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Abstract. When navigating from landmarks, the numerical computation of the differ-
ential behavior of the mapping from measurements to states is well understood. This
paper seeks to develop tools to foster an intuitive grasp of the spatial variation in the
differential behavior of this mapping. Graphical methods are adapted from marine
navigation in order to introduce the issues in low dimensional cases. The implicit
function theorem and the pseudoinverse are then used in the general case to derive a
quantity analogous to the geometric dilution of precision (GDOP) as it is used in sat-
ellite based guidance. An explicit expression is obtained for the conditioning of the
triangulation computation as a function of position. This expression also directly pro-
vides the conditions under which the computation becomes singular. The application
to a few common cases is illustrated.

1. Introduction

The ancient application of techniques for solving triangles to problems in geometry (liter-
ally “earth measurement”) and navigation are well documented [16]. Due to a lack of a more
general term, the term triangulation is often used today to refer to any process which solves
a system of simultaneous algebraic or transcendental equations — whether or not they are
reducible to an equivalent problem involving triangles.

In mobile robots, triangulation occurs often in the context of explicit point landmarks,
often viewed by a vision system. However, any aspects of the environment whose positions
are known, viewed by any sensor whose indications depend on their position relative to the
sensor, establishes a triangulation context.

Triangulation differs materially from dead reckoning. In dead reckoning from inertial
indications (inertial navigation) [4] or ground referenced velocity indications, errors propa-
gate according to governing differential equations leading to time dependent behavior of
localization error. Dead reckoning errors have dynamics — the present state error depends,
at any time, on the entire measurement error history.

By contrast, triangulation errors do not exhibit dynamics. The present state error depends,
at any time, only on the present measurement error. The first order mapping between them
depends, in turn, on the configuration of the landmarks relative to the robot. This paper pro-
vides some convenient tools for understanding the behavior of this mapping in a framework
which is consistent with an equivalent recent analysis for odometry [7].

The goal of the paper is to develop methods to visualize and analytically compute the
gross magnification factor which transforms sensor error magnitudes into computed pose
error magnitudes. In satellite navigation systems, this factor is known as the geometric dilu-



tion of precision.

1.1 Previous Work
In mobile robotics, an early survey of approaches to position estimation appears in [14].

With the notable exception of [1], there is little direct precedent for analytic computation of
the conditioning of triangulation computations. [1] uses a complex number representation of
bearing observations of landmarks and computes the conditions for singularity of the
pseudoinverse. For example, [2] exemplifies numerical study of triangulation error and it
reaches conclusions which are supported by the theory presented here. Likewise, the wide-
spread use of the Kalman filter in mobile robots means that the numerical computation of
uncertainty predictions are often a fundamental aspect of system operation. In contrast to
such computations, this paper seeks analytic results for their intuitive, pedagogic, and theo-
retical value.

Early work on localizing from landmarks using sonar appears, for example, in [3] and
[10]. For the case of using cameras, [8] extends the work of [13] in addressing the case of
using rays (bearings) from a single image. Empirical analysis of the generated pose errors is
provided. Analytic results are deemed to be difficult to produce for the case studied. In the
case of stereo, [11] is among some of the earliest work which accounts explicitly for stereo
uncertainty in a navigation context.

Elsewhere in robotics, the conditioning of the observer Jacobian is the same issue as that
of the feature velocity Jacobian computed in visual servoing [6]. This computation considers
the mapping from image velocities to scene velocities. Similarly, the conditioning of the
mapping from cartesian rates to joint rates is central to resolved rate manipulator control
[15].

Outside robotics, the fields of survey and guidance, of course, have studied triangulation
and its numerical stability. For the Global Positioning System (GPS) [12], for example, a
form of the geometric dilution of precision (GDOP) is often computed explicitly in contem-
porary signal receivers.

1.2 Problem Description
For the present purpose, the formulation of triangulation as an observer process is partic-

ularly useful. Let the vehicle position and orientation (pose) be collected into a state vector
thus:

Let  denote a vector of observations (measurements) which are related to the mobile

robot state  by a general nonlinear measurement function as follows:

While, in particular cases, the relationship may be linear and while in others the relation-
ship may be invertible in closed form (to determine  as an explicit function of ), the above

observer form is applicable more generally.
One view of the above relationship is that each element of the observation provides a con-

straint on the state. When sufficient constraints are available, the system can be solved for
the robot position. However, it is common in robotics to solve the above system in both
underconstrained and overconstrained cases.

The measurements can in principle be any physically observable quantity which is deter-
mined by vehicle pose but in practice, observations of range, bearing, or cartesian position
of landmarks are common.

This paper addresses the following problem. Let the observations be corrupted by addi-

x t( ) x t( ) y t( ) θ t( )
T

= (1)

z

x

z h x( )= (2)

x z



tive errors  as follows:

Using these input errors and the observer relationship, determine the behavior of the asso-
ciated errors in the computed vehicle pose:

The errors can be systematic or random in nature, and solutions for either case are sought.

2. Intuitive Concepts

2.1 Level Curves of Observation
A particularly useful visualization of triangulation is the level curves, or contours, which

emerge when the observer is viewed as a scalar field over pose space. Conceptually, for the
single element of the observation vector , the implicitly defined curve or surface:

is the locus of all points for which the “constraint” is satisfied, or in more familiar terms,
the collection of poses which are consistent with the observation. Historically, hand drafting
of such “lines of position” was a basic technique in marine navigation from landmarks [5].
In the computer age, numerical techniques to solve systems like Equation (2) by lineariza-
tion and iteration are well known. The fact that a mobile robot’s position changes very little
over the typical time period between observations often means that the typical difficulties of
determining a good initial guess can be avoided by simply using the last estimate, possibly
augmented by intermediate odometry, as the prior estimate for the current iteration.

For this view, the visualization is particularly effective when the state vector is limited to

the two dimensional position of the robot - that is, when . The balance of the

paper assumes that an association has been accomplished between sensor indications and the
landmarks to which they correspond.  

 Figure 1:  Lines of Position. Such diagrams enable the visualization of triangulation as a process of concurrent satisfac-
tion of multiple level curves of constraint. Left: range measurements generate circular constraints. Right: bearing measure-
ments generate linear constraints (although the observer itself is a nonlinear function of the state). 

δz t( )

z' t( ) z t( ) δz t( )+= (3)

x' t( ) x t( ) δx t( )+=
y' t( ) y t( ) δy t( )+=
θ' t( ) θ t( ) δθ t( )+=

(4)

zi

zi hi x( ) constant= = (5)

x x y
T

=

(6)

r1 x x1–( )2 y y1–( )2+=

r2 x x2–( )2 y y2–( )2+=

x

y

landmark 1

landmark 2

x1 y1,( )

x2 y2,( )
r1

r2

x y,( )

(7)

x

y

θ2

θ1

θv

(x,y)

θ

landmark 2
x2 y2,( )

landmark 1

x1 y1,( )

θ1tan
θ1sin

θ1cos
--------------

y1 y–

x1 x–
-------------= =

θ2tan
θ2sin

θ2cos
--------------

y2 y–

x2 x–
-------------= =



For example, consider the cases shown in Figure 1. Discrete landmarks are observed
through a ranging device in the left figure and a bearing indicator in the right figure. The left
system is analogous to the GPS satellite guidance system [9]. The right figure is analogous
to both laser guidance of contemporary autonomous guided vehicles and camera based guid-
ance used more commonly in research laboratories. In either case, it is clear that the robot
position must be a point where both constraints are satisfied (where the circles or lines inter-
sect). In some cases, this point is not necessarily unique and in others it does not exist. There
is no solution when the circles do not intersect, when the lines are parallel, or when the robot
is over a landmark. Generally, nonlinear constraints lead to a set of issues concerning exist-
ence and uniqueness of solutions and the conditioning of computations when the two solu-
tions are near each other.

2.2 First Order Response to Perturbations
Error propagation can be understood in this intuitive framework by imagining how small

variations in the observations will impact the computed solution for vehicle position. On
contour diagrams, the volume enclosed by original and perturbed level curves is, by con-
struction, the region which is generated by the associated perturbations to the observations.
Figure 2, illustrates how these volumes can be constructed graphically. Both the volume and
the shape of the region are meaningful. 

A final important aspect of error propagation is the dependence of the differential behav-
ior on the state (the pose of the robot). This dependence again derives fundamentally from
the nonlinear nature of the observer.

All of these issues come to light when a region is entirely filled with contours whose lev-
els are equally spaced as shown in Figure 3. 

3. Analytical Concepts

In more general, higher dimensional cases, a two dimensional contour view is not as illu-
minating and intuition must give way to more formal methods.

 Figure 2: Error Regions and Sensitivity. The shaded region is spanned by the computed pose in response to
perturbations in the observations. For a fixed error input, the region’s size and the shape changes as the robot
moves with respect to the landmarks
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3.1 First Order Response to Perturbations

Clearly, the first order behavior of the observer is straightforward. If  is the

Jacobian of the observer, then systematic and random errors in the observations are related
to corresponding errors in the states by 

where  is the measurement covariance and  is the associated state covariance (when

the errors are interpreted as random variables). They are defined as:

In practice,  is more likely to be considered known and  is to be determined, so the

above differential relationships usually need to be inverted:

where the superscript “+” denotes the pseudoinverse. From a numerical perspective,
Equation (10) can be considered to be the solution to the linearized error transformation
problem for both the systematic and stochastic case. However, we seek an economical ana-
lytic expression for the conditioning of this mapping.

3.2 Jacobian Determinant as GDOP
We are normally interested in the magnification from the perspective of how sensor errors

are magnified to become pose errors. Let us loosely define the geometric dilution of preci-
sion, or GDOP, as:

where  and  are the “magnitudes” of pose and sensor errors respectively accord-

ing to any useful definition of magnitude.
Clearly, the mapping between sensor error and pose error is a matrix and any sort of norm

of the matrix is a measure of the relative magnifying power of the matrix. Among the
choices of norm available, the Jacobian determinant is a convenient choice because it avoids
eigenvalue computations. When the observer system is square, the Jacobian determinant
expresses the scalar multiplier which converts a differential volume in pose space to its cor-

 Figure 3: Contour Diagrams. By filling an entire region, the spatial variation in size and shape of the response
to an unit input error can be visualized at once.

H ∂h ∂x⁄=

δz Hδx= Cz HCxH
T

= (8)

Cz Cx

Cz Exp δzδz
T[ ]= Cx Exp δxδx

T[ ]= (9)

δz δx

Cx H
T
Cz

1–
H( )

1–
= (10)δx H

+δz=

GDOP δx δz⁄= (11)

δx δz



responding differential volume in measurement space:

Where the volumes are  and  and 

the determinant of the inverse Jacobian. The  notation is intended to represent both the
volume of a vector and determinant of a matrix since these are consistently related by Equa-
tion (12). 

In the more general case, the measurements are only implicit functions of the states and
we have:

and by taking the total differential:

where  and . This system can be solved in either direction by the

pseudoinverse:

and Equation (12) then applies.
When the system is fully determined, both Jacobians are square. Using the rules for the

determinant of a product and the determinant of a matrix inverse, we have:

This form will be useful for the following examples.

4. Results

Two cases can be illustrated in the available space. 

4.1 Circular Constraints
Consider the case of navigating from range indications of known point landmarks. In this

case, the constraint equations are circles as shown in Equation (6). Equation (8) becomes:

By reference to Figure 4 this determinant can be shown (through vector algebra) to be
equivalent to the cosecant of the relative bearing angle between the two landmarks.
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 Figure 4:  GDOP for Circular Constraints. The GDOP is the cosecant of the relative bearing angle between the
two landmarks.
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Heading cannot be determined from ranges to a single point on the robot, so it was
removed from the state vector. Clearly, the GDOP tends to infinity when either the robot is
on the line between the landmarks (when the position orthogonal to the line between them
becomes unconstrained) or when it is so far away that the position parallel to the line
between them becomes unconstrained. The GDOP is best when the angle between the land-
marks is a right angle. All of these cases were predicted in Figure 2.

4.2 Linear Constraints
Consider the case of navigating from bearing indications of known point landmarks with

known heading. In this case, the constraint equations are lines as shown in Equation (7).
Equation (13) takes the form:

where  etc. and  etc. Equation (16) is, in this case:

By reference to Figure 5 this determinant can be shown (through vector algebra) to be
equivalent to the product of the range product and the cosecant of the relative bearing angle
between the two landmarks.

For this case, the GDOP again tends to infinity when the robot is on the line between the
landmarks. As the range product becomes large, the angle between the sight lines also
becomes small and the conditioning degrades quickly. The GDOP is best when the angle
between the landmarks is a right angle and the landmarks are close. All of these cases were
predicted in Figure 2.

5. Conclusions

While the mapping from sensor errors to pose errors in triangulation is a straightforward
numerical computation (based on linearizing the observation equations), such solutions gen-
erate little insight into the underlying mechanisms or the general case. While contour dia-
grams are intuitively appealing, they do not scale well to higher dimensions. An analytical
technique has been introduced which produces in closed-form an expression for the scaling
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 Figure 5:  GDOP for Linear Constraints. The GDOP is the range product times the cosecant of the relative bear-
ing angle between the two landmarks.
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volumes in sensor error space into volumes in pose error space. This expression also pro-
duces the conditions under which triangulation becomes ill-conditioned.

Such analytic expressions are catalysts for the development of theory. They can be substi-
tuted into other closed-form analyses or differentiated in optimization processes. For exam-
ple, the “optimal” configuration of landmarks can be computed from the above results as the
one for which GDOP is best overall for a given work envelope. It is possible to show that
direct observation of range differences, a marine radio-navigation technique known as
hyperbolic navigation, is exceptionally well-behaved.

For pedagogic purposes, these results amount to a process for proof of the conditions
under which computation becomes ill conditioned. Rules of thumb are produced which are
valuable design heuristics. They form the basis of requirements analysis which, for example,
requires a third landmark in order to determine heading or disambiguate multiple solutions
in many cases.
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