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Abstract. Many forms of mobile robot guidance map can be visualized as a net-
work of nodes (images) connected by edges (poses). We show how explicit reason-
ing about the loop topology of this pose network can generate a cycle basis for the
network in linear time. This basis can then be used to form the independent con-
straint equations in a natural constrained optimization formulation of the mapping
problem. In many practical cases, the pose network has sparse structure, and the
associated equations can then be solved in linear time. This approach can be used
to construct optimal, consistent maps on very large scales in very limited computa-
tion. While the technique is applicable to mapbuilding in general, and even optimi-
zation in general, it is illustrated here for batch processing of 2D ladar scans into a
mobile robot guidance map.

Introduction

Mapbuilding is an important problem in mobile robotics because triangulation
from some form of map is often the only mechanism that enables stable accurate
position estimates over either long time periods or long excursions. Regardless of
the sensing modalities used, the environmental features used as landmarks, or the
dead reckoning systems used to compute position between fixes to the map, the
construction of a map which is sufficiently accurate and consistent remains a diffi-
cult problem.

This paper addresses the following problem. A sequence of ladar scans has been
captured during a mapping pass through the environment. The imagery is tagged
with estimated vehicle or sensor positions computed from all available dead reck-
oning indications, potentially including ladar scan matching (visual odometry).
Based on these position estimates and an indication of which nonconsecutively
captured scans overlap, a globally consistent map must be constructed.



Prior Work

This work is an adaptation of our earlier work on navigating from globally consis-
tent appearance mosaics [5]. Building a map is closely related to the computer
vision problems of registering range scans to produce a geometric model or to reg-
istering imagery to produce mosaics.

The processing of large amounts of imagery into consistent representations was
a core pursuit of analytic photogrammetry before there was computer vision or
even computers [16]. The formulation of mosaicking (then known as block triangu-
lation) as that of minimizing the total map residual using the normal equations was
a basic technique. In the contemporary mosaicking literature, [4] is similar to the
present work in its use of topological information to guide the optimization pro-
cess. In the range image processing literature, we cite [8] and [9] for pioneering the
iterative closest point algorithm, and [10] for using it to simultaneously minimize
the total residual error of a number of overlapping range scans.

The idea of a network of reference frames connected by uncertain relative poses
goes back in robotics at least to [12]. Many of the core concepts of consistency and
constraint in uncertain geometric networks were introduced to robotics in [17].
These, in-turn, have a partial basis in classical network theory [18]. 

The fact that tracking covariance leads to quadratic complexity in SLAM has
been known since [11]. The fact that correlations must nonetheless be tracked was
shown in [14]. These results clarify the value of our efforts to diagonalize covari-
ance here. The fact that relative poses can do this was pointed out in [3].

One of the important aspects of this work is its ability to produce maps on the
very large scale. In part, this is enabled by an inherently efficient formulation.
Highly successful efforts to do the same for incremental approaches are also ongo-
ing [13] [15]. In contrast to the hierarchical decomposition approach of the latter,
our approach allows every image in the map to move in order to seek the con-
strained optimum but otherwise, the use of paths through the network for formulat-
ing constraints on relative poses makes this work very similar.

Within the area of incremental mapping, global consistency of range scans was
enforced in [2] by solving an overconstrained system of measurements to compute
the required least-squares perturbation to absolute scan poses. This approach is
extended in [1] to perform online mapping in cyclic environments. In contrast to
these highly relevant works, our approach avoids the cubic complexity of the inver-
sion of fully populated matrices in order to produce a method which is practical on
the very large scale.



Constrained Optimization

Constrained Optimization in a Relative Map

Consider a representation of the mapping problem in terms of relative poses. In
principle, if there are  images, up to  relative poses can be defined. The relative
pose of image i with respect to image j will be denoted by . In practice, only
those relative poses for which an important overlap exists need to be considered.

Consistency relations in this formulation are hard constraints on the relative
poses. In general, using  to denote a homogeneous transform, internal consis-
tency is enforced by loop equations which take the form:

Such equations require the total transform around a closed loop to be the iden-
tity. Likewise, consistency with external standards may be imposed with path equa-
tions of the form:

A loop is simply a closed path in these expressions and the path is therefore the
more general notion. Implementations can treat loops as special paths. Path con-
straints are the mechanism by which external survey information can be incorpo-
rated into the map building process.

Let the state vector  denote the vector of all relative poses for which an impor-
tant overlap exists. The squared total residual  of matching points or features
in image pairs serves as a useful measure of performance for optimization pur-
poses. The problem specification is.

Such problems are, of course, solved using Lagrange multipliers. We adjoin the
constraints to the performance index to form the Lagrangian:

and require of a constrained minimum that:

To generate the constrained Newton’s method, we linearize these equations
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about a point where they are not satisfied, transpose where convenient, and require
satisfaction upon perturbation. The ultimate result of this manipulation is:

Where

Approximating the Hessian leads to:

These equations can be iterated until convergence from a initial estimate in
order to produce the constrained local minimum. The equations can be solved by
recursive partitioning to produce a more efficient form.

Complexity of the Optimized Relative Map Formulation

The first equation is solved for the updates to the Lagrange multipliers and the sec-
ond is then solved for the state perturbation. With careful implementation, the com-
plexity of these computations is  for the first equation and

 for the second. The highest power of  that appears is unity. As shown
in figure 1, the matrix to be inverted in this case is block diagonal. The relative
poses are decorrelated from each other.

It is the decision to use a representation of potentially inconsistent relative poses
which leads to a nearly diagonal system of equations. The alternative of using a
minimal independent set of poses to represent the map would require, essentially,
that the constraints be substituted into the objective. Doing so, leads to a fully pop-
ulated coefficient matrix. When the constraints on the poses are represented in a
second set of equations as hard constraints, the resulting structure can be solved
much more efficiently.
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Figure 1: Closing a Single Loop With Nonlinear Programming. The diagonal part of the
matrix is all that needs to be inverted. 
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Network Cycle Basis

In the general case, the generation of independent loop equations is itself a difficult
problem. The main concern is that the loop equations must be independent to pre-
serve the rank of the coefficient matrix . In figure 2 for example, although
there are nine distinct loops, four of them can be eliminated because there is no
node in the center of the figure. The remaining five loops include those formed by
each set of three nodes, and the one loop composed of four nodes. Of these five
loops, only three are independent.

Generating the loop equations requires an algorithm for computing the cycle
basis of the network. While the literature on this aspect of network theory devotes
significant effort to finding the best basis for a given purpose [20], our results do
not depend on the exact basis chosen.

Spanning Tree

In general, the problem of finding a cycle basis is related to the problem of finding
a spanning tree of the network. Each different possible spanning tree corresponds
to a different cycle basis. In a spanning tree, each node (except an arbitrarily cho-
sen root node) is assigned one and only one parent. Once the tree is constructed,
two important statements become true:

• There is now a unique acyclic path between any two nodes in the tree.
• Any edge in the network, but not in the tree, closes an independent loop which

is a member of the cycle basis encoded by the tree.
Figure 3 illustrates these matter on a simple tree. The choice of root node and

the order of traversal determines the form of the tree. Notice that if there are 
nodes, then the spanning tree contains  edges. If there are  edges in the orig-
inal network, then there must be:

independent loops.

CC
T

Figure 2: Network Cycle Basis. There are four nodes in this graph and 6 edges. Notice
that there is no node at the center of the figure so the edge intersection there is of no
consequence. There are five distinct loops but only three of them are independent.
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The spanning tree is generated by a breadth first traversal of the pose network.
For this purpose, edges are considered bidirectional. Starting from the root, each
node and edge is marked as it is traversed. When any node is encountered for the
second time:

• The edge traversed is marked as a loop closing edge and not included in the
spanning tree.

• The node is not elaborated into its children.
When there are no nodes left in the traversal queue, the tree is complete. This

algorithm is clearly of complexity  because each edge and node is visited
only once.

The generation of loop constraint equations requires the generation of an
explicit sequence of edges which comprise each loop in the cycle basis. A sequence
of loop edges is comprised of the path in the spanning tree and the edge outside the
tree which closes the loop. It is important to track whether the edges in the loop are
traversed in the same sense or the opposite sense of the relative pose to which they
correspond.

A path between any two nodes, through the root, is implicitly encoded in the
parent links of the spanning tree. However, for generating loop equations, it is nec-
essary to detect if two such paths to the root converge before they reach the root.
Detecting this case is straightforward if the depth of a node is computed during
spanning tree creation and the paths to the root are elaborated alternately one step
at a time after the path from the deeper node is traversed up to the depth of the shal-
lower.

The algorithm used to construct the path is:

• Start at the deeper of the two nodes and follow its parent links until the depth of
the shallower node is reached.

• While the last parent node encountered in both paths is not the same node,
move both paths toward the root by one step.

• The loop sequence is then the path from the deeper node to the common node,
the reverse of the path from the shallow node to the common node, and the loop
closing edge.
This algorithm has a complexity bounded from above by the length of the larg-

est loop times the number of loops. Therefore, in no case can it exceed  opera-
tions.

Figure 3: Spanning Tree and Cycle Basis. The network of 7 nodes has two independent
loops. The spanning tree generated when node 0 is chosen as the root is illustrated. The
edges between nodes (5,6) and (2,3) are the identified loop closing edges. 
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Results

The constrained optimization mapping system has been recently implemented and
is undergoing field trials. Presently, images are captured roughly ten times a sec-
ond. As a result, there is little difference in the quality of maps produced using the
full constrained optimization approach versus simply enforcing the constraints
without optimization. The latter amounts to a right pseudoinverse applied to all
loops simultaneously. Consecutive scans are registered using the iterative closest
point (ICP) algorithm before the mapping process commences. Computing times
required to register consecutive scans in this manner are not included in the times
provided because these calculations can be performed on-line while the images are
being captured. The processor used is a 1.5 GHz Pentium with 1 Gbyte of RAM.
The two example trials provided below have been chosen to exemplify how very
large maps can be rendered globally consistent in comparatively little computation.

Large Cyclic Facility

One trial involved mapping several floors of Pittsburgh’s ice hockey stadium. A
map of one floor is presented below both before and after rendering it consistent. 

In this case, four iterations were required to reduce the original 65 meter error at
loop closure to under 1 cm. Overall runtime was 0.14 seconds to just enforce con-
straints and 0.65 seconds to also compute the optimum map. Clearly, a slight curva-
ture error to the right seems evident in the odometry.

Figure 4: Ladar Map of Pittsburgh’s Mellon Arena. 3875 ladar scans have been rendered
globally consistent in 0.14 seconds of computation. Left: original odometry-based map.
Right: final map.

65 m.

115 m.



Large Multi-Cyclic Facility

The odometry was very well calibrated in this second test. Here, the environment is
a typical grocery store. Such environments are ideal for demonstrating the benefits
of our approach. There are a large but finite number of loops and the number of
images required to map the facility is enough to overwhelm alternative approaches.
The vehicle trajectory was a left to right scan of the facility where each set of
shelves was encircled once.

The left figure testifies to the excellent odometry calibration in effect for this
test. After 11 complete turns and roughly 700 meters of travel, the heading error
remains under 20 degrees. This error does, however, account for the gradual skew
in the aisles as the vehicle moved from left to right in the figure. Misregistration at
the ends of the aisles is evident when they are seen a second time after looping
around each set of shelves. Various fuzzy clouds of points in the aisles are either
displays or occasional moving people.

The quality of the odometry led to an average misregistration on the order of 3
meters at the point of closure of each of the 23 loops used. Four iterations were
required to enforce all constraints to under a cm in 12.22 seconds of computation.
For problems on this scale, the extra effort to compute an optimal map is insignifi-
cant because the constraint equations require most of the processing. 

Figure 5: Ladar Map of 12 Aisles of a Grocery Store. 10,380 ladar scans have been rendered
globally consistent in 12.22 seconds of computation. Left: original odometry-based map.
Right: final map.

45 m.

35.5 m.



Conclusions

This paper has shown the promise of explicit topological reasoning to solve the
problem of globally consistent optimal mapping on the large scale. When the pose
network describing observations is sparse, as it often is, and the problem size is
large, the computational advantages in terms of both memory and processing can
be both spectacular and enabling.

The technique is applied here to ladar scans and we have applied it earlier to
image mosaicking but it applies in principle to any form of imagery that can be reg-
istered whether it is 2D or 3D. Indeed, the fundamental result applies to all con-
strained optimization problems, and it is likely to have been exploited in other
fields for some time.

At an abstract level, sparse cyclic systems are systems which are only slightly
overconstrained. For such systems, the process of extracting an explicit expression
of the hard constraints encoding “consistency” seems to have great practical value.
It may well be that a factorization approach to solving the normal equations can be
found which is equivalent but the main point is that either process will require
topological reasoning. Very hard sparse optimization problems then become reduc-
ible to easy problems in graph theory followed by easy ones in optimization.

While we have demonstrated the use of the technique in a batch processing
mode, nothing in the formulation prevents its use for incremental map building.
Indeed, its linear complexity implies that optimal consistent maps of large scale
facilities could be constructed on the fly as long as the cycle basis can be main-
tained and a robust automatic mechanism for detecting loop closure can be devel-
oped. The latter has been shown by several other researchers including [1] and the
former can be accomplished by simply re-running the present algorithm as new
loops are closed.

To the degree that limited sensor range and environmental occlusion makes all
problems sparse on the large scale, we have begun to support the case that optimal
mapping can be accomplished in a fully automatic fashion on such very large
scales without requiring any additional assumptions in order to reduce computa-
tional complexity.
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