set to the distance travelled since the
last computational cycle. This determines both the
maximum and minimum range projections in the
groundplane and they are trivially converted to the
image plane ROI.

Adaptive scan is the process of managing resolution
within the image plane ROI in order to achieve uni-
form groundplane resolution. For the data of interest,
it will be possible to compute an approximate mapping
from groundplane resolution to image plane resolution
and images will be subsampled by appropriate factors
to achieve near uniform groundplane resolution.

Implications. Certain implications of using the adap-
tive perception algorithm are worth noting here. The
minimum computational cost of this approach to per-
ception has implications for the real-time performance
of autonomous vehicles. The maximum useful range
of a perception sensor is often limited by reasons of
eye safety, computational cost, limited angular resolu-
tion etc. Given this limit, the highest safe vehicle
speeds are normally achieved by minimizing reaction
times. 

The only element of reaction time that can be changed
easily is often the component due to the time required
to process imagery or perform other computations.
Therefore, to the degree that our approach minimizes
the computational cost of perception, it also increases
the vehicle speeds that can be achieved.

Our software adaptive approach to perception has the
side effect of computationally pointing the sensor ver-
tical field of view by responding to both changes in the
vehicle attitude and changes in the shape of the
imaged terrain. While the shape of the range window
may be very irregular in image space, it always corre-
sponds to a regular semi-annulus in the ground plane.
If the vertical field of view is wide enough and the
range sensor is fast enough in terms of range pixel
rate, this software adaptation is superior to the tech-
nique of physically stabilizing the sensor because it
responds instantaneously.

3.3.   Adaptive Lookahead

The three techniques described in the previous section
can be applied to any range image generated by an
imaging laser or radar sensor or a stereo vision system.
It is also possible to embed adaptive perception into a
stereo vision algorithm - which will be the subject of a
special section. For both classes of imagery, range
imagery and stereo pairs, the adaptive lookahead algo-
rithm is common.

A vehicle may attempt to turn to avoid obstacles and
maintain its forward speed, it may elect to stop com-
pletely, or it may choose any other arbitrary trajectory.
The choice of trajectory determines the details of com-
puting the response distance. For our purposes, adap-
tive lookahead is implemented by computing the
distance required to execute a 90° turn at the current
speed. This gives the maximum range of the range
window. 

The groundplane ROI must be defined very precisely
in terms of distances from some specific point on the
vehicle at some specific time. The problem of finding
the data in this region in an image taken previously
involves several aspects of time delays and geometric
offsets.

• The sensor is not mounted at the vehicle reference
point, so the ROI is adjusted for this offset. 

• The vehicle is not itself a point, so the ROI must
be enlarged to provide data at the positions of the
wheels forward and aft of the reference point.

• There may be significant delay associated with the
acquisition of an image, so the ROI must be
adjusted for the age of the image.
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• The most recent vehicle state estimate is itself
somewhat old and computation takes finite time.
The ROI may need to be adjusted for these effects
depending on the instant with respect to which the
ROI is defined. 

3.4.   Adaptive Sweep/Scan-Range Imagery

If one starts with a dense range image, the algorithm
consists of the mapping of the range window into
image space and the extraction of the data.

Adaptive Sweep. Terrain roughness and nonzero vehi-
cle roll mean that the position of the range window in
the image is different for each column so the range
window is processed on a per column basis. In order to
robustly find the range window, each column is pro-
cessed in the bottom-to-top direction.

A conceptual C code fragment is as follows. The
image itself is of dimensions rows by cols. A constant
rectangular subwindow of the image is searched which
is delimited by the image plane coordinates start_row,
start_col, end_row, and end_col. This region is known
to always contain the ROI as discussed above. 

The monotone range assumption appears as the break
statement after the first conditional of the inner loop.
The start_col and end_col variables implement a fixed
azimuth and elevation angle window within which the
range window always lies on typical terrain.

Adaptive Scan. The variables row_skip and col_skip
have values corresponding to the constant image sub-
sampling factors that give the most acceptable ground-
plane resolution. In the case of range images, adaptive
scan is implemented by a literal subsampling of the
image. Also, this subsampling applies to both the data
in the ROI and the data below the ROI that is not pro-
cessed. That is, adapting the resolution can benefit the

speed of handling both the processed and the unproc-
essed data. 

Because the differential transformation from the
image plane to the groundplane is unknown, a per-
fectly robust, optimal subsampling solution is not
available. However, a spectrum of approaches to reso-
lution management are available based on the fre-
quency of update of the row_skip and col_skip
variables and how they vary with range for an
assumed flat world. They can be computed based on:

• the highest projected value of the ROI maximum
range, Rmax, based on the known speed limits of
the vehicle.

• the value of ROI maximum range, Rmax, for the
current computational cycle.

• the instantaneous value of range, R, at the current
pixel.

These options have been listed in order of increasing
speed and decreasing robustness.

In the least adaptive form of adaptive scan, the number
of pixels skipped in the horizontal and vertical direc-
tions can be set based on the average or worst case
expected value of the maximum range.

In the next most adaptive form, the image plane reso-
lutions are recomputed for each image based on the
current ROI maximum range. In the most adaptive
form, image plane resolutions can be recomputed
based on the instantaneous range image values. How-
ever, it can be awkward to vary the azimuth resolution
as a function of range if one chooses to process the
image by columns. 

The ratio of maximum to minimum range is normally
small, so the variation in  (row_skip) is also small.
Under this assumption, a good compromise is to use
the worst case azimuth resolution and the instanta-
neously computed elevation resolution.

Although the flat world assumption may seem inap-
propriate on rough terrain, the use of it in adaptive
scan works well in practice. 

3.5.   Adaptive Sweep/Scan-Stereo Imagery

The principles of the earlier section could be applied
directly to the output of a stereo vision system. Yet,
because stereo also consumes computational

j = start_col;
while (j <= end_col+col_skip)

{
i = end_row;
while (i >= start_row-row_skip)

{
R = range(i,j);
if (R > Rmax ) 

break;
else if( R < Rmin ) 

{i -= row_skip; continue;}
else process_pixel_into_map();

i -= row_skip;
}

j += col_skip;
}

Figure 10: Adaptive Sweep Algorithm. The range
window is processed on a per column basis in order
to robustly extract the data of interest.
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resources, it seems worthwhile to investigate whether
similar techniques can be employed inside of the ste-
reo algorithm itself in order to avoid computing range
pixels that subsequently would be eliminated anyway.

Traditionally, the stereo problem is cast as one of
determining the range for every pixel in the image.
Traditional stereo finds the range for each possible
angular pixel position. Conversely, our adaptive
approach to stereo finds the angular positions in the
image plane of groups of pixels with each possible
range value. It determines those pixels whose range
value falls within a small range window, and it does so
without computing the ranges of pixels which are not
of interest. This principle is sometimes called range
gating in laser rangefinders which employ it.

The motivation for the approach in the case of stereo is
the observation that the region of terrain which is
beyond the vehicle response distance usually corre-
sponds to a very narrow range in stereo disparity space
as shown below.

The nonlinear relationship between range and dispar-
ity also implies that range resolution is relatively poor
at high ranges, so the computation of the range of low
range pixels can be wasteful. In one sense; we are
obliged to accept poor range resolution, so we may as
well take computational advantage of it where it helps.

Embedded Adaptive Sweep in Stereo Vision. For ste-
reo ranging systems, the basic principle of the range
window can be converted to a disparity window1 for a
stereo system because the range and disparity are
related by the stereo baseline. However, as before, the
problem of selection, of determining membership in a
range gate without computing the range, seems diffi-
cult.

The basic stereo configuration for perfectly aligned
cameras is given below. It is useful to remove the
dependence of disparity on the focal length by

expressing disparity as an angle. Define the normal-
ized disparity thus:

Then, for a range window between 25 meters and 30
meters, and a stereo baseline of 1 meter, the angular
width of the corresponding disparity window is:

Thus, the range of disparities which corresponds to a
typical range window is roughly 1% of a typical cam-
era field of view (40°). In other words, the image
coordinates of corresponding points in both images are
very close to each other if the range of the point is
beyond the response distance.

In traditional area-based stereo, correlations (or any of
a number of other measures of similarity of two image
subwindows) are computed for a wide range of dispar-
ities. Then the algorithm searches along the curve gen-
erated for each pixel for the disparity, ,
corresponding to the global correlation maximum. The
case for normalized image crosscorrelation is illus-
trated below. 

1. There is a slight difference in the geometry of a stereo range
image (perspective) compared to a rangefinder image (spherical
polar). Therefore, a disparity window corresponds to a window on
the y coordinate and not the true polar range. In most circumstances,
this distinction can be safely ignored.

Figure 11: Disparity Window. For high speed
motion, the range window is distant from the
vehicle. Quadratic growth in stereo range resolution
implies that the entire range window is spanned by
a few disparities.
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Figure 12: Stereo Triangulation. The relationship
between disparity , range , baseline , and focal
length  is derived from similiar triangles.
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If, however, the search were limited to the disparity
window whose boundaries are  and  in the
above figure, the point of maximum correlation that
would be found would be only a local minimum. No
information other than the absolute value of the mea-
sure of similarity would indicate this. If a range image
were generated based on the results of this limited dis-
parity search, the image would contain:

• correct ranges for pixels whose true range hap-
pened to fall within the range window searched.

• incorrect ranges for pixels like the one illustrated
above which defeated our best attempts to identify
them at this stage of processing.

Nevertheless, the environment is often smooth, and
this smoothness leads to the property that correct
ranges tend to form large smooth regions whereas
incorrect ones do not as illustrated below. 

It is well known that spurious matches occur funda-
mentally because regions which do not correspond
physically actually look more or less the same. Several
solutions to this repetitive texture problem help the sit-
uation somewhat but the simple technique of comput-
ing connected components and removing small
regions (Matthies et. al., 1996) works effectively and
is computationally free because a disparity image
cleanup pass is often required even when a wide dis-
parity range is searched.

Embedded Adaptive Scan in Stereo Vision. In the
case of stereo vision, the situation for adaptively
changing resolution is more complex because range
resolution and angular resolution are coupled. That is,
once angular resolution is fixed, range resolution is
also fixed, yet each has independent constraints
imposed on it by the application. It is not possible, for
instance, to aggressively reduce horizontal image reso-
lution (as would be done with a range image) at the
input to stereo because range resolution will also be
dramatically and unacceptably degraded.

The least that can be done, however, is to compute the
degree to which the output range image would be sub-
sampled and then the latter stages of stereo (the stages
past the correlation computation) can simply ignore
the unwanted pixels. Before correlation, those
unwanted pixels may be needed to participate in com-
puting the correlations.

3.6.   Results

The following two sections present performance
results for adaptive perception based on laser range
images and stereo vision. For these results, the vehicle
speed is 3 meters/second and the resolution of the gen-
erated terrain map is 0.75 meters in both horizontal
directions. An oversampling factor of 2 is also incor-
porated into adaptive scan as a safety margin to protect
against terrain undersampling.

While adaptive perception resamples a range image
for optimum coverage of the terrain, the specific
attributes of the range sensor and cameras used for the
following results are given in the table below:

Range Image Adaptive Perception. In a typical
image, the pixels that are actually processed by the
adaptive perception algorithm form a horizontal band
that is jagged-edged and of varying width. The width
of the band decreases if the vehicle speed increases
because adaptive lookahead will move the window up
in the image where a smaller width projects onto the
same groundplane distance.

The following figure gives a sequence of range images
for a run of our navigation system simulator1 on very
rough terrain using a simulated rangefinder where the
pixels that were actually processed fall between the
thin black lines. On average, only 75 range pixels out
of the available 10,000 (or 2%) were processed per

dmax dmin

Figure 14: Spurious Disparities. Correctly ranged
pixels tend to form large connected smooth regions.
Incorrect ones do not.

Correct
Range

Incorrect
Range

No
Range

Legend

Range Image

Table 1: Sensor Parameters

Attribute
ERIM

rangefinder
CCD 

camera

Image Rows 64 640

Image Cols 256 486

Hor. Field of View 80° 20°
Vert. Field of View 30° 20°
Hor. Angular Res 0.3125° 0.0412°
Vert. Angular Res 0.4688° 0.0312°
Frame Rate 2 Hz 30 Hz

1. The system performs identically on real images but simulated
ones were used here in order to illustrate several points in limited
space.
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image. In terms of areas imaged per second, the sys-
tem throughput is increased by a factor of 100 times,
or two orders of magnitude over the method of simply
processing all image data.

There are five range images arranged vertically on the
left. These are rendered as intensity images where
darker greys indicate increasing distance from the sen-
sor. The terrain map constructed by the perception sys-
tem is rendered on the right. The top figure shows the
map as an image where lighter greys indicate higher
elevations. In the center of the map is the vehicle at the
position where the 5th image was captured. The lower
right figure is the same terrain map rendered as a wire-
frame surface from the vantage point of the initial
position. 

There are three hills in the scene whose range shadows
are clearly visible in the terrain map. In the first image,
the vehicle is accelerating but still travelling relatively
slowly. The range window is relatively wide and posi-
tioned near the bottom of the image. The first hill is in
the range window. In the second image, the second hill
is in the range window and the first hill has already
been processed. In the third image, the third hill is now
in the range window. In the fourth image, the vehicle
is driving past the first hill and is rolled to the right
because of it. This rolls the image to the left and the
algorithm compensates appropriately. In the fifth
image, the range window has moved past the third hill
to the flats beyond and a fourth hill is barely visible in
the distance.

Actual perception performance is given in the tables
below for a series of images of flat terrain. In the table,
the nonadaptive value corresponds to the result
obtained by processing all pixels in the ERIM range

image. The adaptive value is the value obtained by our
range image algorithm:

The results do not scale linearly with pixels processed
because the adaptive result includes a constant setup
time. Nonetheless, the adaptive result is 16 times
faster than the nonadaptive result and if the ERIM sen-
sor had higher angular resolution, the improvement
would be proportionally better. The system uses barely
adequate spatial resolution and eliminates redundant
measurements and hence achieves minimum through-
put.

Stereo Vision. The following figure illustrates the
operation of embedded adaptive stereo on two hori-
zontal baseline input images. These are images of a
barren ravine road near CMU taken from inside the
ravine. The initial input images appear at the left. To
the right of these are the nonadaptively processed dis-
parity and range images. To the extreme right are the
adaptively processed disparity and range images. The
disparity images are shown to demonstrate the spuri-
ous matches which are caused by incorrectly chosen
extrema in the correlation versus disparity curves. 

Figure 15: Adaptive Rangefinder Perception. The
processing of five range images is illustrated as the
vehicle drives through an obstacle course of three
hills.

Image 2

Image 3

Image 4

Image 5

Image 1

Hill 3

Hill 2

Hill 1

Hill 2

Hill 3

Hill 1

Table 2: Rangefinder Adaptive Perception 
Performance (SPARC 20)

Attribute Nonadaptive Adaptive

Pixels Processed 
Per Image

16384 75

Run Time 0.352 secs 0.022 secs

Figure 16: Adaptive Horizontal Baseline Stereo. The
incorrect disparities due to incorrect matches are
cleaned up with an efficient filter.

Input Images Nonadaptive Adaptive

Range RangeRight

Left Disparity Disparity
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A breakdown of this run is shown in the table below:

4.   Terrain Mapping

This section discusses the motivation behind, and
implementation of our highly efficient approach to ter-
rain mapping. We discuss methods for elimination of
the need to copy and/or interpolate the data structure
to incorporate incoming new data, methods to com-
pensate for sensor motion, and methods for the repre-
sentation of terrain shape uncertainty.

4.1.   Introduction

Terrain mapping is the process by which surface
descriptions, obtained from different vantage points,
are accumulated into a consistent environmental
model (Hebert et. al., 1988). In order to provide the
rest of the system with a single, coherent, uniform
density data structure we transform images into a reg-
ularly-spaced cartesian grid called a Cartesian Eleva-
tion Map (CEM). 

Problem. In our early attempts to map terrain for a fast
moving outdoor vehicle, we encountered severe com-
putational inefficiency problems for several reasons:

• The treatment of the motion of the vehicle through
the environmental model necessitated a physical
shift of data that was very expensive.

• Interpolation of the values of unknown cells from
their neighbours was very expensive.

• Massive distortions of reality due to sensor motion
were introduced as the vehicle speed increased.

Solution. We have developed methods to manage
these problems that include:

• A special terrain map data structure and access
routines.

• An approach to interpolation based on interpolat-
ing predicted vehicle state rather than terrain
geometry.

• Real-time methods for processing sensor data.

4.2.   Preliminaries

Terminology. In the map, each cell encodes  where
the z coordinate is unique for any pair i,j and is refer-
enced to some fixed coordinate system called the navi-
gation coordinate system with respect to which the
vehicle moves. Individual elevation buckets in a ter-
rain map are called cells to distinguish them from
range image pixels.

Subproblems. Once we have implemented a wrapping
terrain map data structure (discussed below), we will
face a new problem in distinguishing data from two
different regions of space that happen to fall into the
same cell. We will be able to manage this problem
through the introduction of a new data field - the “age”
of a cell.

Assumptions. Under some circumstances, natural out-
door terrain is well approximated by a surface
expressed as z = f(x,y) where the z axis is aligned with
the local gravity vector. An important exception to this
assumption is trees and other large vegetation. We will
assume that either we operate in barren terrain or that
we can safely fill in the space beneath branches in our
models. Thus, the use of a terrain map normally means
that the 2-1/2 D world assumption is being adopted.

Design. Our implementation includes the following
elements:

• A 2D ring-buffer implementation of a terrain map
that accommodates vehicle motion through mod-
ulo arithmetic indexing.

• Methods for processing perceptual data that never
require copying, traversal, or interpolation of the
terrain map.

• Straightforward methods to compensate incoming
geometry for range camera motion.

Implications. Before these methods were first
adopted, over half of our processor time was con-
sumed in simply managing the terrain map. That is,
map management was more expensive than perception
and planning combined. After they were adopted, the
cost of terrain map management became so small that
it was insignificant.

4.3.   Wrappable Map

Using 30 meters of lookahead in planning, 1/6 meter
resolution, and 20 bytes of memory per map cell, over
1/2 megabyte of memory is required to store a typical
map. If this map is stored as a physically coherent
block of memory, it must be physically shifted and
copied after the acquisition of each image in order to

Table 3: Stereo Adaptive Perception Performance 
(SPARC 20)

Attribute  Nonadaptive Adaptive

Output Rows 120 48

Output Cols 128 128

Disparities 60 10

Preprocessing 102 msecs. 41 msecs.

Correlation 683 msecs. 69 msecs.

Postprocessing 754 msecs. 74 msecs.

Total Runtime 1539 msecs. 203 msecs.

zij
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account for the relative motion between the vehicle
and the terrain.

2D FIFO Queue. Our solution to this problem is a
classical one from computer science - the FIFO queue.
A simple array accessed with modulo arithmetic suf-
fices to logically scroll the map as the vehicle moves
by physically wrapping around in memory. As in all
FIFOs, the queue size must be chosen to exceed the
worst case amount of memory required.

Let the rows and columns of the terrain map be
aligned with the axes  of the navigation frame
and be divided into cells of resolution  by . Let
the map width and height be  and  respectively.
The indices into the array are determined by modulo
arithmetic as follows:

The operator  is the least integer function and
 is the floating point remainder function. 

The operation of the technique when applied to three
successive images is indicated below or both a physi-
cally scrolling and a wrappable map data structure. 

Cell Tags. This approach creates new problems. The
mapping from world coordinates to map indices is
multiply defined and therefore the inverse mapping is

not a function. In mathematical terms, the coordinate
transform is not onto.

An infinity of points in global coordinates correspond
to a single cell in the map, so remnants of images of
arbitrary age may remain in the map indefinitely. Sup-
pose the elevation at the point (15, 25) is needed and
the map is 10 by 10. Then the point (5, 15) may also be
in the map. A query for the elevation at (15, 25) may
get the elevation at (5, 15) instead.

We manage this problem in a very simple way.
Although all data remains in the map until it is over-
written, each entry is tagged with the distance that the
vehicle had travelled since the start of the mission at
the time the pixel was measured. The interface rou-
tines then perform two important hidden functions:

• If the tag of the last update is too old, the interface
routines report the cell as empty. This makes it
impossible for old data to poke through the holes
in new data.

• When the tag of new incoming data is significantly
different from the one in the cell, it indicates wrap-
around, so the statistical accumulators in the cell
are first cleared. This ensures that two physically
distinct regions of space are not confused and
merged together.

4.4.   Sensor Motion Compensation

By the time an image is received by the perception
system, the vehicle may have moved a considerable
distance since the image was acquired. So, the pro-
cessing of the geometry in the image must account for
the exact position of the vehicle when the image was
taken. 

Further, some sensors such as scanning laser
rangefinders may require significant time to scan the
laser beam over the environment. In the worst case,
there is a distinct vehicle pose associated with each
pixel in a ladar image. If this motion is not accounted
for, the terrain maps computed from images will be
grossly in error. 

Smear and Offset. The worst case is a high angular
velocity turn. If rangefinder scanning takes about 0.5
secs and the vehicle is travelling at 6 mph and turning
sharply, its angular velocity can be as high as 1 rad/
sec, so an obstacle can be smeared by 30° in a
rangefinder image at high speed. Similarly, if the input
latency is 0.5 secs and it is not accounted for, objects
will also be shifted by 30° in a rangefinder image at
high speed. Finally, the range to objects will also be
overestimated by the distance travelled in 1 second.
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Figure 17: Wrappable Map Indexing. Using modular
arithmetic, all of 2D space maps, with wraparound,
into a finite map.
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Figure 18: Wrappable Terrain Map. Data remains in
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Pose History and Lookup. We remove this distortion
of range images by maintaining a history of vehicle
poses sampled at regular intervals for the last few min-
utes of execution. When a pixel is processed, we
search and interpolate the vehicle pose FIFO for the
precise vehicle position at which each range pixel was
measured.

4.5.   Interpolation

The terrain map is not interpolated at all because inter-
polation requires a complete traversal which is too
expensive to perform. Instead, the responsibility for
interpolation is left with the users of the map. 

Impact of Vehicle Maneuverability. Spatial interpola-
tion of the entire map is wasteful because vehicle
maneuverability constraints may prevent many places
from being reachable. Hence, the data in such regions
is not necessary at all and interpolating there is a waste
of resources.

Impact of Occlusion. Note that occlusion is inevitable
in rough terrain, so spatial interpolation can never suc-
ceed fully without unjustified and harmful smoothness
assumptions.

Temporal State Interpolation. We will see later that
the path planner interpolates vehicle state in time
instead of interpolating the map in space. Further, the
assessment of hazards is based on a time signal which
may or may not be known at a particular point in time.
The system is robust by design to unknown signal val-
ues and, as a by-product of its processing, computes an
assessment of how much geometry is actually
unknown and reacts accordingly.

4.6.   Errors and Uncertainty

Practical solutions require methods to deal with both
systematic and random error sources that corrupt the
incoming data and its eventual representation.

Image Registration. A simple image registration algo-
rithm is used in situations where edge artifacts are
introduced by various forms of position and range sen-
sor errors. The basic mechanism is to compute and
remove the average elevation deviation between the
overlapping regions of consecutive images. 

Currently, only the elevation,  coordinate is matched
and this seems to work best in practice. When the z
deviation of two consecutive images is computed, it is
applied to all incoming geometry samples in order to
remove the mismatch error.

Elevation Uncertainty. After the mean mismatch error
is removed, there are still random errors in the eleva-
tion data. In order to represent the variation in geome-
try in a single map cell and to improve signal to noise
ratios, a scatter matrix is computed (Hotz et. al., 1993)
incrementally as each new range pixel is merged into
the map. The scatter matrix is defined as:

The advantage of this incremental approach is that the
mean and standard deviation of the evolving 3D distri-
bution is available at any point in time from some sim-
ple formulas. Specifically, the deviation in z is useful
for computing the uncertainty in the hazard estimates
generated by the path planner.

4.7.   Results

Although RANGER has its own built in stereo algo-
rithm, it has been integrated with a stereo vision sys-
tem at the Jet Propulsion Laboratory (Matthies 1992;
Matthies et. al. 1996) on another HMMWV. The figure
shows a short autonomous excursion along a dirt road
bounded by trees and bushes on the right and a ravine
on the left. The sequence of images to the left are the
stereo range images. To the right are intensity images
of the scene corresponding to the range images. 

The images are positioned in correspondence with
their associated position in the terrain map. The terrain
map, drawn in the center, is rendered with intensity
proportional to elevation. The path followed is drawn
leading to the position of the vehicle near the end of
the run. The run terminates at the end of the road. Two
distinct obstacle avoidance maneuvers occur. The first
is a left turn to avoid a large tree and the second is a
recovery right turn to prevent falling into the ravine.

5.   Path Planning

This section discusses the motivation behind, and the
implementation of our predictive control approach to
trajectory representation, generation and search. We
will call the collection of these three capabilities path
planning in our context.

Our approach will be a departure from precedent that
formulates the classical planning problem of deciding
where to go largely in terms of predictive control. This
approach will have advantages whenever speed is high

z
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enough for dynamics to matter or when nonholonomic
motion constraints are operative. Our approach is sim-
ilar to the approach to cluttered environment planning
adopted in (Feiten and Bauer, 1994) and it echoes ear-
lier work presenting a duality between feedforward
control and deliberative planning (Passino and Ant-
saklis, 1989).

5.1.   Introduction

The local intelligent mobility problem can be charac-
terized in terms of a search of the immediately visible
environment, scanning for hazards, and seeking a goal
while simultaneously avoiding any hazards that
appear. Regardless of many other design variables, all
or part of the local environment is typically searched.

Problem. Our initial attempts to search trajectories
were founded on classical C-space techniques (Loz-
ano-Perez and Wesley, 1979). These attempts were
very slow, brittle, and inelegant, but they were educa-
tional. In our early work, we encountered the follow-
ing major problems:

• computational inefficiency: There was not enough
time to decide what to do. Conversely, the ineffi-
ciency of computations limited vehicle speeds that
could be safely achieved.

• command following problem: Specific trajectories
used to avoid obstacles often could not be exe-
cuted reliably or stably.

Our computational inefficiency problem was caused
by a treatment of vehicle trajectories that was expen-
sive and often wasteful. Our command following
problem arose from issuing commands to the vehicle
that were either wrong or unrealistic.

Further, consideration of these unrealistic trajectories
in search tended to waste computational resources,
thereby increasing reaction time and aggravating the
first problem of computational inefficiency.

After conducting a study of some related real-time
issues, we concluded that classical C-space planning
techniques were ineffective in our domain. A new
approach was necessary.

Solution. Motion planning is a problem involving
search. Recall that heuristic search efficiency can be
improved by appropriate ordering of constraints
because some have more power to limit search than
others. Our predictive control formulation amounts to
a constraint ordering heuristic that improves the effi-
ciency of search. The elements of our approach are:

• We represent trajectories implicitly in terms of the
commands that are issued to the vehicle, and...

• The corresponding spatial trajectory is computed
from a highly accurate state space vehicle model
that guarantees mechanical feasibility by construc-
tion.

Through this technique we completely bypass many of
the difficulties of trajectory generation and search for
nonholonomic vehicles with real actuator response

Figure 19: A short cross country excursion. (a) shows a sequence of range images from a stereo vision system
mounted on a HMMWV vehicle. (c) shows a sequence of intensity images from one of the cameras. (b) and (d)
show an overhead view of an elevation map that was generated.

tree

tree

ravine
ravine

(a) (b) (c) (d)
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characteristics. The same technique has been used in
seminal works (Olin and Tseng 1991) with less for-
mally declared roots.

5.2.   Preliminaries

Before proceeding to describe our technique, a few
necessary terms will be defined.

Terminology. We will use a single point on the vehicle
called the reference point to describe its motion. A
spatial description of the continuous sequence of posi-
tions achieved or considered will be called a path, and
when the time dimension is added, a trajectory. 

The kinematics constraint is a term used to express the
fact that steering mechanisms may be unable to
achieve arbitrarily small curvatures. Any path which
respects these mechanical limitations of the steering
system is said to be kinematically feasible.

The dynamics constraint is a catchall term used to
express the fact that system behavior is governed by
differential equations. Any trajectory which satisfies
this set of constraints is said to be dynamically feasi-
ble. 

A trajectory is mechanically feasible if it is both kine-
matically and dynamically feasible. Such a trajectory
describes a physically achievable motion.

A trajectory which is safe for the vehicle to execute
(i.e free from significant hazards) is called admissible.

It will be necessary to distinguish several alternate
forms of trajectory representation. In general, the sys-
tem has available to it at any time a space of possible
commands that it can send to the vehicle controller for
execution. This space of commands will be called the
command space and a point in this space is a command
vector or control vector. 

Commands may or may not map directly onto the
vehicle actuators. The space of directly actuated vari-
ables is the actuation space. In our case, vehicle com-
mands map more or less directly onto the speed and
steering actuators.

When these commands are applied to the vehicle actu-
ators, the vehicle kinematics, dynamics, and the
mechanics of terrain following cause it to traverse a
unique trajectory. We can represent this trajectory in
terms of the time evolution of a vector quantity called
the vehicle state vector, which spans an abstract state
space. 

Nominally, the state vector includes the position and
orientation of the vehicle body, and the positions of
any articulations. Depending on the order of the sys-

tem dynamics, it will also include some number of
time derivatives.

If time dependence is removed from the description by
representing only the geometry of the motion and time
derivatives are eliminated from the description, the
resulting description turns out to be a configuration
space (C-space).

A distinction which is independent from representa-
tion is the distinction between command and response.
The first is a specification of requested motion
whereas the second is the actual response to that
request. The degree to which these two agree is one
measure of the fidelity of control that has been
achieved.

It will be useful to distinguish two approaches to
dynamic system modeling that are analogous to the
duality between actions and states that has been well
discussed in the AI literature (Hendler et. al., 1990).

In a state based representation, system motion is
viewed as a series of states that are altered by events.
In an event based representation, the state of the sys-
tem is derived implicitly from its initial state and all
events that have occurred up to a particular point.

While the choice of one representation over another
does not affect the capability for expression, it does
affect the relative ease with which certain properties
are represented and reasoned about.

Robot planning has commonly used an abstraction
known as configuration space (C-space) - a space
spanned by any set of parameters that uniquely
describe the configuration of the robot. 

Relatively speaking, the determination of trajectory
admissibility (safety) is fairly trivial in C space but
significant work is required to ensure feasibility.

C-space methods, like state based methods, require an
inverse model that computes the command trajectory
that corresponds to the chosen C-space trajectory.

Models may not be easily inverted and may not be
invertible at all for an arbitrary C-space curve. While
C-space planning is a powerful paradigm, it is not an
effective technique in problems where the system
model is difficult to invert. Such situations include
cases where the system:

• requires a dynamic model1, or
• is nonlinear, or
• is underdetermined (nonholonomic).

1. We will consider any situation where a derivative is required in a
state vector to compute accurate trajectories to be one where a
“dynamic” model is required. The need for one increases as speed
increases.
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The command space described earlier represents the
space of alternative commands that the vehicle can
receive. Such commands can always be executed in
the sense that a legitimate, unique, computable
response exists for all commands - although the
response may not follow the command closely.

In this case, the determination of trajectory feasibility
is fairly trivial whereas it requires some work to
ensure that it is admissible.

Command space methods, like event based methods,
require a forward model that computes the C-space
trajectory that corresponds to the chosen command
trajectory. Both forms of model are indicated below.

Subproblems. The command following problem arises
either because the command itself was infeasible to
begin with, or the controller performance is inade-
quate. If we choose to blame the trajectory rather than
the controller, we will call the predicament the trajec-
tory generation problem.

Legitimate constraints are imposed on trajectories by
vehicle limitations that amount to very strong con-
straints on the feasibility of arbitrary trajectories
expressed in configuration space. Such constraints
include:

• actuator and plant kinematic and dynamic limits in
the form of braking and steering maneuverability

• underactuation of the vehicle
• processing and communication delays 

Consider a simple situation where the vehicle com-
mand space consists of speed , and curvature

, and the configuration space consists of position
 and heading  in two dimensions.

In attempting to generate trajectories that are feasible,
several difficulties will emerge because the relation-
ship between a C-space trajectory and its command
space equivalent is multivariate, nonlinear, coupled,
and underdetermined.

The equations which map command space to C-space
in a flat 2D world are given below: 

We will call these equations a forward model. By con-
trast, an inverse model would be a solution to the
problem of computing the command space curve from
the C space curve. That is, the inverse model generates
clothoid curves for Ackerman steered vehicles. 

The generation of clothoids is a difficult problem that
is further aggravated by the need to account for
dynamics and latencies. Note however, that the for-
ward model provides the inverse correspondence trivi-
ally, and in its integral form, is simply the equations of
dead reckoning. The trajectory generation problem
here is only difficult in one direction.

It is often necessary for the system to understand the
degree to which a particular motion can be accom-
plished. Poor fidelity of this aspect of the vehicle
model means that the system will not understand its
own motion. This in turn will lead to:

• unreliablility of obstacle avoidance
• instability of path following1

The perceptual horizon of any vehicle cannot exceed
the maximum range of the perception sensor. At mod-
erate speeds (<10 mph), maximum useful sensor range
tends to be roughly equal to the worst case distance it
takes for the steering actuator to move to its com-
manded position.

When dramatic steering changes are required to avoid
a hazard, the navigation system operates almost
entirely in the regime where curvature is continuously
changing. This observation leads to the conclusion that
the use of arc rather than clothoid models of Acker-
man steering are incorrect at even moderate speeds. 

The following figure indicates accurately the differ-
ence between an arc model and a clothoid model of
vehicle response to a command to switch from a hard

Figure 20: Forward and Inverse Models. These have
analogous definitions in robot manipulator
dynamics. 
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left to a hard right turn. The maximum rate of the steer
angle of the front wheels is 30° per second.

Suppose an obstacle exists to the left of the vehicle.
The obstacle could be barely avoided if the vehicle
continued on its hard left turn trajectory. Deciding to
play it safe, the vehicle issues a hard right command at
the position shown (0,0). The command is represented
by the arc to the right of the vehicle. The response to
such a command is the clothoid shown which remains
to the left of the vehicle. Under these conditions, the
vehicle would drive directly into the obstacle. Ulti-
mately, poor understanding of its own dynamics has
caused an incorrect decision and lead to a collision.
The correct decision was to continue turning left
because curvature cannot be changed fast enough to
avoid the obstacle to the right. 

Design. Our approach to managing these problems is
to:

• Invert the order in which the common planning
constraints of feasibility and admissibility are sat-
isfied through a forward modeling approach to tra-
jectory generation.

• Employ an accurate state space model of vehicle
response as the forward model.

It turns out that it is far more efficient to search for an
admissible trajectory in a space of feasible ones than
vice-versa and that sufficiently accurate models of
vehicle motion are relatively easy to generate in state
space form.

Implications. An important implication of the
approach is that the generated trajectories are mechan-
ically feasible by construction. While the input com-
mands to the model respect only the maximum

curvature constraint, the output state estimate is con-
sistent with the response of all actuators and the body
kinematics of motion over rough terrain. 

Thus, we have simplified the computation of the corre-
spondence between command and response. This sim-
ple correspondence available through our control
formulation combined with high fidelity models intro-
duces the following benefits:

• Reliability: System reliability is enhanced because
dynamic feasibility is inherent in forward model-
ing approaches. 

• Accuracy: Higher fidelity models make it possible
to drive close to hazards when necessary and to
track paths with low error.

• Stability: Vehicle control, whether for the purpose
of obstacle avoidance or goal-seeking, remains
stable at high speeds.

• Performance: Computational complexity of plan-
ning is reduced because the dynamics constraint is
a valuable heuristic to limit search. This reduction
in complexity leads to enhanced response times
and higher speed motion.

5.3.   Trajectory Representation & Generation

We will represent response trajectories implicitly in
terms of the commands to which they correspond.
When necessary, we will use a forward model to gen-
erate the response from the command through a sys-
tem simulation process based on numerical integration
of the state space model.

Linear State Space Model. For a linear system, the
conventional state space model of a system is the fol-
lowing two matrix equations:

Note in particular that the first equation is a differen-
tial one. This kind of model is known classically as a
multivariate state space system. It can be mapped onto
our problem as follows. Let us assume the system is
linear and describe the function of the matrices and
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Figure 22: Model Fidelity at 5 m/s speed. The
clothoid model correctly accounts for how long it
really takes to reverse curvature for an Ackerman
steer vehicle.
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vectors. The system of equations can be represented in
a block diagram as follows:

The system dynamics matrix, A, models actuator con-
straints, kinematics, and dynamics, and body dynam-
ics. It propagates the state of the vehicle forward in
time. Our system model is based on the assumption
that velocity can be considered constant for a small
period of time. 

The input distribution matrix, B, transforms the con-
trol vector into its influences on the state vector. 

The control vector u includes vehicle steering and
speed commands as well as command signals to any
articulated sensor heads. Generally, alternative com-
mands can be any time-varying control vector u(t). 

The terrain disturbances ud model the terrain contact
constraint1. Alternately, an abstract kinematic equa-
tion of the form g(x) = 0 can be used. Terrain geome-
try is represented in a terrain map data structure that is
generated by the perception system.

The state vector x includes the vehicle steering, speed,
and the state of motion of the vehicle body and any
articulated sensor heads. It includes the 3D position
and 3-axis orientation of the vehicle body as well as its
linear and angular velocity.

The output vector y can be any function of both state
and inputs. It will be discussed later in the context of
obstacle avoidance.

Nonlinear State Space Model. The actual system
model used is nonlinear. Fundamentally, this is
because the actuators move with the vehicle, so the

transformation from command space to state space
depends on vehicle attitude and hence on state.

The nonlinear model computes trajectories resulting
from vehicle commands. The inputs to the model are
the steering angle , (corresponding indirectly to the
desired path curvature), and throttle , (correspond-
ing to desired speed) and an elevation map of the ter-
rain ahead of the vehicle.

The commands are first delayed through a FIFO queue
to account for communications and processing delays
and passed through a model of the actuator dynamics.
In the case of the throttle (speed) the influence the
gravitational load is so significant that it must be mod-
eled. 

The predicted steer angle response  is passed
through a model of the steering column to predict the
actual curvature , of the path traversed. The product
of curvature and speed provides the component of
angular velocity  directed along the vehicle vertical
axis (which may not be aligned with gravity).

The linear velocity  is converted to world coordi-
nates to generate the components of vehicle velocity
along the world frame axes. We assume that the slip
angle (the angle between vehicle orientation and its
velocity vector) is zero so that velocity is then oriented
along the body forward axis. Position  is deter-
mined through integration of the velocity vector. 

Pitch  and roll  are determined by placing the vehi-
cle wheels over the terrain map and allowing the vehi-
cle to settle. Heading  is computed by integrating the

1. Of course, at sufficiently high speeds, the vehicle need not remain
in contact with the terrain.
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Figure 23: Multivariate Linear System Block Diagram.
This model can be used to represent a vehicle driving
over terrain.
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angular velocity after converting coordinates to the
world frame.

State Space Simulator. The basic simulation loop can
be written as follows. At each time step:

• simulate suspension - determine attitude from ter-
rain geometry and position

• simulate propulsion - determine new speed from
command, state, and attitude

• simulate steering - determine angular velocity
from steering and speed

• simulate body - dead reckon from linear and angu-
lar velocity and time step

The positions of distinguished points on the body,
called reference points, are maintained in navigation
coordinates throughout the simulation. The suspension
model that is used is based on assumptions of rigid ter-
rain and suspension and it computes the attitude of the
vehicle which is consistent with terrain contact. 

Propulsion is modeled as a proportional controller
with gravity compensation. The steering model is
based on an angular velocity limit on the steering
wheel and the bicycle model of steering kinematics.
Body dynamics are simulated using the 3D dead reck-
oning equations.

5.4.   Trajectory Search

The basic search process used is generate and test. We
employ this technique while conducting a command
space search over the feasible set of response trajecto-
ries.

The system considers a number of command space
alternatives which span the entire set of commands
available for the vehicle at some gross resolution.
These are then converted to response state space and C
space trajectories through model-based simulation and
subsequently evaluated by both obstacle detection and
goal seeking.

For a rigid-bodied vehicle moving in three dimen-
sional space, the C-space can be considered to be a
subset of state space - that is, the coordinates of the
vehicle control point expressed as (x, y, z, roll, pitch,
yaw). The command space for a conventional automo-
bile is spanned by the variables of speed and path cur-
vature and these variables map more or less directly to
the controls of throttle and steering.

Simulation. By the definition of state, the system can
be projected arbitrarily far forward in time based only
on the control vector, terrain contact constraint, and
time. Hence, a computer implementation of an integra-

tion of the system model equations constitutes a state
space simulator as shown below.

 

The set of trajectories xi(t) which:

• satisfies the model equations (dx/dt = A x + B u)
• maintains contact with rigid terrain (g(x) = 0)

is called the feasible set.

The constraints are satisfied by construction through
simulation of the system dynamics and altering the
vehicle attitude at each step in the simulation to
enforce terrain contact. 

Predictive Control vs. C Space Planning. The differ-
ences between classical C space planning and com-
mand space planning are indicated in the following
figure. On the left of the figure, the search of planning
alternatives is expressed in configuration space.
Obstacles can be represented as regions in this space.
When a clear region or set of points has been found in
front of the vehicle, a trajectory generation algorithm
is invoked to map C space onto the vehicle command
space and these commands are sent to the hardware for
execution. 

The right of the figure represents the predictive control
(Soeterboek, 1992; Clark et. al., 1987; Clark 1994)
approach. Note first that the direction of the arrows are
reversed. 

In our case, unlike in more rigorous controller design
methodologies, we do not explicitly compute a control
law. We use generate and test. The inverse system
model is never evaluated explicitly. The system simply
remembers the correspondence of command to
response trajectories and inverts this list of ordered
pairs.

It is clear from the figure that state space is, in fact, a
superset of configuration space - including all C space

Figure 25: State Space Simulator. Because a state
space model retains state, it can be used to project
motion that corresponds to a command arbitrarily
far into the future. The inverse model on the right is
never explicitly evaluated.
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variables plus any derivatives that appear in the sys-
tem dynamic model.

5.5.   Results

While it is difficult to compute the shapes of regions in
configuration space in closed form, it is relatively easy
to write a computer program to enumerate all possibil-
ities and fill in boxes in a discrete grid which repre-
sents C-space at reduced resolution. The three
dimensional C-space for an Ackerman steer vehicle
for an impulse turn at 4.5 m/s was generated by this
forward technique.

The results are plotted below in heading slices of 1/16
of a revolution. Symmetry generates mirror images
along the heading axis, so two slices are plotted on
each graph. The maneuver is a turn from zero curva-
ture to the maximum issued at time t = 0. A dot at a
particular point (x,y) in any graph indicates that the
heading of the slice is obtainable at that position.
There are 16 slices in total of which 6 are completely
empty (i.e the vehicle cannot turn around completely
in 20 meters). The total percent occupancy of C-space
is the ratio of the total occupied cells to the total num-
ber of cells. This can be computed from the figure to
be 3.1%.

So 97% of the C-space of the vehicle is infeasible if
the limited maneuverability of the vehicle is modeled.
The maneuverability is limited by both the nonzero
minimum turn radius and the steering actuator
response. Note that occupancy of C-space does not
account for higher level dynamics. There are severe

constraints on the ability to “connect the dots” in these
graphs which aggravate the situation further.

6.   Goal Arbitration

This section discusses the motivation behind, and the
implementation of our optimal control approach to
goal arbitration. The proposed approach is similar in
formulation to work in classical optimal control
(Athans and Falb, 1966) in that it seeks to determine
control signals that will both satisfy constraints and
optimize a performance index. 

Again, unlike in classical controller design techniques,
we do not explicitly compute an optimal control law;
we use a much simpler generate and test technique.
This sampling of command space implies that sub-
optimal solutions are generated.
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Figure 26: Planning Through Predictive Control.
Obstacles are most naturally represented in C
space but generating commands that avoid them
involves a difficult inverse model. Instead, a
representative number of command space
alternatives are transformed, through simulation, to
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Figure 27: Ackerman Steer Configuration Space. For
a sharp turn to the left or right at 4.5 m/s, starting
from zero curvature, 97% of the configuration points
in front of the vehicle’s initial position  are not
feasible - meaning the vehicle can not achieve the
(x,y,heading) represented by the point within the
finite time horizon simulated.
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6.1.   Introduction

In addition to trajectory search, the local intelligent
mobility problem involves an aspect of goal arbitra-
tion. For example, given a goal path to follow and the
simultaneous goal of avoiding obstacles, it is likely
and frequently the case that these goals will conflict.
More plainly, an obstacle may appear directly on the
goal path. 

We will discuss here our mechanism for dealing with
this conflict as well as the manner in which candidate
trajectories are ranked for both their obstacle avoid-
ance and goal-seeking potential.

Problem. Let us define the strategic goal as some path
or position to be followed or achieved and the tactical
goal as that of simultaneously avoiding all hazardous
conditions. If both goals are implemented as indepen-
dent behaviors they will naturally disagree on the
commands to the actuators. This legitimate and inevi-
table conflict will be called the actuator contention
problem, also known elsewhere as a control prioritiza-
tion problem.

Solution. Solutions to this problem must decide how
to either:

• Merge both commands together to generate a
third.

• Give one behavior priority over the other.

Regardless of how this is done, the general technique
involved is arbitration. Several approaches have been
used ranging from subsumption of one behavior in
favor of another (Brooks, 1987) to consensus-building
and voting techniques (Rosenblatt and Payton, 1989). 

A spectrum of approaches exist with extremes that
correspond roughly to bureaucracy and democracy.
Our approach is somewhat intermediate between these
extremes. It recognizes that: 

• Some behaviors, like obstacle avoidance, must be
given absolute veto power over unsafe trajectories.

• Others, like goal seeking can profitably optimize
performance through search and ranking of the
remaining alternative trajectories.

6.2.   Preliminaries

Terminology. Any number of potential hazardous situ-
ations may exist along a trajectory. Some of these haz-
ards include: 

• discrete obstacles like rocks, holes, and trees that
would damage the vehicle through collision. 

• hazardous configurations like extreme pitch and
roll angles that would damage the vehicle through
tipover.

• hazardous states like extreme lateral or longitudi-
nal acceleration which could damage the vehicle
through tipover or loss of traction and control.

• traction traps like wheel-sized holes, high center-
ing terrain, and regions of ice or slippery terrain
that would prevent further vehicle motion.

• catastrophic falls like ravines and cliffs that could
damage the vehicle through complete loss of ter-
rain contact, followed by ballistic motion, fol-
lowed by catastrophic collision.

A path is admissible if it would be safe for the vehicle
to traverse it.

Design. Our basic approach is to notice that the mobil-
ity problem can be expressed in the familiar terms of
optimal control theory and to then apply the associated
techniques and abstractions of this theory.

Architecturally, the tactical control layer consists of
coexisting hazard avoidance and goal seeking behav-
iors that are managed by an arbiter to avoid conflict as
shown below:

In fact, the seeking and/or avoidance occur when the
arbiter chooses an alternative and sends it to the con-
trol layer. The other two entities simply rank the can-
didate trajectories that are given to them.

Implications. Our approach has the advantage that
some limited degree of local intelligent behavior
emerges naturally. For example, wall or other
extended feature following emerges because optimiza-
tion will keep the vehicle close to an obstacle between
it and the goal. However, once a break in the extended
feature appears, the system will immediately seize the
opportunity to reacquire the goal path.

6.3.   Arbitration

Note that the satisfaction of either goal may be
expressed as a constraint or as some utility function to
be optimized. For example, we could optimize safety
by choosing the safest overall candidate trajectory or

Strategic Layer

Figure 28: Tactical Control Layer. The tactical
control layer consists of two purposeful behaviors,
and an arbiter to coordinate them.
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we might rigidly enforce a path to follow as a con-
straint. We believe the reverse is more appropriate.
That is, hazard avoidance is a constraint and goal
seeking is to be optimized.

Hence, the task of safe navigation can be expressed in
classical optimization terms. The navigator must
achieve some useful goal while simultaneously satis-
fying the constraint of avoiding damage to the vehicle
or its payload and the constraints of limited vehicle
maneuverability.

Feasible Set. We will express this optimal control
problem as follows. Let ui(t) be a candidate control
function. The response to this candidate command,
denoted xi(t), is generated from the nonlinear system
dynamics and terrain following models:

Let the set of mechanically feasible trajectories,
denoted Xf, be those which satisfy the above two
equations. The response trajectory is a member of this
feasible set:

Note that the space of possible commands to issue is
continuous. Rather than deal with variational calculus,
we will sample the feasible set of trajectories at some
practical resolution that ensures adequate coverage of
the set and search the alternatives exhaustively.

Output Vector. The hazard vector, y, consists of rank-
ings of every point along a response trajectory for its
relative safety in terms of several of the hazard condi-
tions mentioned earlier. By and large, safety can be
determined kinematically from the state and the terrain
map, though such issues as predicting rollover are
exceptions. Each element of the vector corresponds to
a different hazard. 

Let us define the safety threshold vector, ysafe, as the
constant vector whose elements are the maximum safe
values of each element of the hazard vector. A trajec-
tory is safe when:

Let the set of safe trajectories, denoted Xa, be those
whose associated hazard vectors satisfy the above

equation. Such a response trajectory is a member of
the admissible set:

Optimal Control Problem. While there are many
potential forms of strategic goal that might be assigned
to the vehicle, let us assume, without loss of general-
ity, that a goal trajectory, xgoal, or reference trajectory
of some form has been assigned. 

Further, let us define a goal functional, or perfor-
mance index L[xi(t)], to be an arbitrary expression of
how well a particular trajectory follows the goal tra-
jectory. If we use the integrated length of the vector
difference, we might write:

The optimal control problem can now be represented
as follows:

6.4.   Adaptive Regard

Although our gross resolution command space search
manages the complexity of trajectory search, it does
nothing to minimize the cost of evaluating a particular
trajectory for its safety and/or goal seeking potential.
Efficient trajectory evaluation is the subject of this
section.

We minimize wasted computation in trajectory evalua-
tion by selectively processing only the data that mat-
ters along the trajectory in the environmental model.
Known here as adaptive regard, the technique is the
analog of our adaptive approach to perception in that it
minimizes references to the environmental model just
as adaptive perception minimizes references to
images.

Detection Zone. The immediately material informa-
tion forms a region in the environmental model which
we call the detection zone - that region of the near

x = f(x,u)

g(x) = 0

System Dynamics

Terrain Following

.

xi(t)  ∈Xf Feasibility

Hazard Kinematicsy = h(x)

Safety|y| < ysafe

xi(t)  ∈Xa Admissibility

L[xi(t)]=||xi(t)-xgoal(t)||= xi t( ) xgoal t( )–[ ]2
td

t1

t2

∫

Minimize: L[xi(t)]=||xi(t)-xgoal(t)||
ui(t)

Subject to: 

Goal Proximity

Figure 29: Optimal Control Arbitration. Driving
safely toward a goal can be formulated in terms of
optimizing a functional over a set of trajectories that
are both safe and mechanically feasible.
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environment which the vehicle can reach but is not
already committed to travelling and about which an
immediate decision of traversability is needed to con-
tinue moving. 

Remaining Zones. Thus, in our search for hazards we
do not look for hazards in the following regions:

• free zone: where the vehicle cannot go
• dead zone: where the vehicle is committed to go
• horizon zone: where the decision can be delayed

The precise location of the detection zone is obtained
trivially from a time window into the response trajec-
tories computed by the state space model.

Planning Window. The planning window in planning
is analogous to the range window in perception. It
confines the search for hazards to the detection zone.
One of the highest level system requirements is to
attempt to maintain continuous motion, so adaptive
regard is based on turning maneuvers (which consume
more space) rather than braking maneuvers. 

An impulse turn is a turn from zero curvature to the
maximum allowed curvature. The planning window is
computed by predicting the distance required to exe-
cute an impulse turn at the current speed with the best
available estimates of the output latencies that will
apply. 

Precision in computation of the planning window
requires careful treatment of time. The planning win-
dow is measured from the position where the vehicle
will be when the steering actuator starts moving.

Real-Time Latency Modeling. The planning problem
has latency concerns similar to those of perception.
Without latency models, obstacle avoidance signifi-

cantly underestimates the distance required to react for
two reasons. 

• Position estimate input latency implies that the
vehicle is actually much closer to an obstacle than
the last available position measurement suggests. 

• Command output latency and actuator dynamics
imply that it actually takes much more distance to
turn than would be expected from instantaneous
response models. 

A model of these latencies is accomplished with the
following mechanisms:

• all input and output is time-stamped
• all input and output is stored in internal FIFO

queues
• all sensor latencies are modeled
• all actuator latencies are modeled

These FIFO queues do not introduce artificial delay -
they are used to model the delays which already exist
in the system. 

6.5.   Hazard Detection

The process of hazard detection is the process of com-
puting the hazard output vector. The hazard vector
moves over time in a hazard space in response to the
movement over time of the vehicle state vector in state
space. That is, there is a hazard trajectory yi(t) which
corresponds to each state trajectory xi(t), which in turn
corresponds to each command trajectory, ui(t).

Once the vehicle state trajectory xi(t) is known, a set
of hazard models is used to compute its relative safety
with respect to the associated terrain information in
the environmental model. 

Types of Hazards. Each element of the hazard vector
corresponds to a different hazardous condition. Each
scalar hazard yj(t) is a function of the vehicle state, the
terrain on which it rests, and the input commands.
Some typical hazards are:

• Tipover: The movement of the weight vector out-
side of the support polygon formed from the wheel
contact points.

• Body Collision: Collision of the underbody with
the terrain.

• Discrete Obstacles: Regions of locally high terrain
gradient.

• Unknown Terrain: Regions that are occluded, out-
side the field of view of the sensors, unknown
from poor measurement accuracy or resolution, or
devoid of matter (such as the region beyond a cliff
edge).

Hazard Signals. As an example of a hazard signal,
consider expressing proximity to tipover in terms of
excessive pitch or roll angle. Let the elevations of the

Figure 30: Detection Zone For Braking Maneuver. In
any candidate vehicle maneuver a swath of ground
is covered. The detection zone is the region which
must be verified to be safe in the current
computational cycle to prevent collisions.
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front and rear points on the vehicle longitudinal axes
after enforcing terrain contact be  and . The
pitch tipover hazard signal is then given by:

The other three hazards above are computed from the
volume under the belly, the local terrain gradient, and
the total trajectory length for which the terrain is
unknown respectively.

Trajectory Safety. In order to assess the safety of an
entire trajectory, it is necessary to integrate out the
time dimension and merge all of the predictions of dif-
ferent hazard types together. This process generates a
holistic estimate of the degree of safety expected if the
associated command is executed. 

Although many alternatives for doing this present
themselves, we have achieved acceptable performance
by ranking the whole trajectory using the worst hazard
at the worst point in time. The output of this process is
the safety ratings of all trajectories - which is supplied
later to the optimal control arbiter.

6.6.   Goal Seeking

The process of goal-seeking starts with the process of
computing the goal functional. Many techniques for
computing the proximity of two trajectories are possi-
ble, but the one we chose here is a modification of the
classical pure pursuit algorithm.

The most general form of path-based strategic goal is a
literal trajectory to follow1. Other types of goals such
as headings, points, and curvatures, can be extracted as
trivial subcases of the more general path tracking
problem. 

Basic Pure Pursuit. The pure pursuit algorithm (Shin
et. al. 1991) is a proportional controller formed on the
heading error computed from the current heading and
the heading derived from the current vehicle position
and a goal point on the path. 

The goal point is computed by finding the point on the
path which is a predetermined distance  from the
current vehicle position. 

Heading is measured at the center of the rear axle. The
proportional gain  is normalized by the lookahead
distance . This can be viewed an adaptive element
or, more simply, as a unit conversion from heading
error to curvature because the ratio  is the aver-
age curvature required to reacquire the path at the goal
point. 

Rough Terrain Pure Pursuit. A few modifications are
introduced to adapt pure pursuit for rough terrain.
Extremely large tracking errors must be acceptable to
the servo without causing instability if obstacles are to
be avoided robustly. This is made possible by two
devices indicated in the following figure.

The system maintains a running estimate of the point
on the path which is closest to the current vehicle posi-
tion in order to avoid an expensive search of the entire1. The arbiter can easily integrate the real-time inputs of a human

supervisor through this mechanism.
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Figure 31: Basic Pure Pursuit. A proportional
controller formed on the heading error to acquire a
goal point at a given lookahead distance.
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Figure 32: Adaptive Pure Pursuit. The point closest
to the vehicle on the path replaces the vehicle
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path each iteration. This closest point is used instead
of the current vehicle position as the origin of the loo-
kahead vector.

The lookahead distance is adaptive to the current
tracking error - increasing as the error increases as
indicated in the accompanying code fragment: 

The first while loop is responsible for maintaining a
running record of the close point, point 2. It searches
through an arc length window which adapts to the path
tracking error. As the error gets larger, this loop will
cause the close point to jump over high curvature
kinks in the path as they become less relevant at the
resolution of the tracking error.

The second while loop computes the goal point in an
identical manner. It basically moves point 3 forward
until it falls outside a circle centered at the vehicle
whose radius is the sum of the error distance  and
the nonadaptive lookahead . 

In this way, when an obstacle avoidance maneuver
causes significant path error, the algorithm will search
to reacquire the path on the other side of the obstacle
instead of causing a return to the front of the obstacle.

Under normal circumstances when the vehicle is
tracking the path, the close point is at the vehicle posi-
tion, the error distance is close to zero, and the adap-
tive lookahead is the nonadaptive lookahead. Hence,
the algorithm gracefully degenerates to classical pure
pursuit when obstacle avoidance is not necessary.

Model-Based Adaptive Pure Pursuit. The devices of
the previous section account for obstacle avoidance.
However, basic pure pursuit also suffers from speed
related problems. Instability results from large track-
ing errors, too short a lookahead distance or too high a
gain.

The goal functional is generated by evaluating, at each
point on each candidate trajectory, the distance from
the vehicle to the goal point. The minimum distance
over the entire trajectory is the functional value associ-
ated with it.

The following figure shows how accurate models of
response stabilizes goal seeking. 

In the above situation, if an arc-based model were
used, the system would issue a hard left command.
However, the more accurate clothoid model reveals
that such a command would actually increase the
tracking error leading to even more overcorrection. A
tracker based on a more accurate clothoid model
would recognize the situation and issue a zero curva-
ture command that would correctly acquire the goal at
the lookahead distance. 

This is nothing more than a simple version of classical
model referenced control (MRC) (Landau 1979; Whi-
taker et. al., 1958) implemented through command
space sampling. In MRC, a reference model (our sim-
ulator here) describes the desired input-output charac-
teristics of the closed-loop plant. The controller (our
command space generate and test algorithm) attempts
to cause the real plant to agree with the reference
model.

6.7.   Results

In the RANGER navigator, command alternatives are
expressed in terms of constant speed, constant curva-

Figure 33: Adaptive Pure Pursuit Algorithm. The
lookahead is adapted to allow for large tracking
errors when obstacles are avoided.

min = HUGE; way_pt = close;
while(L23 < L12 + lookahead)

{
x3 = path_x[way_pt];
y3 = path_y[way_pt];
if( L13 < min )

{
close = way_pt;
}

way_pt++;
}

way_pt = close;
while(L13 < L12 + lookahead)

{
x3 = path_x[way_pt]; 
y3 = path_y[way_pt];
goal_pt = way_pt;
}

L12
L23

Arc Model
(Unstable)

Clothoid

Figure 34: Adaptive Pure Pursuit. Inaccurate models
of response lead to servo instability. Note that the
vehicle is in a sharp left turn and happens to have
zero heading at t=0.

Model
(Stable)
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ture commands. Several times a second, the optimal
control arbiter considers approximately ten steering
angles to use during the next control cycle. The for-
ward model simulates the effect of using these steering
angles over a short period of time and evaluates each
of the resultant paths. Any steering angles that result
in paths that go near or through hazardous vehicle con-
figurations are discarded. The steering angle that
results in a path that is optimal based on several crite-
ria is chosen. 

In the figure below the system issues a left turn com-
mand to avoid a hill to its right. The histograms repre-
sent the votes for each candidate trajectory (higher
values indicate safer trajectories). The hazards are: 

• ROLL: excessive roll
• PITCH: excessive pitch
• BODY: collision with the body 
• WHEEL: collision with the wheels 

The tactical vote (TACT) is the overall vote of hazard
avoidance. The strategic vote (STRAT) is the goal
seeking vote.The arbiter chooses the third trajectory
from the left because this closest to the strategic vote
maximum (straight) while exceeding the threshold for
safety.

7.   Summary and Conclusions

This section summarizes our perspectives and conclu-
sions.

7.1.   Perspectives

Our implementation of a tactical control layer implies
a perspective on the need for deliberation and reactiv-
ity in autonomous vehicles. It seems that both reactiv-
ity and deliberation have their place in our approach to
local intelligent mobility.

Memory. From a real-time response point of view,
high-speed navigators cannot afford the computation
necessary to continually process the same scene geom-
etry at sufficiently high resolution. Thus, for high-
speed navigators, the memory involved in the mapping
of the environment is an essential system capability.

Deliberation. For high-speed navigators, models of
dynamics take the place of models of logical prece-
dence used in AI in that they limit the states reachable
in a small period of time from any given state. In such
navigators, the deliberative reasoning about the future
impact of current actions that is implemented in for-
ward models is an essential capability - at least to the
extent that the system must understand its own
motion.

Reaction. The latency models developed in the paper
and the precision timekeeping that has been incorpo-
rated in the software seem more applicable to the con-
trol systems of fighter aircraft than to autonomous
vehicles. It seems that high-speed navigators must rea-
son about their ability to respond.

7.2.   Conclusions

This section presents a short list of conclusions which
seem most significant to the problem and most rele-
vant to the more general problem of autonomous
mobility.

Tactical Control Layer. A modification on a standard
architectural model of robotic systems has been pro-
posed which connects strategic geometric reasoning to
dynamic reactive control in an effective manner when
the system under control exhibits poor command fol-
lowing. The problem is solved in this intermediate
layer between AI and control, between reactive and
deliberative approaches.

Adaptive Perception. The throughput problem of
autonomous navigation can be managed at contempo-
rary speeds by computational stabilization of the sen-
sor sweep and active control of resolution through
intelligent image subsampling. 

Computational Image Stabilization. Adaptive percep-
tion techniques which computationally stabilize the
vertical field of view provide the best of both worlds.

Figure 35: Optimal Control Arbitration. The system
chooses a steering angle from a set of candidate
trajectories. The histograms represent “votes” for
each candidate trajectory where higher values
indicate preferred trajectories. 
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They provide the high throughput necessary for high-
speed motion and the wide field of view necessary for
rough terrain.

Adaptive Regard. In a manner similar to the use of a
focus of attention in perception, a focus of attention
can be computed for obstacle avoidance that reflects
the capacity of the vehicle to react at any given time.
Adaptive regard places a limit on how close a vehicle
should look for hazards because it cannot react inside
of some distance. Thus, adaptive regard calls for all
data inside some lower limit to be ignored and limits
are placed on the extent of data processed beyond this
minimum limit by considerations of both minimum
planning throughput and range data quality.

Command Space Search. Dynamics of many kinds
imply that the local planning problem is actually rela-
tively easy from the point of view of search complex-
ity. The planning “state space1” of the high-speed
Ackerman vehicle is degenerate. Ordering heuristics
generally optimize search by imposing the most con-
straining limits first and reducing the size of the search
space as fast as possible. This principle is used here
because once dynamically infeasible paths are elimi-
nated, only a few remaining alternatives are spatially
distinct enough to warrant consideration.

Dynamic Models. The incorporation of dynamics
models has generated a local navigation system which
remains stable past the limits beyond which our kine-
matically modeled systems became unstable. The use
of dynamic models also makes obstacle avoidance
more reliable in general by imparting to the system a
more accurate understanding of its ability to respond.

Forward Modeling. Physical dynamics amounts to an
overwhelming constraint on the maneuverability of a
high-speed vehicle. For a vehicle or operating regime
for which classical path generation based on via points
becomes difficult, forward modeling has the advan-
tage that generated trajectories are feasible by con-
struction.

Arbitration. The simultaneous satisfaction of hazard
avoidance and goal seeking can cause contention for
the absolute control of vehicle actuators, and in a prac-
tical system, this contention must be resolved through
some arbitration mechanism. The problems of goal
seeking, local path planning, and hazard avoidance
have been unified into an optimal control context. In
this context, a functional computed over the feasible
set of response trajectories serves as the quantity to be

optimized and the hazard avoidance mechanism speci-
fies the confines of the feasible set.

Hazard Space. In strict mathematical terms, the con-
figuration space (C-space) of AI planning is a subset
of the state space (S-space) of multivariate control. It
is a well-established technique to abstract a mobile
robot into a C space point in six-dimensional position
and attitude coordinates. The significance of hazard
space (H-space) is that it performs the same function
for dynamic planning that C-space performs for kine-
matic planning. In hazard space, the point representing
the vehicle follows a trajectory which corresponds to
some particular command trajectory and response tra-
jectory.
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Lowercase Alphabetics

...................... baseline

...................... undercarriage clearance

...................... disparity

.................... correct disparity

................ minimum disparity

............... maximum disparity

...................... focal length

...................... sensor height

...................... sensor / vehicle nose offset

...................... wheel radius
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..................... rear elevation
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......................vehicle wheelbase

......................range

...............maximum range

................minimum range

......................scatter matrix

...................... time, time interval

......................vehicle speed

.....................vehicle width, swath width

......................groundplane projected range

................min groundplane projected range

...............max groundplane projected range

............. left camera frame axes

.............right camera frame axes

Bold Alphabetics

f(x,u)...............nonlinear system dynamics model

g(x) .................. terrain following relationship

h(x)..................hazard model

x,x(t),xi(t) .....state vector, candidate state vector

y,y(t),yi(t) .....output vector, candidate output vector

ysafe .................safety threshold vector

u,u(t),ui(t) ....control vector, candidate cmd vector

ud ..................... terrain disturbance vector

A.......................system dynamics matrix

B .......................input distribution matrix

Xf .....................set of mechanically feasible trajectories

Xa..................... iset of admissable trajectories

L[x] .................goal functional

Greek Alphabetics

......................steer angle

......................angular velocity (z component)

......................normalized disparity

......................curvature

......................yaw, pixel azimuth, vehicle yaw

......................vehicle yaw rate

......................pitch, elevation

......................roll

Increments and Differentials

.............crossrange incremental distance

.............downrange incremental distance

.............vertical incremental distance

............pitch/elevation increment or error

...........yaw/azimuth increment or error

...................change in normalized disparity
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R
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XR YR

α
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ψ
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φ

dx ∆x,
dy ∆y,
dz ∆z,
dθ ∆θ,
dψ ∆ψ,
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